Effects of long-term warming and nitrogen fertilization on soil respiration and temperature sensitivity in the North China Plain
-
摘要: 在全球气候变暖与氮沉降不断加剧的背景下, 作为我国粮食主产区之一的华北平原农田土壤呼吸如何响应气候变暖和氮沉降增加成为亟待解决的问题。本文在华北平原冬小麦单作土壤布置了11年野外增温和施氮肥试验, 包括对照(CK)、红外增温(W)、施氮肥(N)和红外增温+施氮肥(WN) 4个处理, 采用静态箱-气相色谱法测定了2018—2020年土壤呼吸速率及其温度敏感性。结果表明: 2018—2020年, W和WN处理使5 cm深土壤温度平均提升约2 °C, 使土壤体积含水量下降2.4%。不同处理间土壤呼吸速率呈现明显的季节动态, 冬小麦3—6月生长季平均土壤呼吸速率(329.06 mg∙m−2∙h−1)显著高于11—3月休眠季(25.21 mg∙m−2∙h−1)(P<0.05)。2018—2020年, 与CK相比, W和WN处理分别使土壤呼吸速率提高16.8%和19.3% (P<0.05), 而N处理未显著影响土壤呼吸速率。W和WN处理2018—2020全年土壤呼吸的温度敏感性(Q10)低于N和CK处理, 即WN(1.65)<W(1.70)<N(1.78)<CK(1.80)。Q10存在明显季节性变化, 休眠季高(平均2.93), 生长季低(平均1.81)。本研究表明增温降低了Q10, 且Q10存在明显的季节性差异, 这有助于提升未来碳估算模型精度。Abstract: Under global warming and elevated nitrogen deposition, it becomes an urgent problem to find out how farmland soil respiration responds to climate warming and increasing nitrogen deposition in the North China Plain, one of the main grain-producing areas in China. In this study, the soil respiration rate and temperature sensitivity were measured using a static chamber gas chromatography method from 2018 to 2020. The soil respiration rate and temperature sensitivity were determined by field heating and nitrogen application for 11 years. Three treatments: infrared warming (W) (with an annual average increase of 1.5 °C according to our previous results), nitrogen fertilization (N) (240 kg(N)∙hm−2∙a−1 urea), and combined warming and nitrogen fertilization (WN) were used in this study. An untreated control treatment (CK) was also included. The results showed that the W and WN treatments increased soil temperature at 5 cm depth by approximately 2 °C on average and decreased soil water content by 2.4% from 2018 to 2020. The average soil respiration rate (329.06 mg∙m−2∙h−1) in the growing season from March to June was significantly higher than that in the dormancy season from November to March (25.21 mg∙m−2∙h−1) (P < 0.05). From 2018 to 2020, the W and WN treatments increased the soil respiration rate by 16.8% and 19.3%, compared with CK, respectively (P < 0.05). The N treatment had no significant effect on the soil respiration rate. During the same period, the temperature sensitivity (Q10) of soil respiration in the W and WN treatments was lower than that in the N and CK treatments, that was in the order of WN (1.65) < W (1.70) < N (1.78) < CK (1.80). The Q10 of soil respiration showed obvious seasonal variations, with an average high of 2.93 in the winter dormancy season and an average low of 1.81 in the summer growing season. This study showed that the temperature sensitivity of the soil respiration was decreased as temperature increased, and that Q10 showed significant seasonal differences. This information will help improve the accuracy of future carbon estimation models.
-
图 2 红外增温对2018年10月—2020年10月(增温处理第8年至第10年) 5 cm土壤温度(a)、土壤温度差(b)、土壤湿度(c)和土壤湿度差(d)的影响[土壤温度差和湿度差为增温处理(W)土壤温度或湿度减去对照处理(CK)]
Figure 2. Effects of warming on soil temperature (a), soil temperature difference (b), soil moisture (c) and soil moisture difference (d) of 5 cm deep soil from October 2018 to 2020 (from the 8th to the 10th year of the experiment) (difference of soil temperature or moisture is the subtraction of warming [W] to control [CK] treatments)
图 3 长期施氮肥(N)、增温(W)和增温下施氮肥(WN)对2018年10月至2020年10月间(处理第8年至第10年。CK为空白对照)
Figure 3. Effects of long term nitrogen fertilization (N), warming (W) and combined warming with nitrogen fertilization (WN) on soil respiration rate between October 2018 and October 2020 (from the 8th to the 10th years of the experiment, CK is the control)
图 4 长期施氮肥(N)、增温(W)和增温下施氮肥(WN)对2018—2020年平均土壤呼吸速率的影响
不同小写字母表示处理间差异显著(P<0.05)。Different lowercase letters represent significant differences among treatments (P<0.05).
Figure 4. Effects of long-term nitrogen fertilization (N), warming (W) and combined warming with nitrogen fertilization (WN) on soil average respiration rate from 2018 to 2020
表 1 2018—2020年长期增温和施氮肥对不同季节土壤呼吸温度敏感性(Q10)的影响
Table 1. Effects of long-term warming and nitrogen fertilization on the temperature sensitivity of soil respiration (Q10) in different seasons from 2018 to 2020
处理
Treatment2018—2019 2019—2020 2018—2020
平均
Average of
2018 to 2020冬休眠季
Winter dormancy season冬小麦生长季
Winter wheat
growing season撂荒季
Fallow season冬休眠季
Winter dormancy
season冬小麦生长季
Winter wheat
growing season撂荒季
Fallow seasonCK 2.96±0.04b 2.33±0.05a 1.05±0.01b 3.15±0.55b 1.88±0.63b 1.58±0.13a 1.80±0.02a W 2.71±0.01c 1.86±0.00b 1.06±0.01b 2.72±0.06c 1.22±0.00c 1.29±0.06b 1.70±0.01b N 3.04±0.00b 1.51±0.01c 1.13±0.03a 3.60±0.38a 2.87±0.46a 1.59±0.09a 1.78±0.01a WN 3.37±0.08a 1.61±0.19bc 1.00±0.07b 1.86±0.13d 1.19±0.00c 1.23±0.00b 1.65±0.00b CK: 对照; W: 增温; N: 施氮肥; WN: 增温下施氮肥。冬休眠季为11月到翌年3月, 冬小麦生长季为3—6月, 撂荒季为6—11月。不同小写字母表示处理间差异显著(P<0.05)。CK: control; N: N fertilization; W: warming; WN: combined warming with N fertilization. Winter dormancy season is from November to March of the next year, winter wheat growing season is from March to June, and fallow season is from June to November. Different lowercase letters represent significant differences among treatments (P<0.05). 表 2 长期增温和施氮肥对土壤有机质和氮含量的影响
Table 2. Effects of long-term warming and nitrogen fertilization on soil organic matter and nitrogen contents
处理
Treatment有机质
(g∙kg−1)全氮
(g∙kg−1)硝态氮
(mg∙kg−1)CK 15.30±0.17a 0.93±0.01bc 5.08±0.36d W 14.64±0.60b 0.88±0.03c 8.27±3.08c N 15.75±0.14a 1.01±0.03a 15.60±3.71b WN 14.63±0.38b 0.96±0.01ab 36.05±10.97a CK: 对照; W: 增温; N: 施氮肥; WN: 增温下施氮肥。不同小写字母表示处理间差异显著(P<0.05)。CK: control; N: N fertilization; W: warming; WN: combined warming with N fertilization. Different lowercase letters represent significant differences among treatments (P<0.05). -
[1] LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623−1627 doi: 10.1126/science.1097396 [2] BRADFORD M A, WIEDER W R, BONAN G B, et al. Managing uncertainty in soil carbon feedbacks to climate change[J]. Nature Climate Change, 2016, 6(8): 751−758 doi: 10.1038/nclimate3071 [3] 方精云, 王娓. 作为地下过程的土壤呼吸: 我们理解了多少?[J]. 植物生态学报, 2007, 31(3): 345−347 doi: 10.3321/j.issn:1005-264X.2007.03.001FANG J Y, WANG W. Soil respiration as a key belowground process: issues and perspectives[J]. Journal of Plant Ecology, 2007, 31(3): 345−347 doi: 10.3321/j.issn:1005-264X.2007.03.001 [4] BONGAARTS J. Intergovernmental panel on climate change special report on global warming of 1.5 ℃, Switzerland: IPCC, 2018[J]. Population and Development Review, 2019, 45(1): 251−252 doi: 10.1111/padr.12234 [5] HOEGH-GULDBERG O, JACOB D, TAYLOR M, et al. The human imperative of stabilizing global climate change at 1.5 ℃[J]. Science, 2019, 365(6459): eaaw6974 doi: 10.1126/science.aaw6974 [6] LIN G H, RYGIEWICZ P T, EHLERINGER J R, et al. Time-dependent responses of soil CO2 efflux components to elevated atmospheric CO2 and temperature in experimental forest mesocosms[J]. Plant and Soil, 2001, 229(2): 259−270 doi: 10.1023/A:1004883221036 [7] WAN S Q, NORBY R J, LEDFORD J, et al. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland[J]. Global Change Biology, 2007, 13(11): 2411−2424 doi: 10.1111/j.1365-2486.2007.01433.x [8] ZHOU X H, WAN S Q, LUO Y Q. Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem[J]. Global Change Biology, 2010, 13(4): 761−775 [9] XIA J, HAN Y, ZHANG Z, et al. Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe[J]. Biogeosciences, 2009, 6(8): 1361−1370 doi: 10.5194/bg-6-1361-2009 [10] WANG X, LIU L L, PIAO S L, et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration[J]. Global Change Biology, 2014, 20(10): 3229−3237 doi: 10.1111/gcb.12620 [11] SALESKA S R, HARTE J, TORN M S. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow[J]. Global Change Biology, 1999, 5(2): 125−141 doi: 10.1046/j.1365-2486.1999.00216.x [12] MELILLO J M, STEUDLER P A, ABER J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601): 2173−2176 doi: 10.1126/science.1074153 [13] YIN H J, LI Y F, XIAO J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming[J]. Global Change Biology, 2013, 19(7): 2158−2167 doi: 10.1111/gcb.12161 [14] XIAO H B, SHI Z H, LI Z W, et al. Responses of soil respiration and its temperature sensitivity to nitrogen addition: a meta-analysis in China[J]. Applied Soil Ecology, 2020, 150: 103484 doi: 10.1016/j.apsoil.2019.103484 [15] ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966−975 doi: 10.3724/SP.J.1011.2011.00966 [16] DENG L, HUANG C B, KIM D G, et al. Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools[J]. Global Change Biology, 2020, 26(4): 2613−2629 doi: 10.1111/gcb.14970 [17] KRISTNNA K H F, KAI H. Temperature sensitivity of soil carbon fractions in boreal forest soil[J]. Ecology, 2010, 91: 370−376 doi: 10.1890/09-0478.1 [18] GAUMONT-GUAY D, BLACK T A, GRIFFIS T J, et al. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand[J]. Agricultural and Forest Meteorology, 2006, 140(1/4): 220−235 [19] BOWDEN R D, NEWKIRK K M, RULLO G M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions[J]. Soil Biology and Biochemistry, 1998, 30(12): 1591−1597 doi: 10.1016/S0038-0717(97)00228-9 [20] CONANT R T, DALLA-BETTA P, KLOPATEK C C, et al. Controls on soil respiration in semiarid soils[J]. Soil Biology and Biochemistry, 2004, 36(6): 945−951 doi: 10.1016/j.soilbio.2004.02.013 [21] JANSSENS I A, PILEGAARD K. Large seasonal changes in Q10 of soil respiration in a beech forest[J]. Global Change Biology, 2003, 9(6): 911−918 doi: 10.1046/j.1365-2486.2003.00636.x [22] ZHONG Q C, DU Q, GONG J N, et al. Effects of in situ experimental air warming on the soil respiration in a coastal salt marsh reclaimed for agriculture[J]. Plant and Soil, 2013, 371(1/2): 487−502 [23] LUO Y Q, WAN S Q, HUI D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856): 622−625 doi: 10.1038/35098065 [24] LIU Z F, LEE C. The role of organic matter in the sorption capacity of marine sediments[J]. Marine Chemistry, 2007, 105(3/4): 240−257 [25] ATKIN O K, TJOELKER M G. Thermal acclimation and the dynamic response of plant respiration to temperature[J]. Trends in Plant Science, 2003, 8(7): 343−351 doi: 10.1016/S1360-1385(03)00136-5 [26] BRADFORD M A, FIERER N, REYNOLDS J F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils[J]. Functional Ecology, 2008, 22(6): 964−974 doi: 10.1111/j.1365-2435.2008.01404.x [27] ZHANG J, TIAN H, SHI H, et al. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation[J]. Global Change Biology, 2020, 26: 6116−6133 doi: 10.1111/gcb.15290 [28] 刘颖, 韩士杰, 胡艳玲, 等. 土壤温度和湿度对长白松林土壤呼吸速率的影响[J]. 应用生态学报, 2005, 16(9): 1581−1585 doi: 10.3321/j.issn:1001-9332.2005.09.001LIU Y, HAN S J, HU Y L, et al. Effects of soil temperature and humidity on soil respiration rate under Pinus sylvestriformis forest[J]. Chinese Journal of Applied Ecology, 2005, 16(9): 1581−1585 doi: 10.3321/j.issn:1001-9332.2005.09.001 [29] HUANG X M, TERRER C, DIJKSTRA F A, et al. New soil carbon sequestration with nitrogen enrichment: a meta-analysis[J]. Plant and Soil, 2020, 454(1/2): 299−310 [30] 刘博奇, 牟长城, 邢亚娟, 等. 模拟氮沉降对云冷杉红松林土壤呼吸的影响[J]. 林业科学研究, 2012, 25(6): 767−772 doi: 10.3969/j.issn.1001-1498.2012.06.015LIU B Q, MU C C, XING Y J, et al. Effects of simulated nitrogen deposition on soil respiration in spruce-fir-Korean pine forest of Xiaoxing’anling Mountains in China[J]. Forest Research, 2012, 25(6): 767−772 doi: 10.3969/j.issn.1001-1498.2012.06.015 [31] ZHANG C, DONG W, MANEVSKI K, et al. Long-term warming and nitrogen fertilization affect C-, N- and P-acquiring hydrolase and oxidase activities in winter wheat monocropping soil[J]. Scientific Reports, 2021, 11: 18542 doi: 10.1038/s41598-021-97231-5 [32] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081): 165−173 doi: 10.1038/nature04514 [33] OECHEL W C, VOURLITIS G L, HASTINGS S J, et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming[J]. Nature, 2000, 406(6799): 978−981 doi: 10.1038/35023137 [34] GIARDINA C P, RYAN M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404(6780): 858−861 doi: 10.1038/35009076 [35] RUSTAD L, CAMPBELL J, MARION G, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543−562 doi: 10.1007/s004420000544 [36] ELIASSON P E, MCMURTRIE R E, PEPPER D A, et al. The response of heterotrophic CO2 flux to soil warming[J]. Global Change Biology, 2005, 11(1): 167−181 doi: 10.1111/j.1365-2486.2004.00878.x [37] JARVIS P, LINDER S. Constraints to growth of boreal forests[J]. Nature, 2000, 405(6789): 904−905 doi: 10.1038/35016154 [38] HOU Y H, ZHOU G S, XU Z Z, et al. Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe[J]. PLoS One, 2013, 8(7): e70114 doi: 10.1371/journal.pone.0070114 [39] NIINISTÖ S M, SILVOLA J, KELLOMÄKI S. Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming[J]. Global Change Biology, 2004, 10(8): 1363−1376 doi: 10.1111/j.1365-2486.2004.00799.x -