Research progress in source-sink landscape pattern analysis based on non-point source pollution processes in watersheds
-
摘要: “源-汇”景观理论被推荐为耦合景观格局与面源污染过程的有效途径, 合理的“源-汇”景观格局配置有助于减少面源污染物输出, 从而降低面源污染风险。论文分别从“源-汇”景观识别、“源-汇”景观格局分析, 以及“源-汇”景观对面源污染物的影响3个方面, 系统论述了基于面源污染过程的“源-汇”景观格局分析的研究进展。分析认为, 针对基于面源污染过程的“源-汇”景观识别, 目前研究主要停留在传统景观格局的意义上, 需要考虑多要素的空间耦合关系和综合作用, 来更好地判别特定面源污染过程的“源-汇”景观归属及其权重贡献。同时, 针对“源-汇”景观格局分析, 经典的景观空间负荷比指数只适合于环境背景比较相似的流域或地区, 因此需要考虑量化更多的景观因子, 并构建适合跨流域且具有可比性的“源-汇”景观指数, 进而优化“源-汇”景观格局配置, 降低流域景观生态安全风险。最后, “源-汇”景观格局研究所针对的主要面源污染物主要是氮磷等传统面源污染物, 因此需要扩大“源-汇”景观格局对更多新型面源污染物的指示研究, 为更深层次地研究流域景观格局与面源污染过程的耦合关系提供参考。Abstract: Source-sink landscape theory is recommended as an effective way to couple landscape pattern and non-point source pollution processes. A reasonable source-sink landscape pattern layout aids in minimizing nonpoint source pollution risk by lowering non-point source pollution production. In this study, based on previous research results and literature reviews, advances in source-sink landscape pattern analysis based on non-point source pollution processes were systematically reviewed from three perspectives, including distinction of source-sink landscapes, quantization of source-sink landscape patterns, and the indication of source-sink landscapes to non-point source pollutants. To investigate the source-sink landscape based on non-point source pollution, the current research primarily maintains the sense of traditional landscape patterns, and it is necessary to consider spatial coupling relationships and comprehensive functions of multiple elements in order to better distinguish the source-sink landscape ownership in non-point source pollution processes. For analysis of source-sink landscape patterns, the classical location-weighted landscape contrast index is only suitable for watersheds or regions with similar environmental backgrounds. Therefore, it is necessary to consider quantifying more landscape factors to construct or improve the source and sink landscape pattern indices more comprehensively and then optimize the source-sink landscape pattern configuration and reduce risks to watershed landscape ecological security. Finally, the main non-point source pollutants in this study of source-sink landscape patterns were mainly traditional non-point source pollutants such as nitrogen and phosphorus. Therefore, it is necessary to expand source-sink landscape pattern analysis to indicate more non-point source pollutants in order to provide reference benchmarks for future research to better reflect coupling relationship between watershed landscape patterns and non-point source pollution processes.
-
Key words:
- Source-sink landscape /
- Landscape index /
- Landscape pattern /
- Non-point source pollution
-
表 1 “源-汇”景观指数及其参数意义
Table 1. “Source-sink” landscape indices and meaning of their parameters
“源-汇”景观指数
Source-sink landscape indice计算公式
Calculation formula参数意义
Meaning of parameter文献来源
Literature sources景观空间负荷比
指数
Location-weighted landscape contrast index (LWLCI)${\rm{LWLCI} } = \log \left[ {\displaystyle\sum\limits_{i = 1}^m { \Big({S _i} \times {W_i} \times {P_i}\Big)\bigg/\displaystyle\sum\limits_{j = 1}^n { \left({S _j} \times {W _j} \times {P _j}\right) } } } \right]$ Si和Sj分别是“源”景观i和“汇”景观j的面积累计比例曲线的积分, Wi和Wj分别是“源”景观i和“汇”景观j影响面源污染的权重, Pi和Pj分别是“源”景观i和“汇”景观j的面积比例
Si and Sj are the integrals of the area cumulative proportion curve of “source” landscape i and “sink” landscape j, respectively. Wi and Wj are the weights of “source” landscape i and “sink” landscape j affecting non-point source pollution, respectively. Pi and Pj are the area ratios of “source” landscape i and “sink” landscape j, respectively[22,29] “源-汇”景观
格局指数
“Source-sink” landscape pattern index (LWLI)${\rm{LWLI} } = \dfrac{ { { { {A} }_{ {\rm{source} } } } \times { { {E} }_{ {\rm{source} } } } \times { {\rm{AP} }_{ {\rm{source} } } } } }{ { { { {A} }_{ {\rm{source} } } } \times { { {E} }_{ {\rm{source} } } } \times { {\rm{AP} }_{ {\rm{source} } } } + { { {A} }_{ {\rm{sink} } } } \times { {{R} }_{ {\rm{sink} } } } \times { {\rm{AP} }_{ {\rm{sink} } } } } }$ Esource和Rsink分别是“源”景观单元的动力成本和“汇”景观单元的阻力成本, Asource和Asink 分别是“源”景观沿着景观动力成本由低到高方向、“汇”景观沿着景观阻力成本由高到低方向的洛伦兹曲线累计面积, APsource和APsink分别是“源”景观和“汇”景观面积比例
Esource and Rsink are the dynamic cost of the source landscape units and the resistance cost of the sink landscape units, respectively. Asource and Asink are the cumulative area of the Lorenz curve of the source landscape along the landscape dynamic cost from low to high, and the sink landscape along the landscape resistance cost from high to low, respectively. APsource and APsink are the area ratio of source landscape units and sink landscape units, respectively[26] 坡度-水文响应单元景观指数
Slope-hydrological landscape index (SHLI)${\rm{SHLI} } = \displaystyle\sum\limits_{i = 1}^n {\left( { {S_i} \times {P_{{\rm{source}} \_i} } } \right)\bigg /\displaystyle\sum\limits_{i = 1}^n {\left( { {S_i} \times {P_{{\rm{sink}} \_i} } } \right)} }$ Psource_i为第i个水文响应景观单元水土流失源的权重; Psink_i为第i个水文响应景观单元水土流失汇的权重; Si为第i个水文响应景观单元的面积
Psource_i is the weight of the soil erosion source of hydrological response landscape unit i. Psink _ i is the weight of the soil erosion sink of the hydrological response landscape unit i. Si is the area of the hydrological response landscape unit i[33] 水文响应单元景观对比指数
Hydrological response
unit landscape contrast index (HRULCIx)Wi=f(L, P, R, D, N, S, F, A)
${\rm{HRULCI} }{_x}{\text{ = } }\displaystyle\sum\limits_{i = 1}^n {\Big( {W_{ix} } \times {A_i}\Big) - } \displaystyle\sum\limits_{j = 1}^n { \left({W_{jx} } \times {A_j} \right)}$Wix和Wjx分别是“源”景观单元i输出污染物x的权重和“汇”景观单元j接受污染物x的权重, Ai和Aj分别是“源”景观水文响应单元i面积和“汇”景观水文响应单元j面积。L、P、R、D、N、S、F、A分别是土地利用/地表覆被、坡度、降雨量、有效距离、植被指数、土壤类型、化学肥料和土壤有效湿容量的修正系数
Wix and Wjx are the weights of the output pollutant x of source landscape unit i and the receiving pollutant x of sink landscape unit j, respectively. Ai and Aj are the areas of the source landscape hydrological response unit i and the area of the sink landscape hydrological response unit j, respectively. L, P, R, D, N, S, F, A are the correction coefficients of land use / land cover, slope, rainfall, effective distance, vegetation index, soil type, chemical fertilizer and soil available water capacity, respectively[34] 修正的网格“源-汇”景观比指数
Modified grid “source-sink” landscape contrast index (mGLCI)$m{\text{GLCI} } = \left(1 - \dfrac{D}{ { {D_{\max } } } }\right) \times \left(1 + \dfrac{S}{ { {S_{\max } } } }\right) \times \\ $$ \left(\displaystyle\sum\limits_{i = 1}^m { {W_x} \cdot {A_i} - } \displaystyle\sum\limits_{j = 1}^n { {W_x} \cdot {A_j} } \right)$ D和Dmax分别是网格距水体的最短地表距离及其最大值, S和Smax分别是网格坡度及其最大值, Wx是从“源”景观输出污染物x的权重, m和n分别是“源”景观和“汇”景观的类型数目, Ai和Aj分别是土地利用类型i和土地利用类型j的面积比例
D and Dmax are the shortest surface distance from the grid to the water body and its maximum value, respectively. S and Smax are the grid slope and its maximum value, respectively. Wx refers to the weight of the pollutant x output from the source landscape. m and n are the number of types of source landscape and sink landscape, respectively. Ai and Aj are the area ratios of land use type i and land use type j, respectively[36-37] 景观“源-汇”
比指数
Landscape source sink contrast index (LSSCI)$\begin{aligned}& {\text { Source }'}=\left\{\sum_{i=1}^n\left[C_i \times\left(1+\frac{\text { slope }_j}{\text { slope }_{\max } }\right) \times\left(1-\frac{\text { distance }_j}{\text { distance }_{\max } }\right) \times A_i\right]\right\} \bigg/\left(\sum_{i=1}^n A_i\right) \\&\operatorname{Sink}'=\sum_{i=1}^n\left\{\left[1-\sum_{i=1}^8 \Big(W_i \times L_i\Big)\right]\times A_j\right\} \bigg/\sum_{i=1}^n A_j \\& \text { Source }=\frac{\text { Source }'-\text { Source }_{\text {min } }' }{\text { Source }_{\text {max } }'-\text { Source }_{\text {min } }' }, \quad \operatorname{Sink}=\frac{\operatorname{Sink}'-\operatorname{Sink}_{\min }' }{\operatorname{Sink}_{\max }'-\operatorname{Sink}_{\min }' } \\& \text { LSSCI }=\text { Source } /(\text { Source }+ \text { Sink }) \\[-10pt]\end{aligned}$ Source´和Sink´分别是子流域的“源”强度和“汇”强度, Source和Sink分别是子流域的归一化“源”强度和归一化“汇”强度, Ci是土地利用类型i的总氮或总磷输出系数, slopej和distancej分别是土地利用图斑j的坡度和距河流的距离, slopemax和distancemax分别是土地利用图斑j的坡度最大值和距河流距离最大值, Li和Wi分别是景观指数i的值和权重, Ai和Aj分别是土地利用类型i和土地利用类型j的面积
Source´ and Sink´ are the source intensity and sink intensity of the sub-basin, respectively. Source and Sink are the normalized source intensity and normalized sink intensity of the sub-basin, respectively. Ci is the total nitrogen or total phosphorus output coefficient of land use type i. slopej and distancej are the slope and distance from the river of land use patch j, respectively. slopemax and distancemax are the maximum slope and distance from the river of land use patch j, respectively. Li and Wi are the value and weight of landscape index i, respectively. Ai and Aj are the areas of land use type i and land use type j, respectively[38] -
[1] ONGLEY E D, ZHANG X L, YU T. Current status of agricultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5): 1159−1168 doi: 10.1016/j.envpol.2009.10.047 [2] 杨林章, 冯彦房, 施卫明, 等. 我国农业面源污染治理技术研究进展[J]. 中国生态农业学报, 2013, 21(1): 96−101YANG L Z, FENG Y F, SHI W M, et al. Review of the advances and development trends in agricultural non-point source pollution control in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 96−101 [3] 陈利顶. 源汇景观格局分析及其应用[M]. 北京: 科学出版社, 2015CHEN L D. Source-sink Landscape Pattern Analysis and Its Application[M]. Beijing: Science Press, 2015 [4] LOREAU M, DAUFRESNE T, GONZALEZ A, et al. Unifying sources and sinks in ecology and Earth sciences[J]. Biological Reviews, 2013, 88(2): 365−379 doi: 10.1111/brv.12003 [5] LEE S W, HWANG S J, LEE S B, et al. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape and Urban Planning, 2009, 92(2): 80−89 doi: 10.1016/j.landurbplan.2009.02.008 [6] SHEN Z Y, HOU X S, LI W, et al. Relating landscape characteristics to non-point source pollution in a typical urbanized watershed in the municipality of Beijing[J]. Landscape and Urban Planning, 2014, 123: 96−107 doi: 10.1016/j.landurbplan.2013.12.007 [7] BASNYAT P, TEETER L D, FLYNN K M, et al. Relationships between landscape characteristics and nonpoint source pollution inputs to coastal estuaries[J]. Environmental Management, 1999, 23(4): 539−549 doi: 10.1007/s002679900208 [8] 赵军, 杨凯, 邰俊, 等. 区域景观格局与地表水环境质量关系研究进展[J]. 生态学报, 2011, 31(11): 3180−3189ZHAO J, YANG K, TAI J, et al. Review of the relationship between regional landscape pattern and surface water quality[J]. Acta Ecologica Sinica, 2011, 31(11): 3180−3189 [9] STEPHENS C M, LALL U, JOHNSON F M, et al. Landscape changes and their hydrologic effects: interactions and feedbacks across scales[J]. Earth-Science Reviews, 2021, 212: 103466 doi: 10.1016/j.earscirev.2020.103466 [10] OUYANG W, SONG K Y, WANG X L, et al. Non-point source pollution dynamics under long-term agricultural development and relationship with landscape dynamics[J]. Ecological Indicators, 2014, 45: 579−589 doi: 10.1016/j.ecolind.2014.05.025 [11] SHEN Z Y, HOU X S, LI W, et al. Impact of landscape pattern at multiple spatial scales on water quality: a case study in a typical urbanised watershed in China[J]. Ecological Indicators, 2015, 48: 417−427 doi: 10.1016/j.ecolind.2014.08.019 [12] LIU H Y, MENG C, WANG Y, et al. Multi-spatial scale effects of multidimensional landscape pattern on stream water nitrogen pollution in a subtropical agricultural watershed[J]. Journal of Environmental Management, 2022, 321: 115962 doi: 10.1016/j.jenvman.2022.115962 [13] LAUSCH A, BLASCHKE T, HAASE D, et al. Understanding and quantifying landscape structure−A review on relevant process characteristics, data models and landscape metrics[J]. Ecological Modelling, 2015, 295: 31−41 doi: 10.1016/j.ecolmodel.2014.08.018 [14] LI X Z, JONGMAN R H G, HU Y M, et al. Relationship between landscape structure metrics and wetland nutrient retention function: a case study of Liaohe Delta, China[J]. Ecological Indicators, 2005, 5(4): 339−349 doi: 10.1016/j.ecolind.2005.03.007 [15] WU J H, LU J. Spatial scale effects of landscape metrics on stream water quality and their seasonal changes[J]. Water Research, 2021, 191: 116811 doi: 10.1016/j.watres.2021.116811 [16] 邬建国. 景观生态学中的十大研究论题[J]. 生态学报, 2004, 24(9): 2074−2076 doi: 10.3321/j.issn:1000-0933.2004.09.033WU J G. The key research topics in landscape ecology[J]. Acta Ecologica Sinica, 2004, 24(9): 2074−2076 doi: 10.3321/j.issn:1000-0933.2004.09.033 [17] 陈利顶, 刘洋, 吕一河, 等. 景观生态学中的格局分析: 现状、困境与未来[J]. 生态学报, 2008, 28(11): 5521−5531 doi: 10.3321/j.issn:1000-0933.2008.11.037CHEN L D, LIU Y, LYU Y H, et al. Landscape pattern analysis in landscape ecology: current, challenges and future[J]. Acta Ecologica Sinica, 2008, 28(11): 5521−5531 doi: 10.3321/j.issn:1000-0933.2008.11.037 [18] 孙然好, 孙龙, 苏旭坤, 等. 景观格局与生态过程的耦合研究: 传承与创新[J]. 生态学报, 2021, 41(1): 415−421SUN R H, SUN L, SU X K, et al. Study on the coupling of landscape pattern and ecological process: inheritance and innovation[J]. Acta Ecologica Sinica, 2021, 41(1): 415−421 [19] CHEN L D, FU B J, ZHAO W W. Source-sink landscape theory and its ecological significance[J]. Frontiers of Biology in China, 2008, 3(2): 131−136 doi: 10.1007/s11515-008-0026-x [20] ZHAO W W, JIA L Z, DARYANTO S, et al. Source–sink landscape[M]//Encyclopedia of Ecology. Amsterdam: Elsevier, 2019: 467–473 [21] 陈利顶, 傅伯杰, 赵文武. “源” “汇” 景观理论及其生态学意义[J]. 生态学报, 2006, 26(5): 1444−1449 doi: 10.3321/j.issn:1000-0933.2006.05.020CHEN L D, FU B J, ZHAO W W. Source-sink landscape theory and its ecological significance[J]. Acta Ecologica Sinica, 2006, 26(5): 1444−1449 doi: 10.3321/j.issn:1000-0933.2006.05.020 [22] CHEN L D, TIAN H Y, FU B J, et al. Development of a new index for integrating landscape patterns with ecological processes at watershed scale[J]. Chinese Geographical Science, 2009, 19(1): 37−45 doi: 10.1007/s11769-009-0037-9 [23] 许申来, 周昊. 景观“源、汇”的动态特性及其量化方法[J]. 水土保持研究, 2008, 15(6): 64−67, 71XU S L, ZHOU H. The landscape dynamics of ‘source’ and ‘ sink’ and its quantification method[J]. Research of Soil and Water Conservation, 2008, 15(6): 64−67, 71 [24] YANG M, LI X Z, HU Y M, et al. Assessing effects of landscape pattern on sediment yield using sediment delivery distributed model and a landscape indicator[J]. Ecological Indicators, 2012, 22: 38−52 doi: 10.1016/j.ecolind.2011.08.023 [25] WU Z P, LIN C, SU Z H, et al. Multiple landscape “source–sink” structures for the monitoring and management of non-point source organic carbon loss in a peri-urban watershed[J]. CATENA, 2016, 145: 15−29 doi: 10.1016/j.catena.2016.05.020 [26] WANG J L, SHAO J A, WANG D, et al. Identification of the “ source” and “sink” patterns influencing non-point source pollution in the Three Gorges Reservoir Area[J]. Journal of Geographical Sciences, 2016, 26(10): 1431−1448 doi: 10.1007/s11442-016-1336-6 [27] 李崇巍, 胡婕, 王飒, 等. 流域“源-汇”景观格局变化及其对磷污染负荷的影响−以天津于桥水库流域为例[J]. 生态学报, 2012, 32(8): 2430−2438 doi: 10.5846/stxb201112151924LI C W, HU J, WANG S, et al. The source-sink landscape pattern change and its effect on phosphorus pollution in Yuqiao watershed[J]. Acta Ecologica Sinica, 2012, 32(8): 2430−2438 doi: 10.5846/stxb201112151924 [28] 刘宇. 景观指数耦合景观格局与土壤侵蚀的有效性[J]. 生态学报, 2017, 37(15): 4923−4935LIU Y. Effectiveness of landscape metrics in coupling soil erosion with landscape pattern[J]. Acta Ecologica Sinica, 2017, 37(15): 4923−4935 [29] 陈利顶, 傅伯杰, 徐建英, 等. 基于 “源-汇” 生态过程的景观格局识别方法−景观空间负荷对比指数[J]. 生态学报, 2003, 23(11): 2406−2413 doi: 10.3321/j.issn:1000-0933.2003.11.025CHEN L D, FU B J, XU J Y, et al. Location-weighted landscape contrast index: a scale independent approach for landscape pattern evaluation based on “Source-Sink” ecological processes[J]. Acta Ecologica Sinica, 2003, 23(11): 2406−2413 doi: 10.3321/j.issn:1000-0933.2003.11.025 [30] 王金亮, 谢德体, 倪九派, 等. 基于源汇景观单元的流域土壤侵蚀风险格局识别[J]. 生态学报, 2017, 37(24): 8216−8226WANG J L, XIE D T, NI J P, et al. Identification of soil erosion risk patterns in a watershed based on source-sink landscape units[J]. Acta Ecologica Sinica, 2017, 37(24): 8216−8226 [31] 李晶, 周自翔. 延河流域景观格局与生态水文过程分析[J]. 地理学报, 2014, 69(7): 933−944 doi: 10.11821/dlxb201407006LI J, ZHOU Z X. Landscape pattern and hydrological processes in Yanhe River Basin of China[J]. Acta Geographica Sinica, 2014, 69(7): 933−944 doi: 10.11821/dlxb201407006 [32] WANG J L, CHEN C L, NI J P, et al. Assessing effects of “source-sink” landscape on non-point source pollution based on cell units of a small agricultural catchment[J]. Journal of Mountain Science, 2019, 16(9): 2048−2062 doi: 10.1007/s11629-018-5268-8 [33] ZHOU Z X, LI J. The correlation analysis on the landscape pattern index and hydrological processes in the Yanhe watershed, China[J]. Journal of Hydrology, 2015, 524: 417−426 doi: 10.1016/j.jhydrol.2015.02.028 [34] ZHANG X, LIU Y Q, CHEN Y X. Development of a location-weighted landscape contrast index based on the minimum hydrological response unit[J]. Journal of Oceanology and Limnology, 2018, 36(4): 1236−1243 doi: 10.1007/s00343-018-7069-x [35] 孙然好, 陈利顶, 王伟, 等. 基于“源”“汇”景观格局指数的海河流域总氮流失评价[J]. 环境科学, 2012, 33(6): 1784−1788 doi: 10.13227/j.hjkx.2012.06.016SUN R H, CHEN L D, WANG W, et al. Evaluation of total nitrogen loss in Haihe River Basin based on landscape pattern index of source and sink[J]. Chinese Journal of Environmental Science, 2012, 33(6): 1784−1788 doi: 10.13227/j.hjkx.2012.06.016 [36] JIANG M Z, CHEN H Y, CHEN Q H. A method to analyze “source–sink” structure of non-point source pollution based on remote sensing technology[J]. Environmental Pollution, 2013, 182: 135−140 doi: 10.1016/j.envpol.2013.07.006 [37] JIANG M Z, CHEN H Y, CHEN Q H, et al. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary[J]. Marine Pollution Bulletin, 2014, 87(1/2): 88−97 [38] WAN W, HAN Y W, WU H Q, et al. Application of the source–sink landscape method in the evaluation of agricultural non-point source pollution: first estimation of an orchard-dominated area in China[J]. Agricultural Water Management, 2021, 252: 106910 doi: 10.1016/j.agwat.2021.106910 [39] WANG R J, WANG Y, SUN S Y, et al. Discussing on “source-sink” landscape theory and phytoremediation for non-point source pollution control in China[J]. Environmental Science and Pollution Research, 2020, 27(36): 44797−44806 doi: 10.1007/s11356-020-10952-4 [40] 张亚娟, 李崇巍, 胡蓓蓓, 等. 城镇化流域“源-汇”景观格局对河流氮磷空间分异的影响−以天津于桥水库流域为例[J]. 生态学报, 2017, 37(7): 2437−2446ZHANG Y J, LI C W, HU B B, et al. Impact of a “source-sink” landscape pattern in an urbanized watershed on nitrogen and phosphorus spatial variations in rivers: a case study of Yuqiao Reservoir watershed, Tianjin, China[J]. Acta Ecologica Sinica, 2017, 37(7): 2437−2446 [41] 刘鹏, 张紫霞, 王妍, 等. 普者黑流域土地利用及“源-汇” 景观的氮磷输出响应研究[J]. 农业环境科学学报, 2020, 39(6): 1332−1341LIU P, ZHANG Z X, WANG Y, et al. Effect of land use and the source-sink landscape on nitrogen and phosphorus export in the Puzhehei watershed[J]. Journal of Agro-Environment Science, 2020, 39(6): 1332−1341 [42] LIU Y P, YANG C F, YU X Y, et al. Monitoring the landscape pattern and characteristics of non-point source pollution in a mountainous river basin[J]. International Journal of Environmental Research and Public Health, 2021, 18(21): 11032 doi: 10.3390/ijerph182111032 [43] ZHANG X, CUI J T, LIU Y Q, et al. Geo-cognitive computing method for identifying “source-sink” landscape patterns of river basin non-point source pollution[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(5): 55−68 doi: 10.25165/j.ijabe.20171005.3272 [44] 刘芳, 沈珍瑶, 刘瑞民. 基于 “源-汇” 生态过程的长江上游农业非点源污染[J]. 生态学报, 2009, 29(6): 3271−3277 doi: 10.3321/j.issn:1000-0933.2009.06.059LIU F, SHEN Z Y, LIU R M. The agricultural non-point sources pollution in the upper reaches of the Yangtze River based on source-sink ecological process[J]. Acta Ecologica Sinica, 2009, 29(6): 3271−3277 doi: 10.3321/j.issn:1000-0933.2009.06.059 [45] 王瑛, 张建锋, 陈光才, 等. 基于“源-汇”景观的太湖宜兴段入湖港口水质时空变化[J]. 生态学杂志, 2012, 31(2): 399−405 doi: 10.13292/j.1000-4890.2012.0045WANG Y, ZHANG J F, CHEN G C, et al. Spatiotemporal characteristics of water quality in Taihu Lake watershed based on ‘source-sink’ landscape change[J]. Chinese Journal of Ecology, 2012, 31(2): 399−405 doi: 10.13292/j.1000-4890.2012.0045 [46] YU W Q, ZHANG J, LIU L J, et al. A source-sink landscape approach to mitigation of agricultural non-point source pollution: validation and application[J]. Environmental Pollution, 2022, 314: 120287 doi: 10.1016/j.envpol.2022.120287 [47] TAN S J, XIE D T, NI J P, et al. Identification of nonpoint source pollution source/sink in a typical watershed of the Three Gorges Reservoir Area, China: A case study of the Qijiang River[J]. Journal of Cleaner Production, 2022, 330: 129694 doi: 10.1016/j.jclepro.2021.129694 [48] 李敏, 唐剑锋, 陈利顶, 等. 城郊流域源汇景观格局与水体抗生素的关系[J]. 环境科学, 2020, 41(5): 2264−2271 doi: 10.13227/j.hjkx.201911114LI M, TANG J F, CHEN L D, et al. Relationship between source-sink landscape pattern and antibiotics in surface water in peri-urban watershed[J]. Environmental Science, 2020, 41(5): 2264−2271 doi: 10.13227/j.hjkx.201911114 -