Influences of continuous monoculture of alfalfa and rotation of annual crops on soil fungal communities in the semi-arid Loess Plateau
-
摘要: 为研究半干旱区种植制度对土壤真菌群落和功能的影响, 本研究依托布设于黄土高原雨养农业区的长期定位试验, 采集长期种植苜蓿(LC)、苜蓿-休耕(LF)、苜蓿-休耕-玉米(LFC)、苜蓿-马铃薯(LP)、苜蓿-谷子(LMi)5个处理的耕层(0~30 cm)土壤样品, 基于真菌ITS区高通量测序技术, 分析比较长期种植苜蓿和一年生作物对土壤真菌多样性和群落特征的影响, 并采用FUNGuild平台分析预测不同处理土壤真菌的生态功能。结果表明, 本研究共检测到真菌7门25纲77目169科347属, 其中以子囊菌门(Ascomycota, 69.17%~88.22%)为最优势菌门, 且远远大于次优势菌门——接合菌门(Zygomycota, 6.72%~19.88%)和担子菌门(Basidiomycota, 1.64%~9.01%); 属水平下各处理优势菌群存在差异, 其中LC处理优势属为Phaeomycocentrospora, LF、LP和LMi的优势属均为赤霉菌属(Gibberella), LFC处理优势属为被孢霉属(Mortierella)。冗余分析(RDA)发现, 土壤有效磷(P=0.002)是影响土壤真菌群落结构的主要环境因子。真菌FUNGuild功能预测结果表明, 本试验黄绵土主要以病理营养型真菌(pathotroph)为主(25.44%~39.27%), 速效磷和硝态氮是影响土壤真菌营养类型变化的主要环境因子, 与长期种植苜蓿相比种植一年生大田作物显著增加了土壤腐生-共生营养型、病原体-腐生-共生营养型和病理-腐生-共生营养型等过渡型真菌类群相对丰度, 说明合理的种植制度有利于改善农田土壤真菌群落结构, 促进区域土壤生态系统的稳定。Abstract: Lucerne (Medicago sativa) is widely planted in the Loess Plateau of western China and can accumulate soil carbon and nitrogen nutrients. However, continuous cropping of lucerne has consumed soil water and phosphorus for many years leading to a decrease in soil quality and alfalfa productivity. Therefore, after lucerne is planted for a certain period, it is necessary to plant the stubble and rotate annual crops to promote sustainable land use. Choosing suitable crops can improve the stability of the soil ecosystem. In this study, we analyzed the effects of long-term continuous cropping of alfalfa and rotation with annual crops on the structure and diversity of soil fungal communities in semi-arid areas based on a long-term localization experiment in the rainfed agricultural area of the Loess Plateau using the FUNGuild platform to predict the ecological functions of fungi in different treatments. The cropping systems included monocropping for 16 years of lucerne (LC), field fallow for 7 years after monocropping for 9 years of lucerne (rotation of lucerne-fallow, LF), field fallow for 2 years after monocropping for 9 years of lucerne and then planting corn (Zea mays) for 5 years (rotation of lucerne-fallow-corn, LFC), planting potato (Solanum tuberosum) for 7 years after monocropping for 9 years of lucerne (rotation of lucerne-potato, LP), and planting millet (Panicum miliaceum) for 7 years after monocropping for 9 years of lucerne (rotation of lucerne-millet, LMi). A total of 7 phyla, 25 classes, 77 orders, 169 families, and 347 genera of fungi were identified. The fungi were mainly Ascomycota, Zygomycota, and Basidiomycota at the phylum level. Ascomycota was the first dominant phylum in different treatments, and its relative abundance ranged from 69.17% to 88.22%, which was much greater than that of the subdominant phyla Zygomycota (6.72%–19.88%) and Basidiomycota (1.64%–9.01%). The dominant genera varied in different treatments, with Phaeomycocentrospora in LC treatment, Gibberella in LF, LP, and LMi treatments, and Mortierella in LFC treatment. Redundancy analysis revealed that soil available phosphorus (P=0.002) was the main factor influencing the soil fungal community structure. The alpha diversity results showed that crop type had no significant impact on the diversity and richness of the soil fungal communities. However, the Shannon index was significantly negatively correlated with the soil nitrate-nitrogen content (r=−0.553, P<0.05) and the Simpson index was significantly positively correlated with the soil nitrate-nitrogen content (r=0.515, P<0.05). Functional prediction with FUNGuild showed that pathotrophs (25.44%–39.27%) was the dominant fungal functional group of loessal soil in this study. After lucerne rotation with annual crops, the relative abundance of transitional fungal groups, such as soil saprotrophs-symbiotrophs, pathogens-saprotrophs-symbiotrophs, and pathotrophs-saprotrophs-symbiotrophs, changed, whereas the relative abundance of pathotrophs-saprotrophs decreased. Available phosphorus (P=0.002) and nitrate-nitrogen (P=0.02) were the main environmental factors affecting the changes in soil fungal functional groups. In conclusion, rational cropping systems are conducive in enriching the structure of soil microbial communities and promoting the stability of the soil ecosystems in the region. The results of this study can provide reference and data support for the prediction of soil fungal communities and their functions in different planting systems.
-
Key words:
- Medicago sativa /
- Annual crops /
- High throughput sequencing /
- Fungal community structure /
- FUNGulid
-
图 1 不同种植制度土壤真菌群落Alpha多样性
LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。
Figure 1. Alpha diversity of soil fungal communities in different cropping systems
LC, LF, LFC, LP and LMi indicate the treatments of lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respectively.
图 2 不同种植制度土壤真菌群落PCoA分析
LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。
Figure 2. PCoA analysis of soil fungal communities in different cropping systems
LC, LF, LFC, LP and LMi indicate the treatments of lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respectively.
图 3 不同种植制度土壤真菌门水平相对丰度
LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。*表示不同处理间差异显著(P<0.05)。
Figure 3. Relative abundances of soil fungal communities at phylum levels in different cropping systems
LC, LF, LFC, LP and LMi indicate the treatments of lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respectively. * means significant differences among treatments (P<0.05).
图 4 不同种植制度土壤真菌属水平相对丰度
LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。
Figure 4. Relative abundance of soil fungal communities at the level of genus in different cropping systems
LC, LF, LFC, LP and LMi indicate the treatments of lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respectively.
图 5 土壤真菌属与理化因子RDA分析
LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。Gibberella: 赤霉菌属; Mortierella: 被孢霉属; Metarhizium: 绿僵菌属; Fusarium: 镰刀菌属; Humicola: 腐质霉属; Cryptococcus: 隐球菌属; Mycosphaerella: 球腔菌属; Beauveria: 白僵菌属; BD: 容重; SOC: 有机碳: TN: 全氮; NO3−-N: 硝态氮; AP: 有效磷; AK: 速效钾。
Figure 5. RDA analysis of soil fungi genus and physicochemical factors
LC, LF, LFC, LP and LMi indicate the treatments of lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respectively. BD, SOC, TN, NO3−-N, AP and AK represent soil bulk density, organic carbon, total nitrogen, nitrate nitrogen, available phosphorus and available potassium, respectively.
图 6 不同种植制度土壤真菌营养型及相对丰度
LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。*表示不同处理间差异显著(P<0.05)。
Figure 6. Relative abundance of soil fungal nutrient types in different cropping systems
LC, LF, LFC, LP and LMi indicate the treatments of lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respetively. * means significant differences among treatments (P<0.05).
图 7 土壤真菌功能类群与理化因子RDA分析
LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。图中红色箭头代表土壤环境因子, 蓝色箭头代表土壤真菌营养类型; BD、SOC、TN、NO3−-N、AP和AK分别代表土壤容重、有机碳、全氮、硝态氮、有效磷和速效钾; Saprotroph: 腐生营养型; Symbiotroph: 共生营养型; Pathotroph: 病理营养型; Pathotroph-Saprotroph: 病理-腐生营养型; Pathotroph-Symbiotroph: 病理-共生营养型; Saprotroph-Symbiotroph: 腐生-共生营养型; Pathogen-Saprotroph-Symbiotroph: 病原体-腐生-共生营养型; Pathotroph-Saprotroph-Symbiotroph: 病理-腐生-共生营养型。
Figure 7. RDA analysis of soil fungal functional groups and physicochemical factors
LC, LF, LFC, LP and LMi indicate the treatments of lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respectively. The red arrow in the figure represents soil physicochemical factors and the blue arrows represent soil fungal functional groups. BD, SOC, TN, NO3−-N, AP and AK represent soil bulk density, organic carbon, total nitrogen, nitrate nitrogen, available phosphorus and available potassium.
表 1 试验处理
Table 1. Experimental treatment
处理
Treatment代码
Treatment code田间操作管理
Field operation and management紫花苜蓿连作
Lucerne continuous cropingLC 于2003年建植紫花苜蓿, 并连续种植至2018年Lucerne established in 2003 and continuously cropped to 2018 紫花苜蓿-休耕
Rotation of lucerne-fallowLF 于2003年建植紫花苜蓿, 2012年3月挖除紫花苜蓿后一直保持休耕Lucerne established in 2003 and removed in March 2012, field fallowed until 2018 紫花苜蓿-休耕-玉米
Rotation of lucerne-fallow-cornLFC 于2003年建植紫花苜蓿, 2012年3月挖除紫花苜蓿后保持休耕, 之后于次年春季种植玉米, 2014—2018年种植玉米Lucerne was established in 2003 and removed in March 2012, field fallowed until maize was sown in the spring of 2013, and maize was continuously cropped in 2014−2018 紫花苜蓿-马铃薯
Rotation of lucerne-potatoLP 于2003年建植紫花苜蓿, 2012年3月挖除紫花苜蓿, 并于当年5月种植马铃薯, 2013—2018年种植马铃薯Lucerne was established in 2003 and removed in March 2012, potato was sown in May 2012 and continuously cropped in 2013−2018 紫花苜蓿-谷子
Rotation of lucerne-milletLMi 于2003年建植紫花苜蓿, 2012年3月挖除紫花苜蓿, 并于当年4月种植谷子, 2013−2018年种植谷子Lucerne was established in 2003 and removed in March 2012, millet was sown in April 2012 and continuously cropped in 2013−2018 表 2 不同种植制度的土壤理化性质
Table 2. Soil physicochemical properties of different cropping systems
处理
Treatment容重Bulk density
(g·cm−3)有机碳Organic carbon
(g·kg−1)全氮Total nitrogen
(g·kg−1)硝态氮Nitrate nitrogen
(mg·kg−1)有效磷Available phosphorus
(mg·kg−1)速效钾Available potassium
(mg·kg−1)pH LC 1.31±0.01a 9.40±0.14a 1.04±0.07a 12.97±0.72b 0.98±0.16d 200.77±20.01b 8.45±0.05a LF 1.27±0.02a 8.34±0.17c 0.91±0.01b 20.72±0.75b 5.54±0.01c 241.91±11.93a 8.32±0.08a LFC 1.25±0.02a 8.95±0.13b 0.94±0.01ab 39.17±4.16a 9.50±0.82b 223.67±0.53ab 8.27±0.06a LP 1.20±0.04a 8.97±0.04b 1.04±0.03a 37.36±3.54a 4.15±0.48c 206.91±0.71ab 8.28±0.07a LMi 1.23±0.03a 9.27±0.06ab 1.01±0.01ab 31.92±0.65a 11.33±0.53a 187.34±8.00b 8.33±0.04a LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。表中数值表示均值±标准误(n=3), 同列不同小写字母表示处理间差异显著(P<0.05)。LC, LF, LFC, LP and LMi indicate lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respectively. Values in the table are mean ± SD (n=3). Different lowercase letters represent significant differences among treatments (P<0.05). 表 3 不同种植制度土壤相对丰度前10的真菌属
Table 3. Top 10 genera of relative abundance of soil fungi in different cropping systems
真菌属
Fungal genus相对丰度 Relative abundance (%) LC LF LFC LP LMi 赤霉菌属 Gibberella 7.23±2.47c 19.95±4.55ab 6.20±2.26c 14.18±0.80bc 27.80±4.17a 被孢霉属 Mortierella 6.68±0.27b 13.17±1.25ab 19.73±4.27a 10.05±0.89b 7.83±1.68b 绿僵菌属 Metarhizium 5.17±3.80a 4.66±1.88a 13.64±6.75a 4.15±0.26a 8.36±2.10a 镰刀菌属 Fusarium 3.16±0.56a 2.41±0.31a 3.76±0.28a 2.13±0.16a 9.77±5.79a Phaeomycocentrospora 9.44±3.03a 2.97±2.41b 0.70±0.58b 2.10±1.75b 0.73±0.32b Lectera 4.01±1.38b 2.23±0.58ab 0.13±0.11c 7.66±1.43a 0.61±0.38c 腐质霉属 Humicola 0.64±0.18a 0.83±0.21a 11.59±6.73a 0.72±0.05a 0.42±0.14a 隐球菌属 Cryptococcus 1.84±0.38a 4.35±0.83a 3.86±1.17a 1.71±0.52a 1.85±0.34a 球腔菌属 Mycosphaerella 1.31±0.45a 9.35±7.68a 0.06±0.02a 0.19±0.03a 0.23±0.05a 白僵菌属 Beauveria 6.17±2.39a 0.12±0.03a 4.11±3.92a 0.18±0.06a 0.07±0.01a LC、LF、LFC、LP和LMi分别表示紫花苜蓿连作、紫花苜蓿-休耕、紫花苜蓿-休耕-玉米、紫花苜蓿-马铃薯、紫花苜蓿-谷子。表中数值表示均值±标准误(n=3), 同行不同小写字母代表处理间具有显著性差异(P<0.05)。LC, LF, LFC, LP and LMi indicate the treatments of lucerne continuous cropping, rotation of lucerne-fallow, rotation of lucerne-fallow-corn, rotation of lucerne-potato, and rotation of lucerne-millet, respectively. Values in the table are mean ± SD (n=3). Different lowercase letters in the same line represent significant differences among treatments (P<0.05). 表 4 土壤真菌Alpha多样性与理化因子Pearson相关分析
Table 4. Pearson correlation analysis between alpha diversity of soil fungi and physiochemical factors
多样性指数
Diversity index容重
Bulk density有机碳
Organic carbon全氮
Total nitrogen硝态氮
Nitrate nitrogen有效磷
Available phosphorus速效钾
Available potassiumpH Sobs 指数 Sobs index −0.048 0.143 −0.097 −0.134 −0.188 −0.066 0.459 Chao1 指数 Chao1 index −0.360 0.187 0.054 0.045 0.128 −0.314 0.276 Shannon 指数 Shannon index 0.275 0.082 −0.014 −0.553* −0.434 −0.040 0.481 Simpson 指数 Simpson index −0.220 −0.103 −0.129 0.515* 0.466 0.148 −0.393 *和**分别表示相关性为显著(P<0.05)和极显著(P<0.01)。* and ** mean significant correlations at P<0.05 and P<0.01, respectively. -
[1] 倪红, 杨宪龙, 王刚, 等. 施氮及添加硝化抑制剂对苜蓿草地N2O排放的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 317−327NI H, YANG X L, WANG G, et al. Effects of nitrogen application and nitrification inhibitor addition on N2O emissions in Medicago sativa L. grassland[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 317−327 [2] 罗珠珠, 牛伊宁, 李玲玲, 等. 黄土高原丘陵沟壑区土壤物理性质对苜蓿种植年限的响应[J]. 中国生态农业学报, 2016, 24(11): 1500−1507LUO Z Z, NIU Y N, LI L L, et al. Response of soil physical properties to alfalfa growth years in the western Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1500−1507 [3] 杨青川, 孙彦. 中国苜蓿育种的历史、现状与发展趋势[J]. 中国草地学报, 2011, 33(6): 95−101YANG Q C, SUN Y. The history, current situation and development of alfalfa breeding in China[J]. Chinese Journal of Grassland, 2011, 33(6): 95−101 [4] WANG L L, XIE J H, LUO Z Z, et al. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China[J]. Agricultural Water Management, 2021, 243: 106415 doi: 10.1016/j.agwat.2020.106415 [5] 韩清芳, 周芳, 贾珺, 等. 施肥对不同品种苜蓿生产力及土壤肥力的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1413−1418 doi: 10.3321/j.issn:1008-505X.2009.06.024HAN Q F, ZHOU F, JIA J, et al. Effect of fertilization on productivity different producing performance alfalfa varieties and soil fertility[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1413−1418 doi: 10.3321/j.issn:1008-505X.2009.06.024 [6] WARDLE D A, BARDGETT R D, KLIRONOMOS J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677): 1629−1633 doi: 10.1126/science.1094875 [7] MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5): 634−663 doi: 10.1111/1574-6976.12028 [8] MCCARTHY J F, ILAVSKY J, JASTROW J D, et al. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter[J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4725−4744 doi: 10.1016/j.gca.2008.06.015 [9] ALGUACIL M M, TORRECILLAS E, CARAVACA F, et al. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil[J]. Soil Biology and Biochemistry, 2011, 43(7): 1498−1508 doi: 10.1016/j.soilbio.2011.03.026 [10] AIME M C. Toward resolving family-level relationships in rust fungi (Uredinales)[J]. Mycoscience, 2006, 47(3): 112−122 doi: 10.1007/S10267-006-0281-0 [11] YANG Y, DOU Y X, HUANG Y M, et al. Links between soil fungal diversity and plant and soil properties on the Loess Plateau[J]. Frontiers in Microbiology, 2017, 8: 2198 doi: 10.3389/fmicb.2017.02198 [12] WANG Z T, LIU L, CHEN Q, et al. Conservation tillage increases soil bacterial diversity in the dryland of northern China[J]. Agronomy for Sustainable Development, 2016, 36(2): 1−9 [13] 耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征[J]. 应用生态学报, 2020, 31(4): 1365−1377GENG D Z, HUANG J H, HUO N, et al. Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslands with different cultivation years in semi-arid region of Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1365−1377 [14] 蔡艳, 郝明德, 臧逸飞, 等. 长期轮作对旱地黑垆土纤维素分解菌数量及分解强度的影响[J]. 干旱地区农业研究, 2015, 33(6): 88−92 doi: 10.7606/j.issn.1000-7601.2015.06.15CAI Y, HAO M D, ZANG Y F, et al. Effects of long-term rotation on the quantity of cellulose-decomposing bacteria and the intensity of cellulose-decomposition in black loessial soil[J]. Agricultural Research in the Arid Areas, 2015, 33(6): 88−92 doi: 10.7606/j.issn.1000-7601.2015.06.15 [15] LI X G, DING C F, HUA K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 2014, 78: 149−159 doi: 10.1016/j.soilbio.2014.07.019 [16] 陈丹梅, 陈晓明, 梁永江, 等. 种植模式对土壤酶活性和真菌群落的影响[J]. 草业学报, 2015, 24(2): 77−84 doi: 10.11686/cyxb20150210CHEN D M, CHEN X M, LIANG Y J, et al. Influence of cropping system on enzyme activities and fungal communities in soil[J]. Acta Prataculturae Sinica, 2015, 24(2): 77−84 doi: 10.11686/cyxb20150210 [17] 肖礼. 黄土丘陵区梯田土壤微生物群落和活性特征及其影响因素[D]. 杨凌: 西北农林科技大学, 2017XIAO L. Soil microbial community and activity characteristics and its influencing factors on terraces of loess hilly region[D]. Yangling: Northwest A & F University, 2017 [18] OH Y M, KIM M, LEE-CRUZ L, et al. Distinctive bacterial communities in the rhizoplane of four tropical tree species[J]. Microbial Ecology, 2012, 64(4): 1018−1027 doi: 10.1007/s00248-012-0082-2 [19] WAKELIN S A, COLLOFF M J, HARVEY P R, et al. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize[J]. FEMS Microbiology Ecology, 2007, 59(3): 661−670 doi: 10.1111/j.1574-6941.2006.00235.x [20] SUN R B, DSOUZA M, GILBERT J A, et al. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter[J]. Environmental Microbiology, 2016, 18(12): 5137−5150 doi: 10.1111/1462-2920.13512 [21] 季凌飞, 倪康, 马立锋, 等. 不同施肥方式对酸性茶园土壤真菌群落的影响[J]. 生态学报, 2018, 38(22): 8158−8166JI L F, NI K, MA L F, et al. Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil[J]. Acta Ecologica Sinica, 2018, 38(22): 8158−8166 [22] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd version. Beijing: Chinese Agriculture Press, 2000 [23] 孙倩, 吴宏亮, 陈阜, 等. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 2019, 46(11): 2963−2972SUN Q, WU H L, CHEN F, et al. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46(11): 2963−2972 [24] SHARMA S K, RAMESH A, SHARMA M P, et al. Microbial community structure and diversity as indicators for evaluating soil quality[M]//LICHFOUSE E. Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. Dordrecht: Springer, 2010: 317–358 [25] 闫茹, 冯薇, 王玺婧. 呼伦贝尔沙地不同固沙植物土壤真菌群落组成及多样性[J]. 中国水土保持科学(中英文), 2021, 19(1): 60−68YAN R, FENG W, WANG X J. Composition and diversity of soil fungi community under different sand-fixing plants in the Hulun Buir Desert[J]. Science of Soil and Water Conservation, 2021, 19(1): 60−68 [26] 邓德雷, 罗超越, 邱慧珍, 等. 连续施用不同氮量对半干旱地区马铃薯根际真菌群落结构的影响[J]. 干旱地区农业研究, 2020, 38(1): 50−58 doi: 10.7606/j.issn.1000-7601.2020.01.07DENG D L, LUO C Y, QIU H Z, et al. Effects of continuous application of different nitrogen rates on fungal community structure in potato rhizosphere in semi-arid area of Gansu Province[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 50−58 doi: 10.7606/j.issn.1000-7601.2020.01.07 [27] 陈丹梅, 陈晓明, 梁永江, 等. 轮作对土壤养分、微生物活性及细菌群落结构的影响[J]. 草业学报, 2015, 24(12): 56−65 doi: 10.11686/cyxb2015002CHEN D M, CHEN X M, LIANG Y J, et al. Influence of crop rotation on soil nutrients, microbial activities and bacterial community structures[J]. Acta Prataculturae Sinica, 2015, 24(12): 56−65 doi: 10.11686/cyxb2015002 [28] 王海英, 郭守玉, 黄满荣, 等. 子囊菌较担子菌具有更快的进化速率和更高的物种多样性[J]. 中国科学: 生命科学, 2010, 40(8): 731−737, 765 doi: 10.1360/zc2010-40-8-731WANG H Y, GUO S Y, HUANG M R, et al. Ascomyeota has faster evolutionary rate and higher species diversity than Basidiomycota (fungi)[J]. Scientia Sinica (Vitae), 2010, 40(8): 731−737, 765 doi: 10.1360/zc2010-40-8-731 [29] STERKENBURG E, BAHR A, BRANDSTRÖM DURLING M, et al. Changes in fungal communities along a boreal forest soil fertility gradient[J]. The New Phytologist, 2015, 207(4): 1145−1158 doi: 10.1111/nph.13426 [30] 崔云凤, 黄云, 蒋伶活. 农业生产上几种重要的赤霉属真菌研究进展[J]. 中国农学通报, 2007, 23(7): 441−446 doi: 10.3969/j.issn.1000-6850.2007.07.101CUI Y F, HUANG Y, JIANG L H. Research progress on Gibberella species of agricultural importance[J]. Chinese Agricultural Science Bulletin, 2007, 23(7): 441−446 doi: 10.3969/j.issn.1000-6850.2007.07.101 [31] GOTO B T, MAIA L C. Glomerospores: a new denomination for the spores of Glomeromycota, a group molecularly distinct from the Zygomycota[J]. Mycotaxon, 2006, 96: 129−132 [32] 宁琪, 陈林, 李芳, 等. 被孢霉对土壤养分有效性和秸秆降解的影响[J/OL]. 土壤学报, 2020-09-07[2021-04-01]. http://kns.cnki.net/kcms/detail/32.1119.P.20200904.1556.002.htmlNING Q, CHEN L, LI F, et al. Effects of Mortierella on nutrient availability and straw decomposition in soil[J]. Acta Pedologica Sinica, 2020-09-07[2021-04-01]. http://kns.cnki.net/kcms/detail/32.1119.P.20200904.1556.002.html [33] 吴照祥, 郝志鹏, 陈永亮, 等. 三七根腐病株根际土壤真菌群落组成与碳源利用特征研究[J]. 菌物学报, 2015, 34(1): 65−74WU Z X, HAO Z P, CHEN Y L, et al. Characterization of fungal community composition and carbon source utilization in the rhizosphere soil of Panax notoginseng suffering from root‐rot disease[J]. Mycosystema, 2015, 34(1): 65−74 [34] ZHANG J Y, AI Z M, LIANG C T, et al. How microbes cope with short-term N addition in a Pinus tabuliformis forest-ecological stoichiometry[J]. Geoderma, 2019, 337: 630−640 doi: 10.1016/j.geoderma.2018.10.017 [35] WANG J C, RHODES G, HUANG Q W, et al. Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system[J]. Biology and Fertility of Soils, 2018, 54(6): 731−742 doi: 10.1007/s00374-018-1295-4 [36] ANTHONY M A, FREY S D, STINSON K A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion[J]. Ecosphere, 2017, 8(9): e01951 [37] 程跃扬, 靳振江, 王晓彤, 等. 土地利用方式对会仙岩溶湿地土壤真菌群落和功能类群的影响[J]. 环境科学, 2020, 41(9): 4294−4304CHENG Y Y, JIN Z J, WANG X T, et al. Effect of land-use on soil fungal community structure and associated functional group in Huixian Karst wetland[J]. Environmental Science, 2020, 41(9): 4294−4304 [38] 尹国丽, 蔡卓山, 陶茸, 等. 不同草田轮作方式对土壤肥力、微生物数量及自毒物质含量的影响[J]. 草业学报, 2019, 28(3): 42−50 doi: 10.11686/cyxb2018408YIN G L, CAI Z S, TAO R, et al. Effects of different crop rotations on soil nutrient, microorganism abundance and soil allelochemical levels in alfalfa[J]. Acta Prataculturae Sinica, 2019, 28(3): 42−50 doi: 10.11686/cyxb2018408 [39] XU J, ZHANG Y Z, ZHANG P F, et al. The structure and function of the global Citrus rhizosphere microbiome[J]. Nature Communications, 2018, 9: 4894 doi: 10.1038/s41467-018-07343-2 [40] 熊丹, 欧静, 李林盼, 等. 黔中地区马尾松林下杜鹃根部内生真菌群落组成及其生态功能[J]. 生态学报, 2020, 40(4): 1228−1239XIONG D, OU J, LI L P, et al. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron simsii in Pinus massoniana forest in central Guizhou[J]. Acta Ecologica Sinica, 2020, 40(4): 1228−1239 [41] 徐坤, 李世忠. 不同种植年限苜蓿地土壤理化性状[J]. 草业科学, 2015, 32(11): 1767−1773 doi: 10.11829/j.issn.1001-0629.2015-0140XU K, LI S Z. Physical and chemical properties of soil in alfalfa field for different cultivated years[J]. Pratacultural Science, 2015, 32(11): 1767−1773 doi: 10.11829/j.issn.1001-0629.2015-0140 [42] 燕红梅, 张欣钰, 檀文君, 等. 5种植物根际真菌群落结构与多样性[J]. 应用与环境生物学报, 2020, 26(2): 364−369YAN H M, ZHANG X Y, TAN W J, et al. Biodiversity and composition of rhizosphere fungal communities associated with five plant species[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2): 364−369 -