方一舒, 艾东, 羊玉婷, 孙玮健, 戴瑶. 高自然价值农田识别及空间分布格局研究−以云南省为例[J]. 中国生态农业学报 (中英文), 2022, 30(3): 441−450. DOI: 10.12357/cjea.20210501
引用本文: 方一舒, 艾东, 羊玉婷, 孙玮健, 戴瑶. 高自然价值农田识别及空间分布格局研究−以云南省为例[J]. 中国生态农业学报 (中英文), 2022, 30(3): 441−450. DOI: 10.12357/cjea.20210501
FANG Y S, AI D, YANG Y T, SUN W J, DAI Y. Identification of high natural-value farmland and its spatial distribution pattern: Taking Yunnan Province as an example[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 441−450. DOI: 10.12357/cjea.20210501
Citation: FANG Y S, AI D, YANG Y T, SUN W J, DAI Y. Identification of high natural-value farmland and its spatial distribution pattern: Taking Yunnan Province as an example[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 441−450. DOI: 10.12357/cjea.20210501

高自然价值农田识别及空间分布格局研究以云南省为例

Identification of high natural-value farmland and its spatial distribution pattern: Taking Yunnan Province as an example

  • 摘要: 中国耕地保护面临巨大挑战, 耕地数量质量管控是保护的基本前提; 同时为促进中国农业可持续发展, 需要增强农业生态系统韧性, 因此在自然价值视角下, 探索高自然价值农田识别与空间分布具有重要意义。本文借鉴国内外学者对农田保护的研究, 引出“高自然价值农田”的概念, 探索“高自然价值农田”对中国农田生态系统建设的作用。并以云南省为实例, 采用ArcGIS和InVEST模型进行定量分析,作为探索中国西南地区高自然价值农田的识别方法。利用2009年、2012年、2015年和2018年4期土地利用现状数据, 计算各年份的农田生境质量, 研究各年份高自然价值农田空间分布格局变化情况。主要得到以下结论: 1)依据现有文献, 总结高自然价值农田主要分为以下3种类型: ①半自然植被比例较高的农田; ②以低强度农业为主的农田或小规模半自然的农田镶嵌体; ③维持稀有物种生存的农田。2)依据评价结果, 从时间格局来看, 高自然价值农田所占比例年度变化不大, 平均为10.86%, 以毗邻林地、水域的破碎化的小图斑为主。3)从空间格局来看, 云南省农田自然价值等级整体处于较低等级, 高自然价值农田所占比例较低, 分布于滇西北和滇东北部分地区, 斑块相对比较细碎, 零散分布于集中连片的农田周边; 而较低自然价值的农田所占比例最大, 广泛分布于云南省范围内, 其生产价值较高。最后从自然资源、农田生态系统生物多样性保护和农业文化遗产保护的视角进行分析, 提出分区分级进行农田保护与退耕还林政策, 实现“共治共建, 同管同护”的保护理念。

     

    Abstract: Farmland protection in China faces huge challenges, and the quantity and quality control of cultivated land is a fundamental prerequisite for protection. At the same time, to promote the sustainable development of agriculture in China, it is necessary to enhance the resilience of agricultural ecosystems. Therefore, from the perspective of natural value, it is important to explore the identification and spatial distribution of high natural-value farmland. This article drew on researches into farmland protection by many scholars, introduced the concept of high natural-value farmland, and explored the role of high natural-value farmland in the construction of China’s farmland ecosystem. Taking Yunnan Province as an example, ArcGIS and InVEST models were used for quantitative analysis as an identification method for exploring high natural-value farmland in Southwest China. It used four sets of land use data in 2009, 2012, 2015, and 2018 to calculate the quality of farmland habitat in each year, and the spatial distribution patterns of high natural-value farmland in each year were studied. The main conclusions were as follows. 1) According to existing literature, it was concluded that high natural-value farmland was mainly divided into the following three types: ① farmland with a high proportion of semi-natural vegetation; ② farmland with low-intensity agriculture or small-scale semi-natural farmland mosaic; and ③ farmland for maintaining the survival of rare species. At the same time, high natural-value farmland is ecologically fragile and usually presents a small-scale mosaic form. 2) According to the evaluation results, from the perspective of the time pattern, the proportion of high natural-value farmland changed little from year to year, with an average of 10.86%, mainly small patches adjacent to forest land and water. Farmland with a low natural-value accounted for the largest proportion (82.43%). It was widely distributed in Yunnan Province and had a high production value. This showed that the “ecological-production” value of farmland in Yunnan Province varied considerably. The production value of concentrated contiguous areas was high, but the natural value was low, while the production value of small plots adjacent to forest land and relatively fragmented waters was low, but the natural value was high. 3) From the perspective of spatial pattern, the natural value of farmland in Yunnan Province is generally low; moreover, the proportion of farmland with high natural value is relatively low. It is distributed in parts of northwestern and northeastern Yunnan. The patches are fragmented and scattered around the contiguous farmland. Otherwise, there are two groups of factors that affect the distribution of high natural-value farmland. One group includes human factors: economic growth, urban development, and environmental pollution. The second group includes natural factors: topography, changes in precipitation, temperature distribution, and vegetation cover. Finally, the study analyzed farmland ecosystem biodiversity and agricultural cultural heritage protections from the perspective of natural resources. We proposed policies for farmland protection at different levels or returning farmland to forests, thus realizing the protection concept of “co-governance and joint construction, and the same management and protection.”

     

/

返回文章
返回