留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

麦秆还田下水氮耦合对水稻根际环境及根系形态的影响

张宇杰 马鹏 王志强 杨志远 孙永健 马均

张宇杰, 马鹏, 王志强, 杨志远, 孙永健, 马均. 麦秆还田下水氮耦合对水稻根际环境及根系形态的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 924−936 doi: 10.12357/cjea.20210552
引用本文: 张宇杰, 马鹏, 王志强, 杨志远, 孙永健, 马均. 麦秆还田下水氮耦合对水稻根际环境及根系形态的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 924−936 doi: 10.12357/cjea.20210552
ZHANG Y J, MA P, WANG Z Q, YANG Z Y, SUN Y J, MA J. Water-nitrogen coupling influence on rhizosphere environment and root morphology of rice under wheat straw return[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 924−936 doi: 10.12357/cjea.20210552
Citation: ZHANG Y J, MA P, WANG Z Q, YANG Z Y, SUN Y J, MA J. Water-nitrogen coupling influence on rhizosphere environment and root morphology of rice under wheat straw return[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 924−936 doi: 10.12357/cjea.20210552

麦秆还田下水氮耦合对水稻根际环境及根系形态的影响

doi: 10.12357/cjea.20210552
基金项目: 国家重点研发计划(2017YFD0301701, 2017YFD0301706, 2018YFD0301202)、高原与盆地暴雨旱涝灾害四川省重点实验室科技发展基金项目(2018-重点-05-01)和四川省科技支撑计划项目(2016NYZ0051)资助
详细信息
    作者简介:

    张宇杰, 研究方向为作物高产优质高效栽培理论与技术。E-mail: 380991504@qq.com

    通讯作者:

    马均, 主要研究方向为作物高产优质高效栽培理论与技术。E-mail: majunp2002@163.com

  • 中图分类号: S511

Water-nitrogen coupling influence on rhizosphere environment and root morphology of rice under wheat straw return

Funds: The study was supported by the National Key Research and Development Program of China (2017YFD0301701, 2017YFD0301706, 2018YFD0301202), the Science and Technology Development Fund Project of Sichuan Key Laboratory of Rainstorm, Drought and Flood Disasters in Plateau and Basin (2018-KEY-05-01) and the Science and Technology Support Program of Sichuan (2016NYZ0051).
More Information
  • 摘要: 通过大田试验, 研究不同水分管理、秸秆还田和氮素处理与水稻根系形态建成的关系, 为成都平原秸秆还田下适宜水稻生长的水氮耦合模式的建立提供理论和实践依据。以杂交稻‘F优498’为材料, 设置不同水分[干湿交替灌溉(W1)、淹水灌溉(W2)]、氮肥运筹[总氮150 kg(N)∙hm−2, 基肥∶蘖肥∶穗肥分别为3∶3∶4 (N1)、7∶3∶0 (N2)、不施氮(N0)]和秸秆还田[秸秆全量翻埋还田(S1)、秸秆不还田(S0)]处理, 研究在秸秆还田下不同水氮耦合对麦茬杂交籼稻根际环境及根系发育的影响。结果表明, 与W2相比, W1促进了拔节期前的秸秆腐解, 提高了拔节期后的根际土壤有机酸总量(1.38%~8.49%)和成熟期前的根际土壤微生物量碳含量(0.25%~12.93%), 提高了整个生育期根系活力(1.77%~149.91%)和除移栽后10 d与成熟期的群体根系形态指标(群体根长18.53%~75.83%、群体根数10.57%~101.33%、群体根体积2.49%~88.24%、群体根表面积8.91%~68.08%); W2提高了拔节期的有机酸总量(3.34%)和成熟期的微生物碳含量(2.69%~6.23%), 并促进了拔节期后的秸秆腐解和单茎根系发育(单茎根长12.03%~27.21%、单茎根数9.05%~51.44%)。秸秆还田(S1)与秸秆不还田(S0)相对比,S1会抑制根系形态发育并降低根系活力(2.47%~45.83%), 但能显著提高根际土壤有机酸总量(8.02%~22.74%)和微生物量碳、氮含量(1.58%~31.22%), 且在W1处理下提升效果更显著。施用氮肥能促进秸秆腐解, 并进一步增加根际土壤有机酸总量与微生物量碳、氮含量, 促进根系发育并提高根系活力。优化施氮模式(N1)与传统施氮模式(N2)相对比,N1可以促进单茎根系发育(单茎根长8.27%~38.09%、单茎根数2.96%~36.66%)与生育中后期的根系活力(2.26%~156.35%), N2则提高了群体根系指标(群体根体积12.68%~44.32%、群体根表面积4.91%~55.82%)和生育前期的根系活力(22.01%~29.31%)。干湿交替灌溉耦合优化施氮模式促进了各时期秸秆腐解, 显著加快了根系的生长发育, 并提高了根际土壤有机酸总量、微生物量碳、氮含量和根系活力, 延缓了根系衰老。综合来看, 在秸秆还田条件下, 干湿交替灌溉耦合优化施氮模式为最适水氮耦合模式。
  • 图  1  2019—2020年水稻生长季平均气温和降雨量

    Figure  1.  Mean temperature and precipitation during the growth seasons of rice in 2019 and 2020

    图  2  不同水氮耦合处理下水稻季秸秆腐解率随还田天数的变化

    各处理具体描述见表1。

    Figure  2.  Changes of straw decomposition rate with returning days in rice season under different treatments of water management and nitrogen application

    The detail information of each treatment is shown in Table 1.

    图  3  2020年秸秆还田下不同水氮耦合处理的水稻各生育期根际土壤有机酸总量

    各处理具体描述见表1。不同小写字母表示同一生育期不同处理间差异显著(P<0.05)。

    Figure  3.  Changes of total organic acids contetns in rice rhizosphere soil at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2020

    The detail information of each treatment is shown in Table 1. T-10 d: 10 days after transplanting; AS: active tillering stage; JS: jointing stage; JS-10 d: 10 days after jointing; HS: heading stage; MS: maturity stage. Different lowercase letters mean significant differences among treatments at the same growth stage.

    图  4  2019年和2020年秸秆还田下不同水氮耦合处理的水稻各生育期群体根系伤流强度

    各处理具体描述见表1。不同小写字母表示同一生育期不同处理间差异显著(P<0.05)。

    Figure  4.  Changes of root bleeding intensities of rice population at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    The detail information of each treatment is shown in Table 1. T-10 d: 10 days after transplanting; AS: active tillering stage; JS: jointing stage; JS-10 d: 10 days after jointing; HS: heading stage; MS: maturity stage. Different lowercase letters mean significant differences among treatments at the same growth stage.

    表  1  不同处理的水氮耦合模式及其秸秆还田方式

    Table  1.   Coupling modes of water-nitrogen and straw returning modes of different treatments

    处理
    Treatment
    水分管理模式
    Water management
    氮肥施用模式
    Nitrogen fertilizer (N)
    秸秆还田方式
    Straw returning (S)
    W1N1S1干湿交替灌溉
    Alternative dry-wet irrigation (W1)
    优化施氮模式
    Optimal nitrogen application (N1)
    全量翻埋还田
    Full-burying and returning (S1)
    W1N0S1干湿交替灌溉
    Alternative dry-wet irrigation (W1)
    不施氮
    No nitrogen fertilizer (N0)
    全量翻埋还田
    Full-burying and returning (S1)
    W1N0S0干湿交替灌溉
    Alternative dry-wet irrigation (W1)
    不施氮
    No nitrogen fertilizer (N0)
    不还田
    No returning (S0)
    W2N2S1淹水灌溉
    Submerged irrigation (W2)
    传统施氮模式
    Conventional nitrogen application (N2)
    全量翻埋还田
    Full-burying and returning (S1)
    W2N0S1淹水灌溉
    Submerged irrigation (W2)
    不施氮
    No nitrogen fertilizer (N0)
    全量翻埋还田
    Full-burying and returning (S1)
    W2N0S0淹水灌溉
    Submerged irrigation (W2)
    不施氮
    No nitrogen fertilizer (N0)
    不还田
    No returning (S0)
    下载: 导出CSV

    表  2  不同水氮耦合处理下水稻季秸秆腐解率(y)随还田天数(x)变化的米氏方程拟合

    Table  2.   Michaelis-Menten equation fitting of straw decomposition rate (y) with returning days (x) in rice season under different treatments of water management and nitrogen application

    年份
    Year
    处理
    Treatment
    米氏方程
    Michaelis-Menten equation
    R2Km (d)
    2019W1N1S1y=76.899x/(36.214+x)0.98936.214
    W1N0S1y=77.063x/(44.812+x)0.97844.812
    W2N2S1y=79.589x/(41.701+x)0.99641.701
    W2N0S1y=81.574x/(48.302+x)0.97948.302
    2020W1N1S1y=63.063x/(23.005+x)0.98923.005
    W1N0S1y=62.018x/(26.769+x)0.99226.769
    W2N2S1y=63.888x/(25.399+x)0.97925.399
    W2N0S1y=67.834x/(33.355+x)0.99233.355
      各处理具体描述见表1。Km: 达到最大秸秆腐解率一半时所需天数。The detail information of each treatment is shown in Table 1. Km: days when half of the maximum straw decomposition rate is reached.
    下载: 导出CSV

    表  3  2019年和2020年秸秆还田下不同水氮耦合处理的水稻各生育期根际土壤微生物量碳、氮含量

    Table  3.   Changes of soil microbial biomass carbon and nitrogen contents in rice rhizosphere at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    年份
    Year
    项目
    Index
    处理
    Treatment
    生长时期 Growth stage
    移栽后10 d10 days after
    transplanting
    分蘖盛期
    Active tillering
    拔节期
    Jointing
    拔节后10 d10 days after
    jointing
    抽穗期
    Heading
    成熟期
    Maturity
    mg∙kg−1 
    2019微生物量碳Microbial biomass
    carbon content
    W1N1S1507.75±16.70a458.17±26.19a590.21±79.78a664.49±51.96a671.14±55.37a569.03±22.84a
    W1N0S1502.48±6.80a443.38±6.20a492.78±43.23ab625.79±81.12ab639.20±44.16a562.55±10.86a
    W1N0S0423.37±5.11b429.75±25.87a468.47±36.36ab582.57±37.43ab614.88±55.92a553.78±16.54a
    W2N2S1463.01±16.84ab466.77±15.72a552.83±30.07a611.15±8.33ab642.50±20.32a561.14±67.74a
    W2N0S1428.20±12.33b439.49±57.04a422.58±37.53b605.44±12.18ab590.46±43.95a586.76±67.10a
    W2N0S0422.30±46.97b408.44±49.45a418.73±27.44b515.88±72.32b544.53±62.99a568.65±38.08a
    微生物量氮Microbial biomass
    nitrogen content
    W1N1S119.70±2.30a19.61±0.31ab19.52±2.26ab27.00±2.97a24.67±0.29a18.11±0.73a
    W1N0S115.74±1.69a18.53±1.06ab16.20±2.94b17.86±1.67b18.82±1.35b17.15±0.03a
    W1N0S015.13±2.47a15.16±2.40b16.35±1.19b15.67±2.96b15.71±3.52b16.32±0.88a
    W2N2S122.34±4.33a22.76±2.09a19.99±1.34ab19.82±3.29ab17.97±1.57b16.71±1.20a
    W2N0S118.66±2.70a20.83±3.15ab19.08±1.77a16.98±3.88b15.78±0.28b16.92±1.08a
    W2N0S016.18±2.83a16.63±4.34ab14.54±1.28b12.80±2.03b15.96±2.33b13.78±0.07b
    2020微生物量碳Microbial biomass
    carbon content
    W1N1S11022.64±25.37a1068.60±13.84a1055.08±14.68a919.01±35.99a1017.27±43.20a939.25±38.24a
    W1N0S1879.67±28.21bc987.08±40.90ab914.29±38.26b838.02±18.93abc865.70±7.90b730.86±8.04c
    W1N0S0833.21±18.90c877.55±29.96c871.88±38.52bc814.13±20.87bc795.96±33.23bc711.89±22.95c
    W2N2S1937.14±25.33b1013.50±19.45a932.65±23.91b879.28±42.33ab856.33±25.53b848.63±26.41b
    W2N0S1820.45±35.56c900.96±52.63bc909.63±31.94bc836.46±48.24abc790.79±30.56bc830.50±25.80b
    W2N0S0742.78±24.24d903.35±25.26bc832.10±20.51c772.39±21.87c742.20±20.12c756.27±29.23c
    微生物量氮Microbial biomass
    nitrogen content
    W1N1S119.93±1.37a22.37±1.18a19.23±0.37a20.78±0.59bc21.65±0.84a18.48±0.57a
    W1N0S119.36±1.04a16.61±1.21b17.78±0.62ab22.56±0.78ab17.72±0.34b15.76±0.96b
    W1N0S019.73±0.38a14.28±0.46c16.52±0.36b22.97±1.14a18.14±0.43b11.76±0.43c
    W2N2S119.05±0.48a18.21±0.54b18.77±0.08a24.17±0.78a21.30±0.36a19.22±0.86a
    W2N0S115.61±0.51b18.31±0.55b14.27±0.83c19.68±0.33c18.01±0.73b17.67±0.57a
    W2N0S014.50±0.45b17.44±0.49b14.72±0.92c17.42±0.32d15.71±0.80c13.53±0.53c
      各处理具体描述见表1。数值后不同小写字母代表同一年份同一项目不同处理间差异达P<0.05显著水平。The detail information of each treatment is shown in Table 1. Different lowercase letters after values in the same column for the same index in the same year mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  4  2019年和2020年秸秆还田下不同水氮耦合处理的水稻各生育期单茎根长

    Table  4.   Changes of rice roots length per stem at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    年份
    Year
    处理
    Treatment
    生长时期 Growth stage
    移栽后10 d 10 days after
    transplanting
    分蘖盛期
    Active tillering
    拔节期
    Jointing
    拔节后10 d 10 days after
    jointing
    抽穗期
    Heading
    成熟期
    Maturity
    m 
    2019W1N1S10.62±0.04b1.10±0.09c2.85±0.17b3.58±0.25ab7.51±0.35ab6.29±0.21b
    W1N0S10.68±0.03ab1.56±0.03b2.76±0.19bc2.85±0.11c6.78±0.25bc5.76±0.41b
    W1N0S00.61±0.05b1.77±0.06a3.02±0.20b3.05±0.31bc7.10±0.55ab6.57±0.45b
    W2N2S10.45±0.02c1.10±0.04c3.00±0.11b3.60±0.33ab5.81±0.39c5.74±0.20b
    W2N0S10.67±0.03b1.63±0.08ab2.42±0.06c3.01±0.02bc7.06±0.31ab6.54±0.50b
    W2N0S00.80±0.08a1.79±0.09a3.64±0.04a3.88±0.19a8.02±0.40a7.82±0.40a
    2020W1N1S10.58±0.04cd1.32±0.07c4.06±0.17ab6.13±0.26a7.20±0.20b6.26±0.37ab
    W1N0S10.68±0.03bc1.52±0.05bc3.61±0.13c4.20±0.13cd7.18±0.11b6.24±0.35ab
    W1N0S00.57±0.04d1.88±0.06a4.18±0.10a5.63±0.33ab7.49±0.41b6.32±0.09ab
    W2N2S10.42±0.01e0.96±0.07d2.35±0.09d5.28±0.07b6.65±0.34b5.66±0.51b
    W2N0S10.72±0.05b1.54±0.13b2.33±0.12d3.78±0.28d7.11±0.21b6.36±0.40ab
    W2N0S00.86±0.05a1.61±0.07b3.77±0.17bc4.40±0.19c8.63±0.71a7.08±0.42a
      各处理具体描述见表1。数值后不同小写字母代表同一年份同一项目不同处理间差异达P<0.05显著水平。The detail information of each treatment is shown in Table 1. Different lowercase letters after values in the same column for the same index in the same year mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  5  2019年和2020年秸秆还田下不同水氮耦合处理的水稻各生育期单茎根数

    Table  5.   Changes of rice roots number per stem at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    年份
    Year
    处理
    Treatment
    生长时期 Growth stage
    移栽后10 d 10 days after
    transplanting
    分蘖盛期
    Active tillering
    拔节期
    Jointing
    拔节后10 d 10 days after
    jointing
    抽穗期
    Heading
    成熟期
    Maturity
    2019W1N1S110.12±0.32b15.40±1.02b20.16±1.14ab29.19±1.67a55.08±2.38a40.63±1.61a
    W1N0S110.61±0.32b21.78±1.27a17.01±0.82c24.42±1.07c50.36±1.83a36.17±2.02ab
    W1N0S010.80±0.50b24.23±1.85a23.02±2.00a22.62±1.62c48.95±1.34a37.48±1.60ab
    W2N2S18.59±0.21c14.44±0.87b18.29±1.13bc28.35±2.03ab50.82±1.79a34.53±2.34b
    W2N0S114.03±0.58a23.94±0.94a18.58±0.67bc25.08±1.03bc53.71±2.68a37.19±1.76ab
    W2N0S014.65±0.81a24.77±2.43a21.18±0.37ab30.81±0.65a53.38±3.65a41.19±2.78a
    2020W1N1S19.75±0.42bc19.82±1.08bc25.91±0.59a43.81±2.18a60.87±2.55a42.84±0.28a
    W1N0S111.17±0.45b23.03±1.91ab25.16±1.31a25.05±1.27c48.51±3.16b39.40±2.18abc
    W1N0S011.19±0.53b25.48±1.01a25.17±1.37a27.04±1.09c51.56±3.33b35.35±1.63c
    W2N2S18.58±0.08c17.02±1.03c18.96±1.11c34.82±1.96b51.48±2.09b39.10±1.42abc
    W2N0S113.87±1.58a26.72±1.62a21.97±0.53b28.50±1.52c46.46±4.41b36.38±2.40bc
    W2N0S013.72±0.65a25.61±2.64a24.42±0.91ab40.95±2.93a49.35±2.7b41.19±3.39ab
      各处理具体描述见表1。数值后不同小写字母代表同一年份同一项目不同处理间差异达P<0.05显著水平。The detail information of each treatment is shown in Table 1. Different lowercase letters after values in the same column for the same index in the same year mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  6  2019年和2020年秸秆还田下不同水氮耦合处理的水稻各生育期群体根长

    Table  6.   Changes of roots length of population of rice at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    年份
    Year
    处理
    Treatment
    生长时期 Growth stage
    移栽后10 d 10 days after
    transplanting
    分蘖盛期
    Active tillering
    拔节期
    Jointing
    拔节后10 d 10 days after
    jointing
    抽穗期
    Heading
    成熟期
    Maturity
    ×106 m∙hm−2 
    2019W1N1S10.46±0.02a1.85±0.21a5.94±0.35b6.65±0.61b12.14±0.89a11.04±0.89a
    W1N0S10.36±0.01c1.27±0.04b3.57±0.26c3.31±0.21d7.93±0.42c7.22±0.23cd
    W1N0S00.21±0.01d2.11±0.12a5.34±0.38b4.66±0.24c9.64±0.56b8.07±0.51bc
    W2N2S10.40±0.01b2.09±0.04a6.99±0.37a7.94±0.38a11.85±0.38a9.72±0.65ab
    W2N0S10.19±0.02d1.33±0.06b2.47±0.16d4.15±0.11cd8.76±0.28bc8.11±0.49bc
    W2N0S00.22±0.01d1.20±0.02b3.50±0.22c4.45±0.33c8.11±0.26c6.28±0.64d
    2020W1N1S10.41±0.02a3.01±0.10a7.13±0.30b11.86±0.28b14.17±1.46a10.97±1.05a
    W1N0S10.27±0.02b2.23±0.12b5.57±0.22c6.58±0.71cd10.36±0.47c8.44±0.89b
    W1N0S00.28±0.01b2.45±0.13b6.59±0.42b7.67±0.55c11.92±0.64bc8.93±0.66b
    W2N2S10.27±0.02b2.38±0.12b11.76±0.38a15.46±0.47a12.83±0.48ab11.75±0.67a
    W2N0S10.31±0.02b2.16±0.12bc4.81±0.25c6.06±0.39d10.52±0.32c9.96±0.72ab
    W2N0S00.30±0.03b1.86±0.16c5.56±0.05c6.23±0.19d12.08±0.58bc10.08±0.15ab
      各处理具体描述见表1。数值后不同小写字母代表同一年份同一项目不同处理间差异达P<0.05显著水平。The detail information of each treatment is shown in Table 1. Different lowercase letters after values in the same column for the same index in the same year mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  7  2019年和2020年秸秆还田下不同水氮耦合处理的水稻各生育时期群体根数

    Table  7.   Changes of roots number of population of rice at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    年份
    Year
    处理
    Treatment
    生长时期 Growth stage
    移栽后10 d 10 days after
    transplanting
    分蘖盛期
    Active tillering
    拔节期
    Jointing
    拔节后10 d 10 days after
    jointing
    抽穗期
    Heading
    成熟期
    Maturity
    ×106 roots∙hm−2 
    2019W1N1S17.51±0.36a25.82±3.12a41.83±2.28a54.31±2.91b88.92±7.21b71.08±5.69a
    W1N0S15.63±0.09b17.71±0.64b21.95±1.68b28.25±1.96d59.12±3.11d45.41±1.47c
    W1N0S03.74±0.09d28.86±1.64a40.81±2.67a34.43±1.81c66.76±3.77c45.89±2.88c
    W2N2S17.61±0.21a27.33±0.65a42.64±2.39a62.47±2.03a103.93±2.97a58.69±3.87b
    W2N0S13.98±0.28c19.58±0.90b18.96±1.20b34.49±0.84c66.48±1.99c46.08±2.84c
    W2N0S04.04±0.20c16.54±0.31c20.27±1.27b35.38±2.48c53.91±1.69d32.99±3.75d
    2020W1N1S16.89±0.27a45.41±1.46a45.65±1.92b84.85±1.91b100.75±2.22a75.15±7.06a
    W1N0S14.45±0.37c33.82±1.95c38.89±1.55c39.37±4.70d70.17±3.67c53.12±5.88b
    W1N0S05.49±0.19bc33.33±1.94c39.87±3.55c36.97±4.25d81.94±4.57b50.02±3.59b
    W2N2S15.53±0.34bc42.27±2.14ab74.61±2.52a102.09±1.9a105.41±3.85a81.18±4.45a
    W2N0S15.95±0.49ab37.44±2.19b45.36±2.49b45.55±3.13d68.72±2.09c56.85±3.95b
    W2N0S04.78±0.54c29.63±2.55c36.06±0.38c58.23±1.92c69.24±3.55c58.36±0.84b
      各处理具体描述见表1。数值后不同小写字母代表同一年份同一项目不同处理间差异达P<0.05显著水平。The detail information of each treatment is shown in Table 1. Different lowercase letters after values in the same column for the same index in the same year mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  8  2019年和2020年秸秆还田下不同水氮耦合处理的水稻各生育时期群体根体积

    Table  8.   Changes of roots volume of population of rice at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    年份
    Year
    处理
    Treatment
    生长时期 Growth stage
    移栽后10 d 10 days after
    transplanting
    分蘖盛期
    Active tillering
    拔节期
    Jointing
    拔节后10 d 10 days after
    jointing
    抽穗期
    Heading
    成熟期
    Maturity
    m3∙hm−2 
    2019W1N1S10.10±0a0.81±0.09a5.97±0.36b8.58±0.45b7.56±0.24b7.57±0.61a
    W1N0S10.04±0c0.40±0.01c3.61±0.26c5.92±0.15d7.35±0.28b5.99±0.19b
    W1N0S00.03±0d0.64±0.04b5.38±0.39b6.02±0.21cd7.43±0.43b5.85±0.37b
    W2N2S10.08±0b0.60±0.01b7.95±0.42a10.22±0.3a9.17±0.68a8.53±0.57a
    W2N0S10.03±0d0.38±0.02c3.82±0.25c6.30±0.08cd7.28±0.23b6.16±0.37b
    W2N0S00.03±0d0.34±0.01c4.12±0.25c6.73±0.28c7.10±0.23b5.06±0.52b
    2020W1N1S10.09±0a0.78±0.03a6.95±0.29b10.06±0.24b9.43±0.39ab7.53±0.72bc
    W1N0S10.04±0cd0.60±0.03b4.90±0.19c6.24±0.68d7.28±0.33c7.00±0.74bc
    W1N0S00.03±0d0.59±0.03b5.39±0.34c6.75±0.48d8.21±0.44bc6.48±0.48c
    W2N2S10.06±0b0.54±0.03bc10.03±0.32a12.02±0.36a10.69±1.11a10.31±0.59a
    W2N0S10.05±0bc0.50±0.03cd3.32±0.17d7.13±0.45cd8.30±0.25bc7.57±0.55bc
    W2N0S00.04±0cd0.44±0.04d4.96±0.05c8.08±0.24c8.01±0.38bc8.12±0.12b
      各处理具体描述见表1。数值后不同小写字母代表同一年份同一项目不同处理间差异达 P<0.05显著水平。The detail information of each treatment is shown in Table 1. Different lowercase letters after values in the same column for the same index in the same year mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  9  2019年和2020年秸秆还田下不同水氮耦合处理的水稻各生育期群体根表面积

    Table  9.   Changes of roots surface area of population of rice at different growth stages under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    年份
    Year
    处理
    Treatment
    生长时期 Growth stage
    移栽后10 d 10 days after
    transplanting
    分蘖盛期
    Active tillering
    拔节期
    Jointing
    拔节后10 d 10 days after
    jointing
    抽穗期
    Heading
    成熟期
    Maturity
    m2∙hm−2 
    2019W1N1S16.64±0.31a41.64±4.79a144.55±8.60b190.05±17.35b311.32±10.00ab293.35±23.54a
    W1N0S12.15±0.07d23.84±0.80b78.91±5.77e94.27±6.04d214.52±11.35d215.00±6.87b
    W1N0S02.28±0.06d38.91±2.26a109.34±7.86c145.37±7.54c278.77±16.21bc221.91±14.06b
    W2N2S15.14±0.15b41.85±0.89a215.06±11.27a233.91±11.23a347.36±25.59a292.58±19.63a
    W2N0S12.27±0.19d22.70±1.03b86.62±5.70de124.87±3.20c265.82±8.45c227.55±13.74b
    W2N0S02.86±0.14c23.15±0.41b100.40±6.17cd136.93±10.11c251.09±8.19cd181.75±18.62b
    2020W1N1S16.34±0.25a51.97±1.69a233.86±9.87b376.14±9.00b386.35±15.80a291.67±27.83b
    W1N0S13.58±0.28bc38.53±2.15c174.51±6.74d213.95±15.31de281.59±12.75b251.37±26.55b
    W1N0S03.35±0.12c40.67±2.20c200.29±12.74c218.89±23.67cd303.90±16.33b245.64±18.03b
    W2N2S14.11±0.25bc46.99±1.91b364.40±11.78a452.74±13.66a405.29±41.89a353.82±20.19a
    W2N0S14.20±0.34b30.68±2.70c133.66±7.02e174.01±5.25e292.35±8.81b279.40±20.14b
    W2N0S03.63±0.40bc36.53±2.09bc177.39±1.73cd257.25±16.40c274.41±13.06b291.84±4.38b
      各处理具体描述见表1。数值后不同小写字母代表同一年份同一项目不同处理间差异达P<0.05显著水平。The detail information of each treatment is shown in Table 1. Different lowercase letters after values in the same column for the same index in the same year mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  10  2019年和2020年秸秆还田下不同水氮耦合处理的水稻群体根系伤流强度(y)随生长天数(x)变化的函数拟合

    Table  10.   Function fitting of root bleeding intensity of rice population (y) with growth days (x) under different treatments of water-nitrogen coupling and straw returning in 2019 and 2020

    年份
    Year
    处理
    Treatment
    函数拟合
    Function fitting
    决定系数
    R2
    对称轴
    AOS
    顶点值
    V
    2019W1N1S1y=−0.2767x2+35.530x−304.410.954x=64.2y=836.16
    W1N0S1y=−0.1725x2+22.290x−222.120.937x=64.6y=497.94
    W1N0S0y=−0.1595x2+20.039x−135.510.959x=62.8y=493.90
    W2N2S1y=−0.2818x2+34.078x−226.760.976x=60.5y=803.50
    W2N0S1y=−0.1585x2+20.703x−216.180.893x=65.3y=459.87
    W2N0S0y=−0.1260x2+16.588x−166.750.931x=65.8y=379.21
    2020W1N1S1y=−0.2762x2+33.177x−179.610.961x=60.1y=816.69
    W1N0S1y=−0.1585x2+19.148x−131.150.995x=60.4y=447.16
    W1N0S0y=−0.1599x2+19.335x−114.240.994x=60.5y=470.25
    W2N2S1y=−0.2366x2+27.266x−34.410.898x=57.6y=751.13
    W2N0S1y=−0.1544x2+18.197x−75.300.904x=58.9y=460.86
    W2N0S0y=−0.1572x2+19.159x−138.550.999x=60.9y=445.21
      各处理具体描述见表1。AOS: 函数图像对称轴对应的x值; V: 函数图像顶点对应的y值。The detail information of each treatment is shown in Table 1. AOS: axis of symmetry; V: vertex.
    下载: 导出CSV
  • [1] 陈达刚, 周新桥, 李丽君, 等. 华南主栽高产籼稻根系形态特征及其与产量构成的关系[J]. 作物学报, 2013, 39(10): 1899−1908 doi: 10.3724/SP.J.1006.2013.01899

    CHEN D G, ZHOU X Q, LI L J, et al. Relationship between root morphological characteristics and yield components of major commercial indica rice in South China[J]. Acta Agronomica Sinica, 2013, 39(10): 1899−1908 doi: 10.3724/SP.J.1006.2013.01899
    [2] 严奉君, 孙永健, 马均, 等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响[J]. 植物营养与肥料学报, 2015, 21(1): 23−35

    YAN F J, SUN Y J, MA J, et al. Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 23−35
    [3] LIN X Q, ZHOU W J, ZHU D F, et al. Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice[J]. Field Crops Research, 2006, 96(2/3): 448−454
    [4] 徐国伟, 王贺正, 翟志华, 等. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J]. 农业工程学报, 2015, 31(10): 132−141 doi: 10.11975/j.issn.1002-6819.2015.10.018

    XU G W, WANG H Z, ZHAI Z H, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132−141 doi: 10.11975/j.issn.1002-6819.2015.10.018
    [5] 戢林, 李廷轩, 张锡洲, 等. 氮高效利用基因型水稻根系形态和活力特征[J]. 中国农业科学, 2012, 45(23): 4770−4781 doi: 10.3864/j.issn.0578-1752.2012.23.003

    JI L, LI T X, ZHANG X Z, et al. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency[J]. Scientia Agricultura Sinica, 2012, 45(23): 4770−4781 doi: 10.3864/j.issn.0578-1752.2012.23.003
    [6] WANG H, SIOPONGCO J, WADE L J, et al. Fractal analysis on root systems of rice plants in response to drought stress[J]. Environmental and Experimental Botany, 2009, 65(2/3): 338−344
    [7] TURMEL M S, SPERATTI A, BAUDRON F, et al. Crop residue management and soil health: a systems analysis[J]. Agricultural Systems, 2015, 134: 6−16 doi: 10.1016/j.agsy.2014.05.009
    [8] 潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5): 526−535 doi: 10.3724/SP.J.1011.2013.00526

    PAN J L, DAI W A, SHANG Z H, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 526−535 doi: 10.3724/SP.J.1011.2013.00526
    [9] XU Y Z, NIE L X, BURESH R J, et al. Agronomic performance of late-season rice under different tillage, straw, and nitrogen management[J]. Field Crops Research, 2010, 115(1): 79−84 doi: 10.1016/j.fcr.2009.10.005
    [10] 曾莉, 张鑫, 张水清, 等. 不同施氮量下潮土中小麦秸秆腐解特性及其养分释放和结构变化特征[J]. 植物营养与肥料学报, 2020, 26(9): 1565−1577 doi: 10.11674/zwyf.20181

    ZENG L, ZHANG X, ZHANG S Q, et al. Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1565−1577 doi: 10.11674/zwyf.20181
    [11] POWELL J R, LEVY-BOOTH D J, GULDEN R H, et al. Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition[J]. Journal of Applied Ecology, 2009, 46(2): 388−396 doi: 10.1111/j.1365-2664.2009.01617.x
    [12] 黄晶, 段转宁, 马鹏, 等. 油菜·小麦秸秆在稻田土壤中腐解及养分释放特征[J]. 安徽农业科学, 2016, 44(18): 139−141 doi: 10.3969/j.issn.0517-6611.2016.18.045

    HUANG J, DUAN Z N, MA P, et al. Decomposition and nutrient release characteristics of rapeseed and wheat straws incorporated into paddy soil[J]. Journal of Anhui Agricultural Sciences, 2016, 44(18): 139−141 doi: 10.3969/j.issn.0517-6611.2016.18.045
    [13] 黄菲, 刘言, 李继福, 等. 水旱轮作条件下还田秸秆腐解和养分释放特征研究[J]. 长江大学学报: 自科版, 2017, 14(18): 54−60, 5

    HUANG F, LIU Y, LI J F, et al. Characteristics of decomposing and nutrients releasing of crop straw under paddy-upland rotation[J]. Journal of Yangtze University: Natural Science Edition, 2017, 14(18): 54−60, 5
    [14] CHRISTOPHER S F, LAL R. Nitrogen management affects carbon sequestration in North American cropland soils[J]. Critical Reviews in Plant Sciences, 2007, 26(1): 45−64 doi: 10.1080/07352680601174830
    [15] 王红妮, 王学春, 赵长坤, 等. 油菜秸秆还田对水稻根系、分蘖和产量的影响[J]. 应用生态学报, 2019, 30(4): 1243−1252

    WANG H N, WANG X C, ZHAO C K, et al. Effects of oilseed rape straw incorporation on root, tiller and grain yield of rice[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1243−1252
    [16] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298−310 doi: 10.3724/SP.J.1258.2014.00027

    WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298−310 doi: 10.3724/SP.J.1258.2014.00027
    [17] 单玉华, 蔡祖聪, 韩勇, 等. 淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系[J]. 土壤学报, 2006, 43(6): 941−947 doi: 10.3321/j.issn:0564-3929.2006.06.009

    SHAN Y H, CAI Z C, HAN Y, et al. Accumulation of organic acids in relation to C∶N ratios of straws and N application in flooded soil[J]. Acta Pedologica Sinica, 2006, 43(6): 941−947 doi: 10.3321/j.issn:0564-3929.2006.06.009
    [18] 贾伟, 周怀平, 解文艳, 等. 长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响[J]. 植物营养与肥料学报, 2008, 14(4): 700−705 doi: 10.11674/zwyf.2008.0413

    JIA W, ZHOU H P, XIE W Y, et al. Effects of long-term inorganic fertilizer combined with organic manure on microbial biomass C, N and enzyme activity in cinnamon soil[J]. Plant Nutrition and Fertilizer Science, 2008, 14(4): 700−705 doi: 10.11674/zwyf.2008.0413
    [19] 刘建国, 卞新民, 李彦斌, 等. 长期连作和秸秆还田对棉田土壤生物活性的影响[J]. 应用生态学报, 2008, 19(5): 1027−1032

    LIU J G, BIAN X M, LI Y B, et al. Effects of long-term continuous cropping of cotton and returning cotton stalk into field on soil biological activities[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1027−1032
    [20] 杨菲, 谢小立. 稻田干湿交替过程生理生态效应研究综述[J]. 杂交水稻, 2010, 25(5): 1−4, 8 doi: 10.3969/j.issn.1005-3956.2010.05.001

    YANG F, XIE X L. Research advances of ecological and physiological effects of alternate wetting and drying in paddy field[J]. Hybrid Rice, 2010, 25(5): 1−4, 8 doi: 10.3969/j.issn.1005-3956.2010.05.001
    [21] DENEF K, SIX J, PAUSTIAN K, et al. Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry-wet cycles[J]. Soil Biology and Biochemistry, 2001, 33(15): 2145−2153 doi: 10.1016/S0038-0717(01)00153-5
    [22] XU G W, LU D K, WANG H Z, et al. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate[J]. Agricultural Water Management, 2018, 203: 385−394 doi: 10.1016/j.agwat.2018.02.033
    [23] 徐国伟, 陆大克, 王贺正, 等. 施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响[J]. 中国生态农业学报, 2018, 26(4): 516−525

    XU G W, LU D K, WANG H Z, et al. Coupling effect of alternate wetting and drying irrigation and nitrogen rate on organic acid in rice root secretion at heading stage[J]. Chinese Journal of Eco-Agriculture, 2018, 26(4): 516−525
    [24] 常二华, 张慎凤, 王志琴, 等. 结实期氮磷营养水平对水稻根系和籽粒氨基酸含量的影响[J]. 作物学报, 2008, 34(4): 612−618 doi: 10.3321/j.issn:0496-3490.2008.04.012

    CHANG E H, ZHANG S F, WANG Z Q, et al. Effect of nitrogen and phosphorus on the amino acids in root exudates and grains of rice during grain filling[J]. Acta Agronomica Sinica, 2008, 34(4): 612−618 doi: 10.3321/j.issn:0496-3490.2008.04.012
  • 加载中
图(4) / 表(10)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  58
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2022-06-09

目录

    /

    返回文章
    返回