Spatial distribution of cultivated land quality and potential for capacity improvement of paddy fields in South China
-
摘要: 为了明确华南区稻田耕地质量空间分布及其提升潜力, 为实现华南区水稻高产稳产提供科学依据, 本研究基于2017年农业农村部耕地质量监测保护中心在华南区开展的耕地质量区域汇总评价数据, 分析华南区稻田耕地质量空间分布情况及其与产能对应关系, 并利用随机森林模型明确影响产能提升的主要限制因子。华南区稻田耕地质量等级呈现“中间高, 四周低”的空间分布规律; 利用半方差函数拟合结果表明, 华南区稻田耕地质量等级呈中度空间相关性(R2=0.95), 以广东(3.82)最高, 海南(5.32)最低。华南区耕地质量评价指标中, 土壤养分指标空间分布差异较大, 土壤全氮和缓效钾含量空间分布呈强烈的空间相关性, 分别呈现“西高东低”和“北高南低”空间分布规律; 土壤有机质、有效磷、速效钾含量呈中度空间分布相关性, 分别呈现由西向东、由东向西、由北向南不断降低的空间分布趋势; 土壤pH整体呈弱酸性(5.40)。土壤物理性状、立地条件、土壤管理情况及土壤健康状况以东部较好, 西部较差。华南区稻田耕地质量等级与单产整体呈显著正相关性(R2=0.9140), 水稻产量随耕地质量等级提升呈先迅速增加后趋于平缓趋势; 华南区稻田耕地质量等级与水稻产量可持续指数呈显著正相关(R2=0.9333)。随机森林模型的重要性分析结果表明, 土壤有效磷含量、灌溉能力和土壤有机质含量是影响华南区水稻产量的最关键因素。情景模拟表明, 若华南区稻田耕地质量等级分别提升0.5、1.0、1.5个等级, 则水稻将增产14.93%、22.39%、29.86%, 相当于节约耕地面积31.77万hm2、56.35万hm2、75.95万hm2。华南区稻田耕地质量和产能仍有较大提升潜力, 通过提升耕地质量来提升产能对保障粮食安全、促进农业绿色生产具有重大意义。Abstract: In order to clarify the spatial distribution and promotion potential of paddy cultivated land quality in South China, and to provide a scientific basis for realizing high and stable rice yield in South China, based on the regional evaluation data of cultivated land quality in South China carried out by the Cultivated Land Quality Monitoring and Protection Center of the Ministry of Agriculture and Rural Affairs of the Perople’s Republic of China in 2017, this study analyzed the spatial distribution of paddy cultivated land quality and its corresponding relationship with productivity in South China. The stochastic forest model was used to identify the main limiting factors that affect the capacity improvement. The spatial distribution law of the quality grade of paddy field in South China was “high in the middle and low around”. The fitting result of semi-variance function showed that the quality grade of paddy field in South China was in moderate spatial correlation (R2=0.95), the highest in Guangdong (3.82) and the lowest in Hainan (5.32). Among the evaluation indexes of cultivated land quality in South China, there was a great difference in the spatial distribution of soil nutrient indexes, and the spatial distribution of soil total nitrogen and slowly available potassium showed a strong spatial correlation, with the spatial distribution law of “high in the west and low in the east” and “high in the north and low in the south”, respectively. The contents of soil organic matter, available phosphorus and available potassium showed moderate spatial distribution correlation, with a decreasing spatial distribution trend from west to east, east to west and north to south, respectively. The overall soil pH was weakly acidic (5.40), with moderate spatial distribution correlation. Soil physical properties, site conditions, soil management and soil health were better in the east and worse in the west. There was a significant positive correlation between the quality grade of paddy field and the overall rice yield in South China (R2=0.9140), and the rice yield increased rapidly at first and then tended to slow down with the improvement of cultivated land quality. There was a significant positive correlation between the quality grade of paddy land and the sustainable index of rice yield in South China (R2=0.9333). The importance analysis of stochastic forest model showed that soil available phosphorus content, irrigation capacity and soil organic matter content were the most important factors affecting rice yield in South China. Scenario simulation showed that if the quality grade of paddy land in South China is improved by 0.5, 1.0, 1.5 respectively, the yield will increase by 14.93%, 22.39% and 29.86%, which is equivalent to saving 317 700 hm2, 563 500 hm2 and 759 500 hm2 of cultivated land. There is still great potential to improve the quality and production capacity of paddy farmland in South China. Improving the production capacity by improving the quality of cultivated land is of great significance to ensure food security and promote agricultural green production.
-
Key words:
- South China /
- Rice paddy field /
- Cultivated land quality grade /
- Rice yield
-
表 1 耕地质量等级划分方案
Table 1. Classification scheme of cultivated land quality grade
耕地质量等级
Cultivated land quality grade综合指数
Comprehensive index耕地质量等级
Cultivated land quality grade综合指数
Comprehensive index1 ≥0.8850 6 0.7695~0.7926 2 0.8619~0.8850 7 0.7464~0.7695 3 0.8388~0.8619 8 0.7233~0.7464 4 0.8157~0.8388 9 0.7002~0.7233 5 0.7926~0.8157 10 <0.7002 表 2 华南区稻田耕地质量与产能提升潜力情景模拟内容解释
Table 2. Interpretation of scenario simulation content of cultivated land quality and capacity improvement potential of paddy field in South China
名称
Scenario情景设置
Detail of scenario情景1 Scenario 1 在现有耕地质量等级下
Under the existing quality grade of cultivated land情景2 Scenario 2 耕地质量等级提升0.5个等级
The quality grade of cultivated land has been improved
by 0.5 grades情景3 Scenario 3 耕地质量等级提升1.0个等级
The quality grade of cultivated land has been improved
by 1.0 grade情景4 Scenario 4 耕地质量等级提升1.5个等级
The quality grade of cultivated land has been improved
by 1.5 grades表 3 华南区稻田土壤养分状况空间变异理论模型及其参数
Table 3. Theoretical model and parameters of spatial variation of soil nutrient status in paddy field in South China
指标
Index理论模型
Theoretical model块金值
Nugget value基台值
Sill value块金值/基台值
Nugget to sill ratio变程
Variable range (km)R2 和方根
Root sum square (RSS)土壤有机质含量
Soil organic matter content高斯型 Gaussian 0.07 0.14 0.50 5.27 0.87 0.00 土壤全氮含量
Soil total nitrogen content球函数 Spherical 0.07 0.31 0.23 5.20 0.83 0.02 土壤有效磷含量
Soil available phosphorus content指数型 Exponential 0.30 0.68 0.44 7.02 0.98 0.00 土壤速效钾含量
Soil available potassium content高斯型 Gaussian 0.22 0.43 0.50 5.47 0.93 0.01 土壤缓效钾含量
Slowly available potassium content in soil高斯型 Gaussian 0.06 0.75 0.08 0.37 0.04 0.01 土壤pH
Soil pH球函数 Spherical 0.18 0.46 0.39 6.16 0.89 0.02 块金值/基台值<0.25 为强空间相关性, 0.25~0.75 为中度空间相关性, >0.75为弱空间相关性。A strong spatial correlation occurs when the value of nugget to sill ratio is lower than 0.25; value of nugget to sill ratio between 0.25 and 0.75 is a moderate spatial correlation; a weak spatial correlation occurs when the value of nugget to sill ratio is higher than 0.75. 表 4 华南区稻田耕层容重和有效土层厚度空间变异理论模型及其参数
Table 4. Theoretical model and parameters of spatial variation of bulk density and effective soil thickness of plough layer in paddy field in South China
指标
Index理论模型
Theoretical model块金值
Nugget value基台值
Sill value块金值/基台值
Nugget to sill ratio变程
Variable range (km)R2 和方根
Root sum square (RSS)耕层容重
Thickness of plough layer高斯型 Gaussian 0.01 0.03 0.40 4.87 0.94 0.00 有效土层厚度
Effective thickness of soil layer指数型 Exponential 281.00 619.90 0.45 18.03 0.89 8521.00 块金值/基台值<0.25 为强空间相关性, 0.25~0.75 为中度空间相关性, >0.75为弱空间相关性。A strong spatial correlation occurs when the value of nugget to sill ratio is lower than 0.25; value of nugget to sill ratio between 0.25 and 0.75 is a moderate spatial correlation; a weak spatial correlation occurs when the value of nugget to sill ratio is higher than 0.75. 表 5 华南区稻田耕层质地和质地构造性质空间分布及频率
Table 5. Spatial distribution and frequencies of texture structure and texture of paddy field in South China
% 省(自治区)
Province (autonomous region)质地 Texture 砂土
Sand砂壤
Sandy loam轻壤
Light loam中壤
Middle loam重壤
Heavy loam黏土
Clay福建
Fujian1.43 24.59 0.00 44.06 28.07 1.84 广东
Guangdong0.10 2.23 83.22 12.78 0.00 1.68 广西
Guangxi0.22 24.08 12.32 35.39 24.97 3.02 海南
Hainan5.30 28.70 22.31 15.97 17.23 10.49 华南区
South China1.34 14.20 49.14 20.42 11.01 3.90 省(自治区)
Province (autonomous region)质地构造 Texture structure 薄层型
Thin layer type松散型
Loose type紧实型
Compact type夹层型
Sandwich type上紧下松型
Upper tight and lower loose type上松下紧型
Upper loose and lower tight type海绵型
Sponge type福建
Fujian0.00 3.07 30.74 8.61 1.43 56.15 0.00 广东
Guangdong0.55 0.00 0.00 0.00 0.00 50.86 48.59 广西
Guangxi2.41 0.78 9.69 24.52 4.37 54.82 3.42 海南
Hainan0.00 64.96 13.20 0.00 13.03 5.71 3.11 华南区
South China0.81 14.44 6.89 5.99 3.88 42.28 25.70 表 6 华南区稻田立地条件空间分布及频率
Table 6. Spatial distribution and frequencies of site conditions in paddy field in South China
% 省(自治区)
Province
(autonomous region)地形部位 Topographic position 山间盆地
Intermontane basin宽谷盆地
Wide valley basin平原低阶
Plain low order平原中阶
Plain middle order平原高阶
Plain high order丘陵上部
Upper part of hill丘陵中部
Middle part of hill丘陵下部
Lower part of hill福建
Fujian3.89 4.71 1.64 1.84 43.85 5.94 9.84 14.55 广东
Guangdong0.30 0.03 53.41 0.13 0.00 14.68 1.23 24.48 广西
Guangxi20.10 14.05 7.73 17.36 0.22 0.56 11.09 20.10 海南
Hainan0.00 0.00 55.22 17.93 9.86 4.09 3.11 9.80 华南区
South China4.87 3.43 40.46 7.93 4.86 8.70 4.36 19.72 省(自治区)
Province
(autonomous region)地形部位
Topographic position农田林网化程度
Degree of farmland forest network山地坡上
Upper part of hillside山地坡中
Middle part of slope山地坡下
Lower part of slope高
High中
Medium低
Low福建
Fujian2.25 3.28 8.20 0.00 39.96 60.04 广东
Guangdong0.30 0.60 4.85 0.00 8.35 91.65 广西
Guangxi0.28 2.80 5.71 2.69 24.86 72.45 海南
Hainan0.00 0.00 0.00 0.00 6.69 93.31 华南区
South China0.35 1.12 4.20 0.60 13.60 85.80 表 7 华南区稻田灌溉能力和排水能力空间分布及频率
Table 7. Spatial distribution and frequencies of irrigation capacity and drainage capacity of paddy fields in South China
% 省(自治区)
Province
(autonomous region)灌溉能力 Irrigation capacity 排水能力 Drainage capacity 充分满足
Fully satisfied满足
Satisfied基本满足
Basically satisfied不满足
Not satisfied充分满足
Fully satisfied满足
Satisfied基本满足
Basically satisfied不满足
Not satisfied福建 Fujian 31.56 7.17 45.08 16.19 79.92 16.80 1.43 1.84 广东 Guangdong 61.02 33.98 5.00 0.00 8.40 89.72 0.00 1.88 广西 Guangxi 9.07 30.07 58.85 2.02 20.16 25.92 43.39 10.53 海南 Hainan 13.49 40.75 35.33 10.43 17.23 67.84 9.74 5.19 华南区 South China 37.34 32.94 26.02 3.70 17.30 66.31 11.88 4.52 表 8 华南区土壤健康状况空间分布及频率
Table 8. Spatial distribution and frequencies of soil health status in South China
% 省(自治区)
Province (autonomous region)生物多样性 Biological diversity 清洁程度 Cleanliness degree 丰富
Rich一般
General不丰富
Not rich清洁
Clean尚清洁
Relatively clean福建 Fujian 38.73 44.47 16.80 100.00 0.00 广东 Guangdong 98.02 1.98 0.00 100.00 0.00 广西 Guangxi 6.83 80.57 12.60 100.00 0.00 海南 Hainan 10.20 82.36 7.44 100.00 0.00 华南区 South China 55.04 39.51 5.44 100.00 0.00 -
[1] 姚东恒, 裴久渤, 汪景宽. 东北典型黑土区耕地质量时空变化研究[J]. 中国生态农业学报(中英文), 2020, 28(1): 104−114YAO D H, PEI J B, WANG J K. Temporal-spatial changes in cultivated land quality in a black soil region of Northeast China[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 104−114 [2] 赵滢. 华南水稻重要农艺性状演变规律及粒型性状GWAS分析[D]. 荆州: 长江大学, 2019ZHAO Y. Evolvement rule analysis of important agronomic traits and genome-wide association study of grain shape in South China rice varieties[D]. Jingzhou: Yangtze University, 2019 [3] 耕地质量建设和保护有“标杆”了—《耕地质量等级》国家标准解读[J]. 中国农业信息, 2017(8): 5, 10The construction and protection of cultivated land quality has a benchmark—Interpretation of the national standard of cultivated land quality grade[J]. China Agricultural Information, 2017(8): 5, 10 [4] 李建军, 徐明岗, 辛景树, 等. 中国稻田土壤基础地力的时空演变特征[J]. 中国农业科学, 2016, 49(8): 1510−1519 doi: 10.3864/j.issn.0578-1752.2016.08.008LI J J, XU M G, XIN J S, et al. Spatial and temporal characteristics of basic soil productivity in China[J]. Scientia Agricultura Sinica, 2016, 49(8): 1510−1519 doi: 10.3864/j.issn.0578-1752.2016.08.008 [5] 王远鹏, 黄晶, 孙钰翔, 等. 近35年红壤稻区土壤肥力时空演变特征—以进贤县为例[J]. 中国农业科学, 2020, 53(16): 3294−3306 doi: 10.3864/j.issn.0578-1752.2020.16.008WANG Y P, HUANG J, SUN Y X, et al. Spatiotemporal variability characteristics of soil fertility in red soil paddy region in the past 35 years−A case study of Jinxian County[J]. Scientia Agricultura Sinica, 2020, 53(16): 3294−3306 doi: 10.3864/j.issn.0578-1752.2020.16.008 [6] 薛彦东, 李荣, 任意. 完善耕地质量等级 夯实国家粮食安全基础—国家标准《耕地质量等级》发布实施[J]. 中国农技推广, 2017, 33(2): 12−13XUE Y D, LI R, REN Y. Perfecting cultivated land quality grades and consolidating the foundation of national food security−Promulgation and implementation of national standard of Cultivated Land Quality Grades[J]. China Agricultural Technology Extension, 2017, 33(2): 12−13 [7] 乔磊, 江荣风, 张福锁, 等. 土壤基础地力对水稻体系的增产与稳产作用研究[J]. 中国科技论文, 2016, 11(9): 1031−1034, 1045 doi: 10.3969/j.issn.2095-2783.2016.09.012QIAO L, JIANG R F, ZHANG F S, et al. Improving inherent soil productivity enhances yield and resilience of rice farming systems[J]. China Sciencepaper, 2016, 11(9): 1031−1034, 1045 doi: 10.3969/j.issn.2095-2783.2016.09.012 [8] 陈延华, 王乐, 张淑香, 等. 我国褐土耕地质量的演变及对生产力的影响[J]. 中国农业科学, 2019, 52(24): 4540−4554 doi: 10.3864/j.issn.0578-1752.2019.24.009CHEN Y H, WANG L, ZHANG S X, et al. Quality change of cinnamon soil cultivated land and its effect on soil productivity[J]. Scientia Agricultura Sinica, 2019, 52(24): 4540−4554 doi: 10.3864/j.issn.0578-1752.2019.24.009 [9] 王婕, 牛文全, 张文倩, 等. 农田表层土壤养分空间变异特性研究[J]. 农业工程学报, 2020, 36(15): 37−46 doi: 10.11975/j.issn.1002-6819.2020.15.005WANG J, NIU W Q, ZHANG W Q, et al. Spatial variability of soil nutrients in topsoil of cultivated land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 37−46 doi: 10.11975/j.issn.1002-6819.2020.15.005 [10] 潘根兴, 赵其国. 我国农田土壤碳库演变研究: 全球变化和国家粮食安全[J]. 地球科学进展, 2005, 20(4): 384−393 doi: 10.3321/j.issn:1001-8166.2005.04.003PAN G X, ZHAO Q G. Study on evolution of organic carbon stock in agricultural soils of China: facing the challenge of global change and food security[J]. Advances in Earth Science, 2005, 20(4): 384−393 doi: 10.3321/j.issn:1001-8166.2005.04.003 [11] 杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047−1056YANG F, XU Y, CUI Y, et al. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5): 1047−1056 [12] 都江雪, 柳开楼, 黄晶, 等. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应[J]. 土壤学报, 2021, 58(2): 476−486DU J X, LIU K L, HUANG J, et al. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China[J]. Acta Pedologica Sinica, 2021, 58(2): 476−486 [13] BRUUN T B, MERTZ O, ELBERLING B. Linking yields of upland rice in shifting cultivation to fallow length and soil properties[J]. Agriculture, Ecosystems & Environment, 2006, 113(1/2/3/4): 139−149 [14] 黄继川, 彭智平, 徐培智, 等. 广东省水稻土有机质和氮、磷、钾肥力调查[J]. 广东农业科学, 2014, 41(6): 70−73 doi: 10.3969/j.issn.1004-874X.2014.06.019HUANG J C, PENG Z P, XU P Z, et al. Investigation on organic matter, nitrogen, phosphorus and potassium of paddy soil in Guangdong Province[J]. Guangdong Agricultural Sciences, 2014, 41(6): 70−73 doi: 10.3969/j.issn.1004-874X.2014.06.019 [15] 柳开楼, 韩天富, 黄晶, 等. 中国稻作区土壤速效钾和钾肥偏生产力时空变化[J]. 土壤学报, 2021, 58(1): 202−212LIU K L, HAN T F, HUANG J, et al. Spatio-temporal variation of soil readily available potassium and partial factor productivity of potassium fertilizer in rice cultivation regions of China[J]. Acta Pedologica Sinica, 2021, 58(1): 202−212 [16] 梁俊捷. 气候、地形和土壤性质对我国农田土壤有效钾分布的影响[D]. 雅安: 四川农业大学, 2018LIANG J J. Effects of climate, topography and soil properties on soil available potassium across China[D]. Ya’an: Sichuan Agricultural University, 2018 [17] 李建军. 我国粮食主产区稻田土壤肥力及基础地力的时空演变特征[D]. 贵阳: 贵州大学, 2015LI J J. Temporal and spatial evolution characteristics of soil fertility and basic soil fertility in paddy fields in China’s main grain producing areas[D]. Guiyang: Guizhou University, 2015 [18] 胡怀舟, 胡邦友, 张绪林, 等. 稻田免耕年限与复耕次数对土壤容重和水稻生长的影响[J]. 中国农学通报, 2020, 36(10): 1−7 doi: 10.11924/j.issn.1000-6850.casb20190900668HU H Z, HU B Y, ZHANG X L, et al. Effects of No-tillage years and re-tillage times on soil bulk density and rice growth in paddy fields[J]. Chinese Agricultural Science Bulletin, 2020, 36(10): 1−7 doi: 10.11924/j.issn.1000-6850.casb20190900668 [19] 李荣. 我国耕地质量现状及提升建议[J]. 中国农业综合开发, 2020(7): 7−12LI R. Present situation of cultivated land quality in China and suggestions for improvement[J]. Agricultural Comprehensive Development in China, 2020(7): 7−12 [20] 农业农村部. 2019年全国耕地质量等级情况公报[J]. 中华人民共和国农业农村部公报, 2020(4): 113−121Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Announcement of national arable land quality grading in 2019[J]. Gazette of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020(4): 113−121 [21] 广东省耕地肥料总站. 广东省耕地现状与质量提升对策[J]. 中国农业综合开发, 2020(10): 56−57Guangdong Province Cultivated Land Fertilizer Station. Current situation of cultivated land in Guangdong Province and countermeasures for quality improvement[J]. Agricultural Comprehensive Development in China, 2020(10): 56−57 [22] 陀少芳, 覃迎姿, 刘文奇, 等. 新形势下加强广西耕地质量建设的思考与建议[J]. 广西农学报, 2021, 36(1): 6−9, 71 doi: 10.3969/j.issn.1003-4374.2021.01.003TUO S F, QIN Y Z, LIU W Q, et al. Consideration and suggestions on strengthening cultivated land quality construction in Guangxi under new situation[J]. Journal of Guangxi Agriculture, 2021, 36(1): 6−9, 71 doi: 10.3969/j.issn.1003-4374.2021.01.003 [23] 许发辉, 杨宁, 赵明, 等. 我国区域性耕地质量退化问题及改良培肥对策措施[J]. 中国农技推广, 2020, 36(10): 3−7 doi: 10.3969/j.issn.1002-381X.2020.10.001XU F H, YANG N, ZHAO M, et al. Problems of regional cultivated land quality degradation in China and countermeasures for improvement and fertilization[J]. China Agricultural Technology Extension, 2020, 36(10): 3−7 doi: 10.3969/j.issn.1002-381X.2020.10.001 [24] 张凤荣, 张晋科, 张迪, 等. 1996—2004年中国耕地的粮食生产能力变化研究[J]. 中国土地科学, 2006, 20(2): 8−14ZHANG F R, ZHANG J K, ZHANG D, et al. Change of potential grain productivity of cultivated land from 1996 to 2004 in China[J]. China Land Science, 2006, 20(2): 8−14 [25] 冯蕾. 通山县耕地质量与耕地产能评价研究[D]. 武汉: 华中师范大学, 2020FENG L. Study on evaluation of arable land quality and arable land productivity in Tongshan County[D]. Wuhan: Central China Normal University, 2020 [26] 柳开楼, 黄晶, 张会民, 等. 基于红壤稻田肥力与相对产量关系的水稻生产力评估[J]. 植物营养与肥料学报, 2018, 24(6): 1425−1434 doi: 10.11674/zwyf.18150LIU K L, HUANG J, ZHANG H M, et al. Assessment of productivity of red paddy soil based on soil fertility and relative yield[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1425−1434 doi: 10.11674/zwyf.18150 [27] GANAPATH I, SHANKAR M, GAJANAN G N. Long term effect of FYM and NPK fertilizers on soil fertility and yield sustainability under finger millet-groundnut rotation in an Alfisols of rainfed areas[J]. Environment & Ecology, 2010, 28(1): 98−104 [28] KOPITTKE P M, DALAL R C, WANG P, et al. Effects of long-term cultivation on phosphorus (P) in five low-input, subtropical Australian soils[J]. Agriculture, Ecosystems & Environment, 2018, 252: 191−199 [29] 任嘉欣, 刘京, 陈轩敬, 等. 长期施肥紫色土有效磷变化及其对稻麦轮作产量的影响[J]. 中国农业科学, 2021, 54(21): 4601−4610 doi: 10.3864/j.issn.0578-1752.2021.21.010REN J X, LIU J, CHEN X J, et al. Variation of available phosphorus in purple soil and its effects on crop yield of rice-wheat rotation under long-term fertilizations[J]. Scientia Agricultura Sinica, 2021, 54(21): 4601−4610 doi: 10.3864/j.issn.0578-1752.2021.21.010 [30] 王秋菊. 黑龙江地区土壤肥力和积温对水稻产量、品质影响研究[D]. 沈阳: 沈阳农业大学, 2012WANG Q J. Effect of soil fertility and temperature on rice yield and quality in Heilongjiang area[D]. Shenyang: Shenyang Agricultural University, 2012 [31] 陈梦云. 不同土壤类型下灌溉方式对水稻产量形成、根系形态和品质的影响[D]. 扬州: 扬州大学, 2017CHEN M Y. Effect of different irrigation methods on yield and quality of rice under different soil types[D]. Yangzhou: Yangzhou University, 2017 [32] 张佳凤. 水田合理耕层指标体系构建及评价方法研究[D]. 贵阳: 贵州大学, 2019ZHANG J F. Study on construction and evaluation method of rational tillage index system in paddy field[D]. Guiyang: Guizhou University, 2019 [33] ZHANG F S, CUI Z L, FAN M S, et al. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China[J]. Journal of Environmental Quality, 2011, 40(4): 1051−1057 doi: 10.2134/jeq2010.0292 [34] 全国农业技术推广服务中心, 中国农业科学院农业资源与区划所. 耕地质量演变趋势研究: 国家级耕地土壤监测数据整编[M]. 北京: 中国农业科学技术出版社, 2008Center of Extending and Service of Agricultural Technique in China; Institute of Agricultural Resources and Regionalization, Chinese Academy of Agricultural Sciences. Evolution Trend of Arable Land Quality[M]. Bejing: China Agricultural Science and Technology Press, 2008 [35] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010 doi: 10.1126/science.1182570 [36] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615−7622ZHAO Q G, HUANG G Q, MA Y Q. The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica, 2013, 33(24): 7615−7622 [37] ZHU Q C, LIU X J, HAO T X, et al. Cropland acidification increases risk of yield losses and food insecurity in China[J]. Environmental Pollution, 2020, 256: 113145 doi: 10.1016/j.envpol.2019.113145 -