Plant and arbuscular mycorrhizal fungal diversities in field margins of the globally important agricultural heritage rice-fish system
-
摘要: 全球重要农业文化遗产系统(Globally Important Agricultural Heritage Systems, GIAHS)对农业生物多样性的保育作用近年来受到关注。研究已表明, GIAHS-青田稻鱼共生系统保持高的水稻品种多样性和田鱼遗传多样性, 但在保育野生植物资源及其相关生物方面的作用仍不清楚。本文研究了GIAHS-青田稻鱼共生系统农田边界栖息的植物及与之共生的丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)群落, 通过坡底、坡中和坡顶取样, 评估农田边界植物多样性, 并通过高通量测序测定农田边界土壤AMF群落的多样性和组成。结果表明, 在本研究所调查的范围内, 由于总高差不大, 坡底、坡中和坡顶3个样地的植物组成、AMF群落组成及土壤理化性质均无显著性差异。青田稻鱼共生系统的农田边界分布有53科109种维管植物, α多样性指数(Shannon-Wiener指数)为0.74~0.84,
β多样性指数(Whittaker指数)为0.67~0.77。农田边界植物AMF侵染率为6.67%~44.44%, 根际土壤AMF分属9科14属62种, 优势科为球囊霉科(Glomeraceae), 优势属为球囊霉属(Glomus); 农田边界的土壤碳、氮、磷、钾含量较高。相关分析表明, AMF群落多样性与植物多样性呈正相关, 与土壤碳、氮、磷、钾含量也呈正相关, 其中与土壤速效磷的相关性最显著。这些研究结果表明, GIAHS-青田稻鱼共生系统农田边界保育有较高植物多样性及与之相共生的AMF群落, 研究结果有助于加深人们对GIAHS在生物多样性保育方面的理解。 Abstract: The role of Globally Important Agricultural Heritage Systems (GIAHS) in agro-biodiversity conservation is recently concerned. Studies have shown that the GIAHS-Qingtian rice-fish system has maintained a high diversity of rice varieties and local common carp population. The wild plant species diversity and the associated biota maintained in the GIAHS-Qingtian rice-fish system, however, are less well known. In this study, we examined plants and the associated arbuscular mycorrhizal fungi (AMF) in the field margins of the GIAHS-Qingtian rice-fish system. At the pilot site of the rice-fish system in Qingtian County, southern Zhejiang Province (120°26′–121°41′E, 27°25′–28°57′N), we investigated wild plant species diversity and collected soil samples from the rhizosphere at the field margin along a hillside with terrace fields. The α and β diversity indices of wild plants were calculated. The AMF communities in the soil samples were determined using high-throughput sequencing, and their diversity and composition were analyzed. No significant difference was found in the sample plots at different position along the slope. In the GIAHS-Qingtian rice-fish system, 109 vascular plant species belonging to 53 families in the field margin were found. Plant species α diversity (Shannon-Wiener index) was 0.74–0.84, and the β diversity (Whittaker index) was 0.67–0.77. The average AMF colonization rate of the plant species in the field margin was 6.67%–44.44%. Nine families, 14 genera, and 62 AMF species were found in soil along the field margin. The dominant AMF family was Glomeraceae, with a relative abundance of 87.29%–89.64%, and the dominant genus was Glomus (87.29%–89.64%). Carbon, nitrogen, phosphorus, and potassium contents were relatively high in the rhizospheric soil at the field margin. Correlation analysis showed that the AMF species diversity index (Shannon index) was positively correlated with the plant species diversity index (species richness). At the genus level, the AMF species diversity index (Shannon index) of Glomus was positively correlated with total soil nitrogen, available nitrogen, organic carbon, and organic matter. At the operational taxonomic unit (OTU) level, available phosphorus content had the most significant effect on the soil AMF community among the soil properties tested based on redundancy analysis. Our results showed that high plant species diversity and associated AMF were conserved in the GIAHS-Qingtian rice-fish system. These results enhance our understanding of the important role of GIAHSs in maintaining the biodiversity of agricultural ecosystems. -
图 5 丛枝菌根真菌群落物种组成在属水平(a)、OTU水平(b)上与土壤环境因子的Spearman相关系数热图
图中, X轴为环境因子。MC: 土壤含水量; TN: 土壤总氮含量; AN: 土壤碱解氮含量; OC: 土壤有机碳含量; OM: 土壤有机质含量; AP: 土壤有效磷含量; AK: 土壤速效钾含量。图的左侧和上侧为真菌物种及土壤环境因子的聚类树。图a和图b的右侧色块集内, 不同R值用不同的颜色表示, R值自深红(相关系数为1.0)至深蓝(相关系数为−1.0)变化, 以不同颜色展示不同R值。图中矩形色块中, *表示P≤0.05, **表示P≤0.01, ***表示P≤0.001。
Figure 5. Spearman correlation coefficient heat maps between species composition of arbuscular mycorrhizal fungi (AMF) community classified at genus level (a) and OTU level (b) and soil environmental factors
X axis represents various environmental factors. MC: moisture content; TN: total nitrogen; AN: alkali-hydrolyzed nitrogen; OC: organic carbon; OM: organic matter; AP: available phosphorus; AK: available potassium. R value is shown with different color rectangles in the figure. Clusters of AMF species and soil factors are on the left and top of Figures a and b. The right colored rectangles in the right part represents the relationship index of AMF species (a) and OTU (b) with soil factors varing from the dark red (R=1.0) to the dark blue (R=−1.0). If P≤0.05, the colored rectangle is marked with *, if P≤0.01, the rectangle is marked with **, and if P≤0.001, the rectangle is marked with ***.
表 1 不同坡位农田边界植物群落α多样性指数
Table 1. Species α diversity indexes of vegetation community in the field margins in different positions of hillside
位置
Location丰富度指数
Richness indexShannon-Wiener指数
Shannon-Wiener indexSimpson指数
Simpson indexPielou指数
Pielou index坡底 Base of hillside 20.33±3.03ns 0.84±0.07ns 0.77±0.05ns 0.67±0.06ns 坡中 Middle of hillside 18.17±1.22ns 0.78±0.05ns 0.73±0.02ns 0.62±0.03ns 坡顶 Top of hillside 15.00±2.08ns 0.74±0.14ns 0.72±0.07ns 0.63±0.08ns 数值为平均值±标准误差, n=3; ns表示不同坡位间差异未达显著水平。Value is mean±standard error, n=3; ns means no significant differences among the locations. 表 2 不同坡位农田边界植物群落β多样性指数
Table 2. Species β diversity of vegetation community in the field margins in different positions of hillside
位置 Location Jaccard指数 Jaccard index Whittaker指数 Whittaker index Sorenson指数 Sorenson index 坡底-坡中 Base-middle of hillside 0.13±0.03ns 0.77±0.05ns 0.23±0.05ns 坡中-坡顶 Middle-top of hillside 0.20±0.06ns 0.67±0.09ns 0.33±0.09ns 数值为平均值±标准误差, n=3; ns表示不同坡位间差异未达显著水平。Value is mean±standard error, n=3; ns means no significant difference among the locations. 表 3 农田边界植物的丛枝菌根真菌(AMF)侵染率
Table 3. Arbuscular mycorrhizal fungi (AMF) colonization rates of plants in the field margin
宿主植物
Host plant根部总侵染率
Root colonization rate (%)络石 Trachelospermum jasminoides 44.44±0.04d 斑鸠菊 Vernonia esculenta 44.44±0.09d 地耳草 Hypericum japonicum 42.22±0.03d 堇菜 Viola verecunda 36.67±0.12cd 白茅 Imperata cylindrica 34.44±0.06cd 鸭跖草 Commelina communis 33.33±0.08bcd 野菊 Chrysanthemum indicum 31.11±0.07bcd 弓果黍 Cyrtococcum patens 28.89±0.11abcd 糯米团 Gonostegia hirta 26.67±0.08abcd 马唐 Digitaria sanguinalis 23.33±0.08abcd 狗尾草 Setaria viridis 22.22±0.02abcd 狗牙根 Cynodon dactylon 21.11±0.06abcd 败酱 Patrinia scabiosaefolia 17.78±0.07abc 酢浆草 Oxalis corniculata 10.00±0.04ab 积雪草 Centella asiatica 6.67±0.02a 数值为平均值±标准误差, n=3; 不同小写字母表示不同宿主植物间差异达显著水平(P<0.05)。Value is mean±standard error, n=3. Different lowercase letters mean significant differences among host plants. 表 4 农田边界根际土壤碳氮磷钾特征
Table 4. Soil properties of field margin
位置
Location含水率Moisture
content (%)有机碳Organic carbon
(g∙kg−1)有机质Organic matter
(g∙kg−1)碱解氮Alkali-hydrolyzable nitrogen
(mg∙kg−1)有效磷Available phosphorus
(mg∙kg−1)速效钾Available potassium
(mg∙kg−1)全氮Total nitrogen
(g∙kg−1)坡底
Base of hillside45.12±3.04ab 33.75±4.31ns 58.18±7.42ns 276.36±25.8ns 26.34±5.93ns 176.05±12.13ns 4.36±0.42ns 坡中
Middle of hillside35.44±3.36a 25.36±1.63ns 43.72±2.81ns 205.16±14.35ns 58.29±28.37ns 181.58±8.02ns 2.55±0.19ns 坡顶
Top of hillside55.50±5.46b 33.13±1.76ns 57.12±3.03ns 260.47±11.23ns 41.59±2.13ns 161.54±5.65ns 3.14±0.09ns 数值为平均值±标准误差, n=3; ns表示不同坡位间差异未达显著水平。Value is mean±standard error, n=3; ns means no significant difference among the locations. 表 5 土壤丛枝菌根真菌(AMF)群落丰富度与多样性指数(基于OTU)
Table 5. Species richness and diversity indexes of arbuscular mycorrhizal fungi (AMF) community in field margin (based on OTU)
位置
Location丰富度指数 Richness index 多样性指数 Diversity index 覆盖度
CoverageAce Chao Shannon Simpson 坡底 Base of hillside 73.01±7.34ns 72.35±7.96ns 2.99±0.17ns 0.09±0.02ns 0.99±0.01ns 坡中 Middle of hillside 68.06±6.54ns 68.10±6.68ns 2.85±0.13ns 0.11±0.02ns 0.99±0.01ns 坡顶 Top of hillside 59.87±3.92ns 58.39±3.86ns 2.49±0.40ns 0.17±0.08ns 0.99±0.01ns 数值为平均值±标准误差, n=3; ns表示不同坡位间差异未达显著水平。Value is mean±standard error, n=3; ns means no significant difference among the locations. 表 6 植物物种丰富度和丛枝菌根真菌(AMF)群落Shannon指数相关性
Table 6. Correlation between plant species richness and Shannon index of arbuscular mycorrhizal fungi (AMF) community
相关系数 Correlation coefficient Pearson Spearman Kendall 物种丰富度 Species richness-Shannon index 0.703** 0.667** 0.518** **代表P<0.01 (双尾)水平相关性显著。** means signficant corrlation at P<0.01 level. -
[1] KOOHANFKAN P, FURTADO J. Traditional rice-fish systems as Globally Indigenous Agricultural Heritage Systems (GIAS) [C]//Rome: Traditional rice-fish systems as Globally Indigenous Agricultural Heritage Systems, 2004 [2022]. https://www.fao.org/rice2004/en/pdf/koohafkan.pdf [2] 方丽, 章家恩, 蒋艳萍. 全球重要农业文化遗产-青田县稻鱼共生系统保护与可持续发展之思考[J]. 中国农学通报, 2007, 23(2): 389−392 doi: 10.3969/j.issn.1000-6850.2007.02.092FANG L, ZHANG J E, JIANG Y P. The conservation and sustainable development of the rice-fish farming system in Qingtian County, Zhejiang Province as one of Globally-Important Ingenious Agricultural Heritage Systems[J]. Chinese Agricultural Science Bulletin, 2007, 23(2): 389−392 doi: 10.3969/j.issn.1000-6850.2007.02.092 [3] XIE J, HU L, TANG J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. PNAS, 2011, 108(50): E1381−E1387 doi: 10.1073/pnas.1111043108 [4] REN W Z, HU L L, GUO L, et al. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice-fish system[J]. PNAS, 2018, 115(3): E546−E554 doi: 10.1073/pnas.1709582115 [5] 陈欣, 唐建军. 农业系统中生物多样性利用的研究现状与未来思考[J]. 中国生态农业学报, 2013, 21(1): 54−60CHEN X, TANG J J. Utilization of biodiversity in agriculture: Today and tomorrow[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 54−60 [6] CRITCHLEY C N R, FOWBERT J A, SHERWOOD A J. The effects of annual cultivation on plant community composition of uncropped arable field boundary strips[J]. Agriculture, Ecosystems & Environment, 2006, 113(1/2/3/4): 196−205 [7] NÉMETH T M, KELEMEN P, CSISZÁR Á, et al. Habitat selection of the common quail (Coturnix coturnix) in an intensively managed agricultural environment[J]. Ornis Hungarica, 2019, 27(1): 99−109 doi: 10.2478/orhu-2019-0006 [8] MEDLOCK J M, VAUX A G C, HANSFORD K M, et al. Ticks in the ecotone: the impact of agri-environment field margins on the presence and intensity of Ixodes ricinus ticks (Acari: Ixodidae) in farmland in southern England[J]. Medical and Veterinary Entomology, 2020, 34(2): 175−183 doi: 10.1111/mve.12428 [9] MKENDA P A, NDAKIDEMI P A, MBEGA E, et al. Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: scientific evidence and knowledge gaps[J]. PeerJ , 2019, 7: e8091 doi: 10.7717/peerj.8091 [10] PARDON P, REHEUL D, MERTENS J, et al. Gradients in abundance and diversity of ground dwelling arthropods as a function of distance to tree rows in temperate arable agroforestry systems[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 114−128 [11] ZAMORANO J, BARTOMEUS I, GREZ A A, et al. Field margin floral enhancements increase pollinator diversity at the field edge but show no consistent spillover into the crop field: a meta-analysis[J]. Insect Conservation and Diversity, 2020, 13(6): 519−531 doi: 10.1111/icad.12454 [12] VISSCHER A M, VANEK S, MEZA K, et al. Eucalyptus and alder field margins differ in their impact on ecosystem services and biodiversity within cropping fields of the Peruvian Andes[J]. Agriculture, Ecosystems & Environment, 2020, 303: 107107 [13] DE CAUWER B, REHEUL D, NIJS I, et al. Management of newly established field margins on nutrient-rich soil to reduce weed spread and seed rain into adjacent crops[J]. Weed Research, 2008, 48(2): 102−112 doi: 10.1111/j.1365-3180.2007.00607.x [14] BRUNDRETT M C, TEDERSOO L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. New Phytologist, 2018, 220(4): 1108−1115 doi: 10.1111/nph.14976 [15] SELOSSE M A, ROUSSET F. The plant-fungal marketplace[J]. Science, 2011, 333(6044): 828−829 doi: 10.1126/science.1210722 [16] VAN DER HEIJDEN M G A, KLIRONOMOS J N, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998, 396(6706): 69−72 doi: 10.1038/23932 [17] FORNARA D A, FLYNN D, CARUSO T. Improving phosphorus sustainability in intensively managed grasslands: the potential role of arbuscular mycorrhizal fungi[J]. Science of the Total Environment, 2020, 706: 135744 doi: 10.1016/j.scitotenv.2019.135744 [18] LIU R J, WANG F Y. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi[J]. Mycorrhiza, 2003, 13(3): 123−127 doi: 10.1007/s00572-002-0207-4 [19] ŘEZÁČOVÁ V, ŘEZÁČ M, GRYNDLER M, et al. Plant invasion alters community structure and decreases diversity of arbuscular mycorrhizal fungal communities[J]. Applied Soil Ecology, 2021, 167: 104039 doi: 10.1016/j.apsoil.2021.104039 [20] BÖRSTLER B, RENKER C, KAHMEN A, et al. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity[J]. Biology and Fertility of Soils, 2006, 42(4): 286−298 doi: 10.1007/s00374-005-0026-9 [21] HAUSMANN N T, HAWKES C V. Plant neighborhood control of arbuscular mycorrhizal community composition[J]. New Phytologist, 2009, 183(4): 1188−1200 doi: 10.1111/j.1469-8137.2009.02882.x [22] HAUSMANN N T, HAWKES C V. Order of plant host establishment alters the composition of arbuscular mycorrhizal communities[J]. Ecology, 2010, 91(8): 2333−2343 doi: 10.1890/09-0924.1 [23] ALGUACIL M D, DÍAZ-PEREIRA E, CARAVACA F, et al. Increased diversity of arbuscular mycorrhizal fungi in a long-term field experiment via application of organic amendments to a semiarid degraded soil[J]. Applied and Environmental Microbiology, 2009, 75(13): 4254−4263 doi: 10.1128/AEM.00316-09 [24] 刘润进, 焦惠, 李岩, 等. 丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2009, 20(9): 2301−2307LIU R J, JIAO H, LI Y, et al. Research advances in species diversity of arbuscular mycorrhizal fungi[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2301−2307 [25] LANDIS F C, GARGAS A, GIVNISH T J. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas[J]. New Phytologist, 2004, 164(3): 493−504 doi: 10.1111/j.1469-8137.2004.01202.x [26] FITZSIMONS M S, MILLER R M, JASTROW J D. Scale-dependent niche axes of arbuscular mycorrhizal fungi[J]. Oecologia, 2008, 158(1): 117−127 doi: 10.1007/s00442-008-1117-8 [27] LIU R C, XIAO Z Y, HASHEM A, et al. Mycorrhizal fungal diversity and its relationship with soil properties in Camellia oleifera[J]. Agriculture, 2021, 11(6): 470 doi: 10.3390/agriculture11060470 [28] ALGUACIL M D M, LOZANO Z, CAMPOY M J, et al. Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system[J]. Soil Biology and Biochemistry, 2010, 42(7): 1114−1122 doi: 10.1016/j.soilbio.2010.03.012 [29] SANTOS J C, FINLAY R D, TEHLER A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient[J]. New Phytologist, 2006, 172(1): 159−168 doi: 10.1111/j.1469-8137.2006.01799.x [30] ZENG H L, YU L L, LIU P, et al. Nitrogen fertilization has a stronger influence than cropping pattern on AMF community in maize/soybean strip intercropping systems[J]. Applied Soil Ecology, 2021, 167: 104034 doi: 10.1016/j.apsoil.2021.104034 [31] GIOVANNETTI M, MOSSE B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots[J]. New Phytologist, 1980, 84(3): 489−500 doi: 10.1111/j.1469-8137.1980.tb04556.x [32] VAN GEEL M, BUSSCHAERT P, HONNAY O, et al. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing[J]. Journal of Microbiological Methods, 2014, 106: 93−100 doi: 10.1016/j.mimet.2014.08.006 [33] MAGURRAN A E. Why diversity? [M]//Ecological Diversity and Its Measurement. Dordrecht: Springer Netherlands, 1988: 1–5 [34] 余柳青, 王金良, 根本之正, 等. 稻田畦畔植物与昆虫的生物多样性[J]. 杂草科学, 1999(1): 7−10YU L Q, WANG J L, NEMOGO M. et al. Biologcal diversity of plants and insects in ridges of paddy field[J]. Weed Sciences, 1999(1): 7−10 [35] CALLAHAN B J, SANKARAN K, FUKUYAMA J A, et al. Bioconductor workflow for microbiome data analysis: from raw reads to community analysises[J]. F1000Research, 2016, 5: 1492 [36] BLAIX C, MOONEN A C. Structural field margin characteristics affect the functional traits of herbaceous vegetation[J]. PLoS One, 2020, 15(9): e0238916 doi: 10.1371/journal.pone.0238916 [37] 马守臣, 原东方, 杨慎骄, 等. 豫北低山丘陵区农田边界系统植物多样性的研究[J]. 中国生态农业学报, 2010, 18(4): 815−819 doi: 10.3724/SP.J.1011.2010.00815MA S C, YUAN D F, YANG S J, et al. Plant diversity in field margin systems in the hilly regions of northern Henan[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 815−819 doi: 10.3724/SP.J.1011.2010.00815 [38] 谢坚, 屠乃美, 唐建军, 等. 农田边界与生物多样性研究进展[J]. 中国生态农业学报, 2008, 16(2): 506−510 doi: 10.3724/SP.J.1011.2008.00506XIE J, TU N M, TANG J J, et al. Advances in farmland field margin systems and biodiversity research[J]. Chinese Journal of Eco-Agriculture, 2008, 16(2): 506−510 doi: 10.3724/SP.J.1011.2008.00506 [39] 魏源, 王世杰, 刘秀明, 等. 喀斯特地区丛枝菌根真菌遗传多样性[J]. 生态学杂志, 2011, 30(10): 2220−2226WEI Y, WANG S J, LIU X M, et al. Genetic diversity of arbuscular mycorrhizal fungi in Karst area[J]. Chinese Journal of Ecology, 2011, 30(10): 2220−2226 [40] 梁月明, 苏以荣, 何寻阳, 等. 岩溶区典型灌丛植物根系丛枝菌根真菌群落结构解析[J]. 环境科学, 2018, 39(12): 5657−5664LIANG Y M, SU Y R, HE X Y, et al. Structure analysis of arbuscular mycorrhizal fungi in roots from different shrubs in Karst regions[J]. Environmental Science, 2018, 39(12): 5657−5664 [41] 刘海跃, 李欣玫, 张琳琳, 等. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252−260 doi: 10.17521/cjpe.2017.0138LIU H Y, LI X M, ZHANG L L, et al. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China[J]. Chinese Journal of Plant Ecology, 2018, 42(2): 252−260 doi: 10.17521/cjpe.2017.0138 [42] 吴松, 隋心, 张童, 等. 湿地丛枝菌根真菌研究进展[J]. 国土与自然资源研究, 2019(6): 80−84 doi: 10.3969/j.issn.1003-7853.2019.06.021WU S, SUI X, ZHANG T, et al. Research on the progress of AMF in wetland[J]. Territory & Natural Resources Study, 2019(6): 80−84 doi: 10.3969/j.issn.1003-7853.2019.06.021 [43] 杨文莹, 孙露莹, 宋凤斌, 等. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2019, 30(11): 3971−3979YANG W Y, SUN L Y, SONG F B, et al. Research advances in species diversity of arbuscular mycorrhizal fungi in terrestrial agro-ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3971−3979 [44] BEVER J D. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit[J]. Proceedings of the Royal Society B-Biological Sciences, 2002, 269(1509): 2595−2601 doi: 10.1098/rspb.2002.2162 [45] BIDARTONDO M I, REDECKER D, HIJRI I, et al. Epiparasitic plants specialized on arbuscular mycorrhizal fungi[J]. Nature, 2002, 419(6905): 389−392 doi: 10.1038/nature01054 [46] MARTÍNEZ-GARCÍA L B, PUGNAIRE F I. Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment[J]. Applied Soil Ecology, 2011, 48(3): 313−317 doi: 10.1016/j.apsoil.2011.04.003 [47] 杨海水, 王琪, 郭伊, 等. 丛枝菌根真菌群落与植物系统发育的相关性分析[J]. 植物生态学报, 2015, 39(4): 383−387 doi: 10.17521/cjpe.2015.0037YANG H S, WANG Q, GUO Y, et al. Correlation analysis between arbuscular mycorrhizal fungal community and host plant phylogeny[J]. Chinese Journal of Plant Ecology, 2015, 39(4): 383−387 doi: 10.17521/cjpe.2015.0037 [48] MENSAH J A, KOCH A M, ANTUNES P M, et al. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism[J]. Mycorrhiza, 2015, 25(7): 533−546 doi: 10.1007/s00572-015-0631-x [49] HOEKSEMA J D, CHAUDHARY V B, GEHRING C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi[J]. Ecology Letters, 2010, 13(3): 394−407 doi: 10.1111/j.1461-0248.2009.01430.x [50] LI Q, XIANG X J, DU Y G, et al. Arbuscular mycorrhizal fungal community structure following different grazing intensities in an alpine grassland[J]. Soil Science Society of America Journal, 2021, 85(5): 1620−1633 doi: 10.1002/saj2.20218 [51] 李龙, 李丽, 伍建榕, 等. 高黎贡山丛枝菌根真菌多样性研究[J]. 贵州农业科学, 2017, 45(12): 45−50 doi: 10.3969/j.issn.1001-3601.2017.12.011LI L, LI L, WU J R, et al. Diversity of abuscular mycorrhizal fungi (AMF) in Gaoligong Mountain[J]. Guizhou Agricultural Sciences, 2017, 45(12): 45−50 doi: 10.3969/j.issn.1001-3601.2017.12.011 [52] 伏云珍, 马琨, 崔慧珍, 等. 间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J]. 生态学杂志, 2021, 40(1): 131−139FU Y Z, MA K, CUI H Z, et al. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system[J]. Chinese Journal of Ecology, 2021, 40(1): 131−139 [53] LA PROVIDENCIA I E, DE SOUZA F A, FERNÁNDEZ F, et al. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups[J]. New Phytologist, 2005, 165(1): 261−271 doi: 10.1111/j.1469-8137.2004.01236.x [54] HASSAN S E D, BOON E, ST-ARNAUD M, et al. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils[J]. Molecular Ecology, 2011, 20(16): 3469−3483 doi: 10.1111/j.1365-294X.2011.05142.x [55] 李聪聪, 周亚星, 谷强, 等. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46−58 doi: 10.11686/cyxb2020268LI C C, ZHOU Y X, GU Q, et al. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan region[J]. Acta Prataculturae Sinica, 2021, 30(1): 46−58 doi: 10.11686/cyxb2020268 [56] 王化秋, 程巍, 郝俊, 等. 贵州煤矸石山香根草根系及根际土丛枝菌根真菌(AMF)群落的季节动态研究[J]. 菌物学报, 2021, 40(3): 514−530WANG H Q, CHENG W, HAO J, et al. Seasonal dynamic changes of community of arbuscular mycorrhizal fungi (AMF) in root system and rhizosphere soil of Vetiveria zizanioides in coal gangue in Guizhou of Southwest China[J]. Mycosystema, 2021, 40(3): 514−530 [57] 尚昆, 石磊, 李海波, 等. 梵净山不同海拔丛枝菌根真菌多样性[J]. 东北林业大学学报, 2020, 48(2): 76−80 doi: 10.3969/j.issn.1000-5382.2020.02.014SHANG K, SHI L, LI H B, et al. Diversity of arbuscular mycorrhizal fungi in different heights of Fanjingshan Mountain[J]. Journal of Northeast Forestry University, 2020, 48(2): 76−80 doi: 10.3969/j.issn.1000-5382.2020.02.014 [58] KREMEN C, ILES A, BACON C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture[J]. Ecology and Society, 2012, 17(4): art44 [59] BROOKER R W, GEORGE T S, HOMULLE Z, et al. Facilitation and biodiversity-ecosystem function relationships in crop production systems and their role in sustainable farming[J]. Journal of Ecology, 2021, 109(5): 2054−2067 doi: 10.1111/1365-2745.13592 -