留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

覆盖措施对土壤碳氮及夏玉米产量和水氮利用的影响

王真 孙军 杜娅丹 孙丹 甘海成 牛文全

王真, 孙军, 杜娅丹, 孙丹, 甘海成, 牛文全. 覆盖措施对土壤碳氮及夏玉米产量和水氮利用的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 913−923 doi: 10.12357/cjea.20210574
引用本文: 王真, 孙军, 杜娅丹, 孙丹, 甘海成, 牛文全. 覆盖措施对土壤碳氮及夏玉米产量和水氮利用的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 913−923 doi: 10.12357/cjea.20210574
WANG Z, SUN J, DU Y D, SUN D, GAN H C, NIU W Q. Effects of mulching practices on soil carbon, nitrogen contents, and grain yield, water and nitrogen use efficiencies of summer maize[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 913−923 doi: 10.12357/cjea.20210574
Citation: WANG Z, SUN J, DU Y D, SUN D, GAN H C, NIU W Q. Effects of mulching practices on soil carbon, nitrogen contents, and grain yield, water and nitrogen use efficiencies of summer maize[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 913−923 doi: 10.12357/cjea.20210574

覆盖措施对土壤碳氮及夏玉米产量和水氮利用的影响

doi: 10.12357/cjea.20210574
基金项目: 国家自然科学基金项目(52079112, 51679205)资助
详细信息
    作者简介:

    王真, 主要从事节水灌溉理论研究。E-mail: wangzhen521_a@163.com

    通讯作者:

    牛文全, 主要从事水土资源高效利用与节水灌溉研究。E-mail: nwq@nwafu.edu.cn

  • 中图分类号: S278; X511

Effects of mulching practices on soil carbon, nitrogen contents, and grain yield, water and nitrogen use efficiencies of summer maize

Funds: This study was supported by the National Natural Science Foundation of China (52079112, 51679205).
More Information
  • 摘要: 垄作覆膜和秸秆覆盖有利于提高作物产量和降雨利用效率, 但覆盖对土壤碳、氮变化的影响仍不清楚。本文设置2年田间试验, 共3种处理: 垄作覆膜(RFM)、平作覆盖秸秆(SM)和平作不覆盖(NM), 研究覆盖措施对土壤碳、氮及夏玉米产量和水、氮利用效率的影响。结果表明: 与NM相比, RFM处理的5 cm 和10 cm 土壤温度分别显著提高0.5~1.0 ℃和0.2~0.7 ℃ (P<0.05), 加速了土壤有机碳分解, 显著减少土壤有机碳含量4.2% (P<0.05), 增强土壤呼吸速率33.2% (P<0.05); 而SM处理5 cm和10 cm土壤温度分别显著降低0.2~1.5 ℃和0.5~1.0 ℃ (P<0.05), 土壤有机碳含量增加21.3% (P<0.05), 土壤呼吸速率降低44.0% (P<0.05)。RFM处理中垄沟的土壤硝态氮含量大幅度降低(P<0.05), 而SM处理增加了0~80 cm土层土壤硝态氮含量(P<0.05), 减少了深层土壤硝态氮含量; SM和RFM最高分别增加土壤含水率23.8%和15.2% (P<0.05)、玉米氮素吸收增加37.6%和11.3% (P<0.05)。SM和RFM的地上部干物质积累、氮素收获指数以及作物耗水量均提高, 夏玉米产量分别提高16.8%和9.2% (P<0.05)、水分利用效率分别提高13.0%和9.1% (P<0.05)。覆盖秸秆通过增加土壤水分、有机碳含量和氮的有效性, 提高了夏玉米产量和水以及氮吸收利用效率, 是适合半干旱黄土高原雨养农业的有效覆盖方法。
  • 图  1  2019年和2020年夏玉米生长季日气象数据

    Figure  1.  Daily meteorological data during summer maize growing seasons in 2019 and 2020

    图  2  2019年和2020年不同处理夏玉米不同生育期土壤含水率变化

    RFM为垄作覆膜, NM为平作不覆盖, SM为秸秆覆盖。*和**分别代表P<0.05和P<0.01水平3个处理间差异显著, ns代表P˃0.05。误差棒为不同处理标准误差的平均值。

    Figure  2.  Soil moisture contents at different growth stages of summer maize under different treatments in 2019 and 2020

    RFM is ridge-furrow planting with plastic film mulching, NM is conventional planting without mulching, SM is conventional planting with straw mulching. * and ** mean significant differences among 3 treatments at P˂0.05 and P˂0.01, respectively, ns means P˃0.05. Bars indicate the averages of the standard errors of different treatments.

    图  3  2020年夏玉米生长季当地相同日期日气温的变化和不同处理地温及土壤呼吸速率

    RFM为垄作覆膜, NM为平作不覆盖, SM为秸秆覆盖。*和**分别代表P<0.05和P<0.01水平3个处理间差异显著, ns代表P˃0.05。误差棒为不同处理标准误差的平均值。

    Figure  3.  Local daily air temperature for the same date and soil temperature and respiration rate under different treatments during summer maize growing season in 2020

    RFM is ridge-furrow planting with plastic film mulching, NM is conventional planting without mulching, SM is conventional planting with straw mulching. * and ** mean significant differences among 3 treatments at P˂0.05 and P˂0.01, respectively, ns means P˃0.05. Bars indicate the averages of the standard errors of different treatments.

    图  4  2019年和2020年不同处理土壤有机碳及硝态氮含量变化

    RFM为垄作覆膜, NM为平作不覆盖, SM为秸秆覆盖。不同小写字母代表同一年份不同处理间在 P<0.05水平差异显著。*和**分别代表P<0.05和P<0.01水平3个处理间差异显著, ns表示无显著性差异。RFM is ridge-furrow planting with plastic film mulching, NM is conventional planting without mulching, SM is conventional planting with straw mulching. Different lowercase letters represent significant differences at P<0.05 level among treatments in the same year. * and ** mean significant differences among 3 treatments at P˂0.05 and P˂0.01, respectively, ns means P>0.05.

    Figure  4.  Soil organic carbon and soil nitrate nitrogen contents under different mulching treatments in 2019 and 2020

    图  5  2019年和2020年不同生育期不同处理夏玉米地上部干物质积累量

    RFM为垄作覆膜, NM为平作不覆盖, SM为秸秆覆盖。不同小写字母代表不同处理间在P<0.05水平差异显著。误差棒为不同处理标准误差的平均值。

    Figure  5.  Dry matter accumulation aboveground of summer maize under different treatments at the jointing stage (S1), tasseling stage (S2), silking stage (S3), grain filling stage (S4) and maturity (S5) in 2019 and 2020

    RFM is ridge-furrow planting with plastic film mulching, NM is conventional planting without mulching, SM is conventional planting with straw mulching. Different lowercase letters represent significant differences at P<0.05 level among treatments. Bars indicate the averages of the standard errors of different treatments.

    表  1  2019年和2020年不同处理夏玉米百粒重、产量、吸氮量、氮素收获指数、耗水量及水分利用效率

    Table  1.   100-grain weight, grain yield, nitrogen uptake, nitrogen harvest index, evapotranspiration and water use efficiency of summer maize under different treatments in 2019 and 2020

    年份
    Year
    处理
    Treatment
    百粒重100-grain
    weight (g)
    产量Yield
    (t·hm−2)
    植株吸氮量
    Plant nitrogen uptake (kg·hm−2)
    籽粒吸氮量
    Ear nitrogen uptake (kg·hm−2)
    氮素收获指数
    Nitrogen harvest index (%)
    作物耗水量
    Evapotranspiration (mm)
    水分利用效率Water use efficiency (kg·hm−2·mm−1)
    2020NM32.1±1.44c9.34±0.15c205.0±9.20c99.6±6.79c48.68401b23.0c
    RFM33.5±2.25b10.20±0.45b228.2±8.43b113.2±6.50b49.64 410ab25.1ab
    SM34.9±2.10a10.91±0.14a282.1±10.86a137.1±8.22a51.87421a26.0b
    2019NM32.3±1.27c9.44±0.34c354e26.7b
    RFM33.0±2.33b9.84±0.51b355d28.0a
    SM34.4±1.70a10.31±0.27a362c28.6a
    NOVAM × G0.07526.58**0.620.24
      RFM为垄作覆膜, NM为不覆盖, SM为秸秆覆盖。不同小写字母代表同一年份不同处理间在P<0.05水平差异显著。M为覆盖措施; G为生长季。*和** 分别代表P<0.05和P<0.01水平差异显著。RFM is ridge-furrow planting with plastic film mulching, NM is conventional planting without mulching, SM is conventional planting with straw mulching. Different lowercase letters represent significant differences at P<0.05 level among treatments in the same year. M: mulching practices; G: growing seasons. * and ** represent significant differences at P<0.05 and P<0.01.
    下载: 导出CSV
  • [1] FANG H, GU X B, JIANG T C, et al. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau, China[J]. Soil and Tillage Research, 2020, 199: 104546 doi: 10.1016/j.still.2019.104546
    [2] LI S X, XIAO L. Distribution and management of drylands in the People’s Republic of China[J]. Advances in Soil Sciences, 1992, 18: 147−302
    [3] 王晓娟, 贾志宽, 梁连友, 等. 旱地施有机肥对土壤水分和玉米经济效益影响[J]. 农业工程学报, 2012, 28(6): 144−149 doi: 10.3969/j.issn.1002-6819.2012.06.024

    WANG X J, JIA Z K, LIANG L Y, et al. Effects of organic fertilizer application on soil moisture and economic returns of maize in dryland farming[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 144−149 doi: 10.3969/j.issn.1002-6819.2012.06.024
    [4] YE J S, LIU C G. Suitability of mulch and ridge-furrow techniques for maize across the precipitation gradient on the Chinese Loess Plateau[J]. Journal of Agricultural Science, 2012, 4(10): 182
    [5] GU X B, CAI H J, ZHANG Z T, et al. Ridge-furrow full film mulching: an adaptive management strategy to reduce irrigation of dryland winter rapeseed (Brassica napus L.) in Northwest China[J]. Agricultural and Forest Meteorology, 2019, 266/267: 119−128 doi: 10.1016/j.agrformet.2018.12.009
    [6] 郭志利, 孙常青, 梁楠. 旱地春大豆地膜覆盖增产节水效果及密度效应研究[J]. 中国生态农业学报, 2007, 15(1): 205−206

    GUO Z L, SUN C Q, LIANG N. Impacts of plastic mulching on water saving and yield increasing of dry land spring soybean and its density effect[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 205−206
    [7] GAN Y T, SIDDIQUE K H M, TURNER N C, et al. Ridge-furrow mulching systems — an innovative technique for boosting crop productivity in semiarid rain-fed environments[M]//Advances in Agronomy. Amsterdam: Elsevier, 2013: 429–476
    [8] FANG H, LI Y N, GU X B, et al. Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China?[J]. Agricultural Water Management, 2021, 246: 106686 doi: 10.1016/j.agwat.2020.106686
    [9] GU X B, LI Y N, DU Y D. Film-mulched continuous ridge-furrow planting improves soil temperature, nutrient content and enzymatic activity in a winter oilseed rape field, Northwest China[J]. Journal of Arid Land, 2018, 10(3): 362−374 doi: 10.1007/s40333-018-0055-5
    [10] STEINMETZ Z, WOLLMANN C, SCHAEFER M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550: 690−705 doi: 10.1016/j.scitotenv.2016.01.153
    [11] DONG Q G, YANG Y C, YU K, et al. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China[J]. Agricultural Water Management, 2018, 201: 133−143 doi: 10.1016/j.agwat.2018.01.021
    [12] 朱新华, 赵伟, 伏胜康, 等. 自解捆式果园秸秆覆盖机设计与试验[J]. 农业机械学报, 2021, 51(10): 223−232 doi: 10.6041/j.issn.1000-1298.2021.10.023

    ZHU X H, ZHAO W, FU S K, et al. Design and test of self-unbaling orchard straw mulching machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 51(10): 223−232 doi: 10.6041/j.issn.1000-1298.2021.10.023
    [13] CHEN S Y, ZHANG X Y, PEI D, et al. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain[J]. Annals of Applied Biology, 2007, 150(3): 261−268 doi: 10.1111/j.1744-7348.2007.00144.x
    [14] GAO Y J, LI Y, ZHANG J C, et al. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China[J]. Nutrient Cycling in Agroecosystems, 2009, 85(2): 109−121 doi: 10.1007/s10705-009-9252-0
    [15] ESWARAN H, VAN DEN BERG E, REICH P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal, 1993, 57(1): 192−194 doi: 10.2136/sssaj1993.03615995005700010034x
    [16] YADAV G S, DAS A, LAL R, et al. Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India[J]. Agriculture, Ecosystems & Environment, 2019, 275: 81−92
    [17] LAL R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123(1/2): 1−22
    [18] ROSENZWEIG S T, FONTE S J, SCHIPANSKI M E. Intensifying rotations increases soil carbon, fungi, and aggregation in semi-arid agroecosystems[J]. Agriculture, Ecosystems & Environment, 2018, 258: 14−22
    [19] GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293−296 doi: 10.1038/nature06592
    [20] MAGILL A H, ABER J D. Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition[J]. Soil Biology and Biochemistry, 2000, 32(5): 603−613 doi: 10.1016/S0038-0717(99)00187-X
    [21] DU Z L, ANGERS D A, REN T S, et al. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2017, 236: 1−11
    [22] YANG X L, LU Y L, DING Y, et al. Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008−2014)[J]. Field Crops Research, 2017, 206: 1−10 doi: 10.1016/j.fcr.2017.02.016
    [23] JIA D Y, DAI X L, HE M R. Polymerization of glutenin during grain development and quality expression in winter wheat in response to irrigation levels[J]. Crop Science, 2012, 52(4): 1816−1827 doi: 10.2135/cropsci2011.08.0444
    [24] DAI J, WANG Z H, LI M H, et al. Winter wheat grain yield and summer nitrate leaching: long-term effects of nitrogen and phosphorus rates on the Loess Plateau of China[J]. Field Crops Research, 2016, 196: 180−190 doi: 10.1016/j.fcr.2016.06.020
    [25] LAMPTEY S, LI L L, XIE J H, et al. Tillage system affects soil water and photosynthesis of plastic-mulched maize on the semiarid Loess Plateau of China[J]. Soil and Tillage Research, 2020, 196: 104479 doi: 10.1016/j.still.2019.104479
    [26] GU X B, LI Y N, DU Y D. Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in northwestern China[J]. Agricultural Water Management, 2018, 200: 60−70 doi: 10.1016/j.agwat.2018.01.001
    [27] WANG Z, SUN J, DU Y D, et al. Conservation tillage improves the yield of summer maize by regulating soil water, photosynthesis and inferior kernel grainfilling on the semiarid Loess Plateau, China[J]. Journal of the Science of Food and Agriculture, 2021, http://doi.org/10.1002/jsfa.11571
    [28] SUBRAHMANIYAN K, VEERAMANI P, HARISUDAN C. Heat accumulation and soil properties as affected by transparent plastic mulch in blackgram (Vigna mungo) doubled cropped with groundnut (Arachis hypogaea) in sequence under rainfed conditions in Tamil Nadu, India[J]. Field Crops Research, 2018, 219: 43−54 doi: 10.1016/j.fcr.2018.01.024
    [29] KAR G, KUMAR A. Effects of irrigation and straw mulch on water use and tuber yield of potato in eastern India[J]. Agricultural Water Management, 2007, 94(1/2/3): 109−116
    [30] NISHIGAKI T, SUGIHARA S, KILASARA M, et al. Carbon dioxide flux and soil carbon stock as affected by crop residue management and soil texture in semi-arid maize croplands in Tanzania[J]. Soil Use and Management, 2021, 37(1): 83−94 doi: 10.1111/sum.12680
    [31] WANG H, WANG C B, ZHAO X M, et al. Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China[J]. Agricultural Water Management, 2015, 154: 20−28 doi: 10.1016/j.agwat.2015.02.010
    [32] ZHANG P, CHEN X L, WEI T, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil and Tillage Research, 2016, 160: 65−72 doi: 10.1016/j.still.2016.02.006
    [33] FAN M, LI Q, ZHANG E H, et al. Effects of mulching on soil CO2 fluxes, hay yield and nutritional yield in a forage maize field in Northwest China[J]. Scientific Reports, 2019, 9: 14186 doi: 10.1038/s41598-019-50475-8
    [34] HU Y J, SUN B H, WU S F, et al. Soil carbon and nitrogen of wheat-maize rotation system under continuous straw and plastic mulch[J]. Nutrient Cycling in Agroecosystems, 2021, 119(2): 181−193 doi: 10.1007/s10705-020-10114-5
    [35] DONG Q, DANG T H, GUO S L, et al. Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau[J]. Agricultural Water Management, 2019, 213: 654−658 doi: 10.1016/j.agwat.2018.09.044
    [36] ZHANG H Y, LIU Q J, YU X X, et al. Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut (Arachis hypogaea) cultivated land in the Yimeng Mountainous Area, China[J]. Agriculture, Ecosystems & Environment, 2012, 158: 164−171
    [37] MARY B, RECOUS S, DARWIS D, et al. Interactions between decomposition of plant residues and nitrogen cycling in soil[J]. Plant and Soil, 1996, 181(1): 71−82 doi: 10.1007/BF00011294
    [38] RECOUS S, AITA C, MARY B. In situ changes in gross N transformations in bare soil after addition of straw[J]. Soil Biology and Biochemistry, 1998, 31(1): 119−133 doi: 10.1016/S0038-0717(98)00113-8
    [39] 郭升. 黄土高原旱地垄作覆膜土壤氮素累积运移过程与去向研究[D]. 杨凌: 西北农林科技大学, 2018

    GUO S. The accumulation and migration and fate of soil nitrogen in drylands under plastic film mulching on Loess Plateau[D]. Yangling: Northwest A & F University, 2018
    [40] WU Y, HUANG F Y, ZHANG C, et al. Effects of different mulching patterns on soil moisture, temperature, and maize yield in a semi-arid region of the Loess Plateau, China[J]. Arid Land Research and Management, 2016, 30(4): 490−504 doi: 10.1080/15324982.2016.1194911
    [41] 王缠军, 郝明德, 折凤霞, 等. 黄土区保护性耕作对春玉米产量和土壤肥力的影响[J]. 干旱地区农业研究, 2011, 29(4): 193−198

    WANG C J, HAO M D, ZHE F X, et al. Effects of different conservation tillage measures on spring maize yield and soil fertility in the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2011, 29(4): 193−198
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  50
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 录用日期:  2021-11-16
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-06-09

目录

    /

    返回文章
    返回