留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华南区稻田耕地质量空间分布与产能提升潜力

李玉浩 王红叶 张骏达 王新宇 张芮 营浩 崔振岭

李玉浩, 王红叶, 张骏达, 王新宇, 张芮, 营浩, 崔振岭. 华南区稻田耕地质量空间分布与产能提升潜力[J]. 中国生态农业学报 (中英文), 2023, 31(10): 1613−1625 doi: 10.12357/cjea.20220783
引用本文: 李玉浩, 王红叶, 张骏达, 王新宇, 张芮, 营浩, 崔振岭. 华南区稻田耕地质量空间分布与产能提升潜力[J]. 中国生态农业学报 (中英文), 2023, 31(10): 1613−1625 doi: 10.12357/cjea.20220783
LI Y H, WANG H Y, ZHANG J D, WANG X Y, ZHANG R, YING H, CUI Z L. Spatial distribution of cultivated land quality and potential for capacity improvement of paddy fields in South China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1613−1625 doi: 10.12357/cjea.20220783
Citation: LI Y H, WANG H Y, ZHANG J D, WANG X Y, ZHANG R, YING H, CUI Z L. Spatial distribution of cultivated land quality and potential for capacity improvement of paddy fields in South China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1613−1625 doi: 10.12357/cjea.20220783

华南区稻田耕地质量空间分布与产能提升潜力

doi: 10.12357/cjea.20220783
基金项目: 国家重点研发计划项目(2022YFD1901501)和云南省重大科技专项计划(202202AE090034)资助
详细信息
    作者简介:

    李玉浩, 研究方向为养分管理与施肥。E-mail: talyh2016@163.com

    通讯作者:

    营浩, 研究方向为养分管理与施肥。E-mail: yingrl@163.com

  • 中图分类号: S158.2

Spatial distribution of cultivated land quality and potential for capacity improvement of paddy fields in South China

Funds: This study was supported by the National Key Research and Development Program of China (2022YFD1901501) and the Major Science and Technology Special Program of Yunnan Province (202202AE090034).
More Information
  • 摘要: 为了明确华南区稻田耕地质量空间分布及其提升潜力, 为实现华南区水稻高产稳产提供科学依据, 本研究基于2017年农业农村部耕地质量监测保护中心在华南区开展的耕地质量区域汇总评价数据, 分析华南区稻田耕地质量空间分布情况及其与产能对应关系, 并利用随机森林模型明确影响产能提升的主要限制因子。华南区稻田耕地质量等级呈现“中间高, 四周低”的空间分布规律; 利用半方差函数拟合结果表明, 华南区稻田耕地质量等级呈中度空间相关性(R2=0.95), 以广东(3.82)最高, 海南(5.32)最低。华南区耕地质量评价指标中, 土壤养分指标空间分布差异较大, 土壤全氮和缓效钾含量空间分布呈强烈的空间相关性, 分别呈现“西高东低”和“北高南低”空间分布规律; 土壤有机质、有效磷、速效钾含量呈中度空间分布相关性, 分别呈现由西向东、由东向西、由北向南不断降低的空间分布趋势; 土壤pH整体呈弱酸性(5.40)。土壤物理性状、立地条件、土壤管理情况及土壤健康状况以东部较好, 西部较差。华南区稻田耕地质量等级与单产整体呈显著正相关性(R2=0.9140), 水稻产量随耕地质量等级提升呈先迅速增加后趋于平缓趋势; 华南区稻田耕地质量等级与水稻产量可持续指数呈显著正相关(R2=0.9333)。随机森林模型的重要性分析结果表明, 土壤有效磷含量、灌溉能力和土壤有机质含量是影响华南区水稻产量的最关键因素。情景模拟表明, 若华南区稻田耕地质量等级分别提升0.5、1.0、1.5个等级, 则水稻将增产14.93%、22.39%、29.86%, 相当于节约耕地面积31.77万hm2、56.35万hm2、75.95万hm2。华南区稻田耕地质量和产能仍有较大提升潜力, 通过提升耕地质量来提升产能对保障粮食安全、促进农业绿色生产具有重大意义。
  • 图  1  华南区稻田土壤养分状况空间分布

    Figure  1.  Spatial distribution of soil nutrients in paddy fields in South China

    图  2  华南区稻田耕层容重和有效土层厚度空间分布

    Figure  2.  Spatial distribution of bulk density and effective soil thickness of plough layer in paddy field in South China

    图  3  华南区稻田耕地质量等级空间分布及其分布频率

    Figure  3.  Spatial distribution and frequencies of cultivated land quality grades in South China

    图  4  华南区耕地质量等级与水稻产量及稳产对应关系

    Figure  4.  Corresponding relationship between cultivated land quality grade and rice yield and yield stability in South China

    图  5  华南区稻田耕地质量评价指标对产量影响程度重要性排序

    Figure  5.  Rank of impact degree of each evaluation index of cultivated land quality on rice yield in South China

    图  6  华南区稻田耕地质量与产能提升关系情景模拟

    Figure  6.  Scenario simulation of the relationship between cultivated land quality and productivity improvement in South China

    表  1  耕地质量等级划分方案

    Table  1.   Classification scheme of cultivated land quality grade

    耕地质量等级
    Cultivated land quality grade
    综合指数
    Comprehensive index
    耕地质量等级
    Cultivated land quality grade
    综合指数
    Comprehensive index
    1≥0.885060.7695~0.7926
    20.8619~0.885070.7464~0.7695
    30.8388~0.861980.7233~0.7464
    40.8157~0.838890.7002~0.7233
    50.7926~0.815710<0.7002
    下载: 导出CSV

    表  2  华南区稻田耕地质量与产能提升潜力情景模拟内容解释

    Table  2.   Interpretation of scenario simulation content of cultivated land quality and capacity improvement potential of paddy field in South China

    名称
    Scenario
    情景设置
    Detail of scenario
    情景1 Scenario 1 在现有耕地质量等级下
    Under the existing quality grade of cultivated land
    情景2 Scenario 2 耕地质量等级提升0.5个等级
    The quality grade of cultivated land has been improved
    by 0.5 grades
    情景3 Scenario 3 耕地质量等级提升1.0个等级
    The quality grade of cultivated land has been improved
    by 1.0 grade
    情景4 Scenario 4 耕地质量等级提升1.5个等级
    The quality grade of cultivated land has been improved
    by 1.5 grades
    下载: 导出CSV

    表  3  华南区稻田土壤养分状况空间变异理论模型及其参数

    Table  3.   Theoretical model and parameters of spatial variation of soil nutrient status in paddy field in South China

    指标
    Index
    理论模型
    Theoretical model
    块金值
    Nugget value
    基台值
    Sill value
    块金值/基台值
    Nugget to sill ratio
    变程
    Variable range (km)
    R2和方根
    Root sum square (RSS)
    土壤有机质含量
    Soil organic matter content
    高斯型 Gaussian0.070.140.505.270.870.00
    土壤全氮含量
    Soil total nitrogen content
    球函数 Spherical0.070.310.235.200.830.02
    土壤有效磷含量
    Soil available phosphorus content
    指数型 Exponential0.300.680.447.020.980.00
    土壤速效钾含量
    Soil available potassium content
    高斯型 Gaussian0.220.430.505.470.930.01
    土壤缓效钾含量
    Slowly available potassium content in soil
    高斯型 Gaussian0.060.750.080.370.040.01
    土壤pH
    Soil pH
    球函数 Spherical0.180.460.396.160.890.02
      块金值/基台值<0.25 为强空间相关性, 0.25~0.75 为中度空间相关性, >0.75为弱空间相关性。A strong spatial correlation occurs when the value of nugget to sill ratio is lower than 0.25; value of nugget to sill ratio between 0.25 and 0.75 is a moderate spatial correlation; a weak spatial correlation occurs when the value of nugget to sill ratio is higher than 0.75.
    下载: 导出CSV

    表  4  华南区稻田耕层容重和有效土层厚度空间变异理论模型及其参数

    Table  4.   Theoretical model and parameters of spatial variation of bulk density and effective soil thickness of plough layer in paddy field in South China

    指标
    Index
    理论模型
    Theoretical model
    块金值
    Nugget value
    基台值
    Sill value
    块金值/基台值
    Nugget to sill ratio
    变程
    Variable range (km)
    R2和方根
    Root sum square (RSS)
    耕层容重
    Thickness of plough layer
    高斯型 Gaussian0.010.030.404.870.940.00
    有效土层厚度
    Effective thickness of soil layer
    指数型 Exponential281.00619.900.4518.030.898521.00
      块金值/基台值<0.25 为强空间相关性, 0.25~0.75 为中度空间相关性, >0.75为弱空间相关性。A strong spatial correlation occurs when the value of nugget to sill ratio is lower than 0.25; value of nugget to sill ratio between 0.25 and 0.75 is a moderate spatial correlation; a weak spatial correlation occurs when the value of nugget to sill ratio is higher than 0.75.
    下载: 导出CSV

    表  5  华南区稻田耕层质地和质地构造性质空间分布及频率

    Table  5.   Spatial distribution and frequencies of texture structure and texture of paddy field in South China % 

    省(自治区)
    Province (autonomous region)
    质地 Texture
    砂土
    Sand
    砂壤
    Sandy loam
    轻壤
    Light loam
    中壤
    Middle loam
    重壤
    Heavy loam
    黏土
    Clay
    福建
    Fujian
    1.43 24.59 0.00 44.06 28.07 1.84
    广东
    Guangdong
    0.10 2.23 83.22 12.78 0.00 1.68
    广西
    Guangxi
    0.22 24.08 12.32 35.39 24.97 3.02
    海南
    Hainan
    5.30 28.70 22.31 15.97 17.23 10.49
    华南区
    South China
    1.34 14.20 49.14 20.42 11.01 3.90
    省(自治区)
    Province (autonomous region)
    质地构造 Texture structure
    薄层型
    Thin layer type
    松散型
    Loose type
    紧实型
    Compact type
    夹层型
    Sandwich type
    上紧下松型
    Upper tight and lower loose type
    上松下紧型
    Upper loose and lower tight type
    海绵型
    Sponge type
    福建
    Fujian
    0.00 3.07 30.74 8.61 1.43 56.15 0.00
    广东
    Guangdong
    0.55 0.00 0.00 0.00 0.00 50.86 48.59
    广西
    Guangxi
    2.41 0.78 9.69 24.52 4.37 54.82 3.42
    海南
    Hainan
    0.00 64.96 13.20 0.00 13.03 5.71 3.11
    华南区
    South China
    0.81 14.44 6.89 5.99 3.88 42.28 25.70
    下载: 导出CSV

    表  6  华南区稻田立地条件空间分布及频率

    Table  6.   Spatial distribution and frequencies of site conditions in paddy field in South China % 

    省(自治区)
    Province
    (autonomous region)
    地形部位 Topographic position
    山间盆地
    Intermontane basin
    宽谷盆地
    Wide valley basin
    平原低阶
    Plain low order
    平原中阶
    Plain middle order
    平原高阶
    Plain high order
    丘陵上部
    Upper part of hill
    丘陵中部
    Middle part of hill
    丘陵下部
    Lower part of hill
    福建
    Fujian
    3.89 4.71 1.64 1.84 43.85 5.94 9.84 14.55
    广东
    Guangdong
    0.30 0.03 53.41 0.13 0.00 14.68 1.23 24.48
    广西
    Guangxi
    20.10 14.05 7.73 17.36 0.22 0.56 11.09 20.10
    海南
    Hainan
    0.00 0.00 55.22 17.93 9.86 4.09 3.11 9.80
    华南区
    South China
    4.87 3.43 40.46 7.93 4.86 8.70 4.36 19.72
    省(自治区)
    Province
    (autonomous region)
    地形部位
    Topographic position
    农田林网化程度
    Degree of farmland forest network
    山地坡上
    Upper part of hillside
    山地坡中
    Middle part of slope
    山地坡下
    Lower part of slope

    High

    Medium

    Low
    福建
    Fujian
    2.25 3.28 8.20 0.00 39.96 60.04
    广东
    Guangdong
    0.30 0.60 4.85 0.00 8.35 91.65
    广西
    Guangxi
    0.28 2.80 5.71 2.69 24.86 72.45
    海南
    Hainan
    0.00 0.00 0.00 0.00 6.69 93.31
    华南区
    South China
    0.35 1.12 4.20 0.60 13.60 85.80
    下载: 导出CSV

    表  7  华南区稻田灌溉能力和排水能力空间分布及频率

    Table  7.   Spatial distribution and frequencies of irrigation capacity and drainage capacity of paddy fields in South China % 

    省(自治区)
    Province
    (autonomous region)
    灌溉能力 Irrigation capacity排水能力 Drainage capacity
    充分满足
    Fully satisfied
    满足
    Satisfied
    基本满足
    Basically satisfied
    不满足
    Not satisfied
    充分满足
    Fully satisfied
    满足
    Satisfied
    基本满足
    Basically satisfied
    不满足
    Not satisfied
    福建 Fujian 31.56 7.17 45.08 16.19 79.92 16.80 1.43 1.84
    广东 Guangdong 61.02 33.98 5.00 0.00 8.40 89.72 0.00 1.88
    广西 Guangxi 9.07 30.07 58.85 2.02 20.16 25.92 43.39 10.53
    海南 Hainan 13.49 40.75 35.33 10.43 17.23 67.84 9.74 5.19
    华南区 South China 37.34 32.94 26.02 3.70 17.30 66.31 11.88 4.52
    下载: 导出CSV

    表  8  华南区土壤健康状况空间分布及频率

    Table  8.   Spatial distribution and frequencies of soil health status in South China % 

    省(自治区)
    Province (autonomous region)
    生物多样性 Biological diversity清洁程度 Cleanliness degree
    丰富
    Rich
    一般
    General
    不丰富
    Not rich
    清洁
    Clean
    尚清洁
    Relatively clean
    福建 Fujian 38.73 44.47 16.80 100.00 0.00
    广东 Guangdong 98.02 1.98 0.00 100.00 0.00
    广西 Guangxi 6.83 80.57 12.60 100.00 0.00
    海南 Hainan 10.20 82.36 7.44 100.00 0.00
    华南区 South China 55.04 39.51 5.44 100.00 0.00
    下载: 导出CSV
  • [1] 姚东恒, 裴久渤, 汪景宽. 东北典型黑土区耕地质量时空变化研究[J]. 中国生态农业学报(中英文), 2020, 28(1): 104−114

    YAO D H, PEI J B, WANG J K. Temporal-spatial changes in cultivated land quality in a black soil region of Northeast China[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 104−114
    [2] 赵滢. 华南水稻重要农艺性状演变规律及粒型性状GWAS分析[D]. 荆州: 长江大学, 2019

    ZHAO Y. Evolvement rule analysis of important agronomic traits and genome-wide association study of grain shape in South China rice varieties[D]. Jingzhou: Yangtze University, 2019
    [3] 耕地质量建设和保护有“标杆”了—《耕地质量等级》国家标准解读[J]. 中国农业信息, 2017(8): 5, 10

    The construction and protection of cultivated land quality has a benchmark—Interpretation of the national standard of cultivated land quality grade[J]. China Agricultural Information, 2017(8): 5, 10
    [4] 李建军, 徐明岗, 辛景树, 等. 中国稻田土壤基础地力的时空演变特征[J]. 中国农业科学, 2016, 49(8): 1510−1519 doi: 10.3864/j.issn.0578-1752.2016.08.008

    LI J J, XU M G, XIN J S, et al. Spatial and temporal characteristics of basic soil productivity in China[J]. Scientia Agricultura Sinica, 2016, 49(8): 1510−1519 doi: 10.3864/j.issn.0578-1752.2016.08.008
    [5] 王远鹏, 黄晶, 孙钰翔, 等. 近35年红壤稻区土壤肥力时空演变特征—以进贤县为例[J]. 中国农业科学, 2020, 53(16): 3294−3306 doi: 10.3864/j.issn.0578-1752.2020.16.008

    WANG Y P, HUANG J, SUN Y X, et al. Spatiotemporal variability characteristics of soil fertility in red soil paddy region in the past 35 years−A case study of Jinxian County[J]. Scientia Agricultura Sinica, 2020, 53(16): 3294−3306 doi: 10.3864/j.issn.0578-1752.2020.16.008
    [6] 薛彦东, 李荣, 任意. 完善耕地质量等级 夯实国家粮食安全基础—国家标准《耕地质量等级》发布实施[J]. 中国农技推广, 2017, 33(2): 12−13

    XUE Y D, LI R, REN Y. Perfecting cultivated land quality grades and consolidating the foundation of national food security−Promulgation and implementation of national standard of Cultivated Land Quality Grades[J]. China Agricultural Technology Extension, 2017, 33(2): 12−13
    [7] 乔磊, 江荣风, 张福锁, 等. 土壤基础地力对水稻体系的增产与稳产作用研究[J]. 中国科技论文, 2016, 11(9): 1031−1034, 1045 doi: 10.3969/j.issn.2095-2783.2016.09.012

    QIAO L, JIANG R F, ZHANG F S, et al. Improving inherent soil productivity enhances yield and resilience of rice farming systems[J]. China Sciencepaper, 2016, 11(9): 1031−1034, 1045 doi: 10.3969/j.issn.2095-2783.2016.09.012
    [8] 陈延华, 王乐, 张淑香, 等. 我国褐土耕地质量的演变及对生产力的影响[J]. 中国农业科学, 2019, 52(24): 4540−4554 doi: 10.3864/j.issn.0578-1752.2019.24.009

    CHEN Y H, WANG L, ZHANG S X, et al. Quality change of cinnamon soil cultivated land and its effect on soil productivity[J]. Scientia Agricultura Sinica, 2019, 52(24): 4540−4554 doi: 10.3864/j.issn.0578-1752.2019.24.009
    [9] 王婕, 牛文全, 张文倩, 等. 农田表层土壤养分空间变异特性研究[J]. 农业工程学报, 2020, 36(15): 37−46 doi: 10.11975/j.issn.1002-6819.2020.15.005

    WANG J, NIU W Q, ZHANG W Q, et al. Spatial variability of soil nutrients in topsoil of cultivated land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 37−46 doi: 10.11975/j.issn.1002-6819.2020.15.005
    [10] 潘根兴, 赵其国. 我国农田土壤碳库演变研究: 全球变化和国家粮食安全[J]. 地球科学进展, 2005, 20(4): 384−393 doi: 10.3321/j.issn:1001-8166.2005.04.003

    PAN G X, ZHAO Q G. Study on evolution of organic carbon stock in agricultural soils of China: facing the challenge of global change and food security[J]. Advances in Earth Science, 2005, 20(4): 384−393 doi: 10.3321/j.issn:1001-8166.2005.04.003
    [11] 杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047−1056

    YANG F, XU Y, CUI Y, et al. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5): 1047−1056
    [12] 都江雪, 柳开楼, 黄晶, 等. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应[J]. 土壤学报, 2021, 58(2): 476−486

    DU J X, LIU K L, HUANG J, et al. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China[J]. Acta Pedologica Sinica, 2021, 58(2): 476−486
    [13] BRUUN T B, MERTZ O, ELBERLING B. Linking yields of upland rice in shifting cultivation to fallow length and soil properties[J]. Agriculture, Ecosystems & Environment, 2006, 113(1/2/3/4): 139−149
    [14] 黄继川, 彭智平, 徐培智, 等. 广东省水稻土有机质和氮、磷、钾肥力调查[J]. 广东农业科学, 2014, 41(6): 70−73 doi: 10.3969/j.issn.1004-874X.2014.06.019

    HUANG J C, PENG Z P, XU P Z, et al. Investigation on organic matter, nitrogen, phosphorus and potassium of paddy soil in Guangdong Province[J]. Guangdong Agricultural Sciences, 2014, 41(6): 70−73 doi: 10.3969/j.issn.1004-874X.2014.06.019
    [15] 柳开楼, 韩天富, 黄晶, 等. 中国稻作区土壤速效钾和钾肥偏生产力时空变化[J]. 土壤学报, 2021, 58(1): 202−212

    LIU K L, HAN T F, HUANG J, et al. Spatio-temporal variation of soil readily available potassium and partial factor productivity of potassium fertilizer in rice cultivation regions of China[J]. Acta Pedologica Sinica, 2021, 58(1): 202−212
    [16] 梁俊捷. 气候、地形和土壤性质对我国农田土壤有效钾分布的影响[D]. 雅安: 四川农业大学, 2018

    LIANG J J. Effects of climate, topography and soil properties on soil available potassium across China[D]. Ya’an: Sichuan Agricultural University, 2018
    [17] 李建军. 我国粮食主产区稻田土壤肥力及基础地力的时空演变特征[D]. 贵阳: 贵州大学, 2015

    LI J J. Temporal and spatial evolution characteristics of soil fertility and basic soil fertility in paddy fields in China’s main grain producing areas[D]. Guiyang: Guizhou University, 2015
    [18] 胡怀舟, 胡邦友, 张绪林, 等. 稻田免耕年限与复耕次数对土壤容重和水稻生长的影响[J]. 中国农学通报, 2020, 36(10): 1−7 doi: 10.11924/j.issn.1000-6850.casb20190900668

    HU H Z, HU B Y, ZHANG X L, et al. Effects of No-tillage years and re-tillage times on soil bulk density and rice growth in paddy fields[J]. Chinese Agricultural Science Bulletin, 2020, 36(10): 1−7 doi: 10.11924/j.issn.1000-6850.casb20190900668
    [19] 李荣. 我国耕地质量现状及提升建议[J]. 中国农业综合开发, 2020(7): 7−12

    LI R. Present situation of cultivated land quality in China and suggestions for improvement[J]. Agricultural Comprehensive Development in China, 2020(7): 7−12
    [20] 农业农村部. 2019年全国耕地质量等级情况公报[J]. 中华人民共和国农业农村部公报, 2020(4): 113−121

    Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Announcement of national arable land quality grading in 2019[J]. Gazette of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020(4): 113−121
    [21] 广东省耕地肥料总站. 广东省耕地现状与质量提升对策[J]. 中国农业综合开发, 2020(10): 56−57

    Guangdong Province Cultivated Land Fertilizer Station. Current situation of cultivated land in Guangdong Province and countermeasures for quality improvement[J]. Agricultural Comprehensive Development in China, 2020(10): 56−57
    [22] 陀少芳, 覃迎姿, 刘文奇, 等. 新形势下加强广西耕地质量建设的思考与建议[J]. 广西农学报, 2021, 36(1): 6−9, 71 doi: 10.3969/j.issn.1003-4374.2021.01.003

    TUO S F, QIN Y Z, LIU W Q, et al. Consideration and suggestions on strengthening cultivated land quality construction in Guangxi under new situation[J]. Journal of Guangxi Agriculture, 2021, 36(1): 6−9, 71 doi: 10.3969/j.issn.1003-4374.2021.01.003
    [23] 许发辉, 杨宁, 赵明, 等. 我国区域性耕地质量退化问题及改良培肥对策措施[J]. 中国农技推广, 2020, 36(10): 3−7 doi: 10.3969/j.issn.1002-381X.2020.10.001

    XU F H, YANG N, ZHAO M, et al. Problems of regional cultivated land quality degradation in China and countermeasures for improvement and fertilization[J]. China Agricultural Technology Extension, 2020, 36(10): 3−7 doi: 10.3969/j.issn.1002-381X.2020.10.001
    [24] 张凤荣, 张晋科, 张迪, 等. 1996—2004年中国耕地的粮食生产能力变化研究[J]. 中国土地科学, 2006, 20(2): 8−14

    ZHANG F R, ZHANG J K, ZHANG D, et al. Change of potential grain productivity of cultivated land from 1996 to 2004 in China[J]. China Land Science, 2006, 20(2): 8−14
    [25] 冯蕾. 通山县耕地质量与耕地产能评价研究[D]. 武汉: 华中师范大学, 2020

    FENG L. Study on evaluation of arable land quality and arable land productivity in Tongshan County[D]. Wuhan: Central China Normal University, 2020
    [26] 柳开楼, 黄晶, 张会民, 等. 基于红壤稻田肥力与相对产量关系的水稻生产力评估[J]. 植物营养与肥料学报, 2018, 24(6): 1425−1434 doi: 10.11674/zwyf.18150

    LIU K L, HUANG J, ZHANG H M, et al. Assessment of productivity of red paddy soil based on soil fertility and relative yield[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1425−1434 doi: 10.11674/zwyf.18150
    [27] GANAPATH I, SHANKAR M, GAJANAN G N. Long term effect of FYM and NPK fertilizers on soil fertility and yield sustainability under finger millet-groundnut rotation in an Alfisols of rainfed areas[J]. Environment & Ecology, 2010, 28(1): 98−104
    [28] KOPITTKE P M, DALAL R C, WANG P, et al. Effects of long-term cultivation on phosphorus (P) in five low-input, subtropical Australian soils[J]. Agriculture, Ecosystems & Environment, 2018, 252: 191−199
    [29] 任嘉欣, 刘京, 陈轩敬, 等. 长期施肥紫色土有效磷变化及其对稻麦轮作产量的影响[J]. 中国农业科学, 2021, 54(21): 4601−4610 doi: 10.3864/j.issn.0578-1752.2021.21.010

    REN J X, LIU J, CHEN X J, et al. Variation of available phosphorus in purple soil and its effects on crop yield of rice-wheat rotation under long-term fertilizations[J]. Scientia Agricultura Sinica, 2021, 54(21): 4601−4610 doi: 10.3864/j.issn.0578-1752.2021.21.010
    [30] 王秋菊. 黑龙江地区土壤肥力和积温对水稻产量、品质影响研究[D]. 沈阳: 沈阳农业大学, 2012

    WANG Q J. Effect of soil fertility and temperature on rice yield and quality in Heilongjiang area[D]. Shenyang: Shenyang Agricultural University, 2012
    [31] 陈梦云. 不同土壤类型下灌溉方式对水稻产量形成、根系形态和品质的影响[D]. 扬州: 扬州大学, 2017

    CHEN M Y. Effect of different irrigation methods on yield and quality of rice under different soil types[D]. Yangzhou: Yangzhou University, 2017
    [32] 张佳凤. 水田合理耕层指标体系构建及评价方法研究[D]. 贵阳: 贵州大学, 2019

    ZHANG J F. Study on construction and evaluation method of rational tillage index system in paddy field[D]. Guiyang: Guizhou University, 2019
    [33] ZHANG F S, CUI Z L, FAN M S, et al. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China[J]. Journal of Environmental Quality, 2011, 40(4): 1051−1057 doi: 10.2134/jeq2010.0292
    [34] 全国农业技术推广服务中心, 中国农业科学院农业资源与区划所. 耕地质量演变趋势研究: 国家级耕地土壤监测数据整编[M]. 北京: 中国农业科学技术出版社, 2008

    Center of Extending and Service of Agricultural Technique in China; Institute of Agricultural Resources and Regionalization, Chinese Academy of Agricultural Sciences. Evolution Trend of Arable Land Quality[M]. Bejing: China Agricultural Science and Technology Press, 2008
    [35] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010 doi: 10.1126/science.1182570
    [36] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615−7622

    ZHAO Q G, HUANG G Q, MA Y Q. The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica, 2013, 33(24): 7615−7622
    [37] ZHU Q C, LIU X J, HAO T X, et al. Cropland acidification increases risk of yield losses and food insecurity in China[J]. Environmental Pollution, 2020, 256: 113145 doi: 10.1016/j.envpol.2019.113145
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  58
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 录用日期:  2023-05-30
  • 修回日期:  2023-05-30
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-10-16

目录

    /

    返回文章
    返回