留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蔬菜咸水灌溉研究进展

陈佩 王金涛 董心亮 田柳 张雪佳 刘小京 孙宏勇

陈佩, 王金涛, 董心亮, 田柳, 张雪佳, 刘小京, 孙宏勇. 蔬菜咸水灌溉研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(5): 799−808 doi: 10.12357/cjea.20210850
引用本文: 陈佩, 王金涛, 董心亮, 田柳, 张雪佳, 刘小京, 孙宏勇. 蔬菜咸水灌溉研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(5): 799−808 doi: 10.12357/cjea.20210850
CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Review of research development associated with the application of saline water irrigation to vegetables[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 799−808 doi: 10.12357/cjea.20210850
Citation: CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Review of research development associated with the application of saline water irrigation to vegetables[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 799−808 doi: 10.12357/cjea.20210850

蔬菜咸水灌溉研究进展

doi: 10.12357/cjea.20210850
基金项目: 中国科学院盐碱地资源高效利用工程实验室(KFJ-PTXM-017)和河北省重点研发计划项目(21326408D)资助
详细信息
    作者简介:

    陈佩, 主要研究方向为农田水盐运移过程及调控。E-mail: chenpei19@mails.ucas.ac.cn

    通讯作者:

    孙宏勇, 主要研究方向为农田水盐运移过程机理与调控。E-mail: hysun@sjziam.ac.cn

  • 中图分类号: S607.1

Review of research development associated with the application of saline water irrigation to vegetables

Funds: The study was supported by the CAS Engineering Laboratory for Efficient Utilization of Saline Resources (KFJ-PTXM-017) and Hebei Province Science and Technology Support Program (21326408D).
More Information
  • 摘要: 我国淡水资源严重短缺且分布不均, 开发利用储量丰富的咸水资源对于保障水安全战略具有重要的意义。我国蔬菜种植面积和产量居世界首位, 蔬菜既是产量较高也是耗水量较大的经济作物。如何安全利用咸水资源, 拓宽蔬菜灌溉用水供应来源, 保证蔬菜生产是淡水短缺地区面临的主要问题, 也是当今咸水利用方面的研究重点和难点。因此, 本文从咸水资源利用潜力、咸水灌溉应用状况、咸水灌溉对蔬菜生长、产量和品质的影响等方面对咸水灌溉在蔬菜种植中的高效利用机理、技术及未来发展趋势进行了综述。利用2.4~11.83 dS∙m−1的咸水灌溉虽使蔬菜产量降低6.21%~63.05%, 但蔬菜品质提高6.25%~74.07%, 采用适宜的咸水灌溉调控技术, 优化灌溉策略可提高咸水灌溉的利用效率, 在未来微咸水利用和扩大蔬菜种植面积中可发挥重要作用。
  • 表  1  蔬菜作物耐盐度

    Table  1.   Salt tolerance of vegetables

    作 物1)
    Crop1)
    电导率上限2)
    Electrical conductivity up limit2) (dS·m−1)
    b3)
    (%/dS·m−1)
    耐盐等级4)
    Rating4)
    小型蔬菜 Small vegetables
    青花椰菜 Broccoli2.8 9.2MS
    布鲁塞尔芽菜 Brussels sprouts1.8 9.7MS
    甘蓝 Cabbage1.0~1.89.8~14.0MS
    花椰菜 Cauliflower1.8 6.2MS
    芹菜 Celery1.8~2.56.2~13.0MS
    卷心菜 Lettuce1.3~1.712.0MS
    洋葱 Onion1.216.0S
    菠菜 Spinach2.0~3.27.7~16.0MS
    萝卜 Radishes1.2~2.07.6~13.0MS
    茄科蔬菜 Solanaceae vegetables
    茄子 Egg plantMS
    胡椒 Peppers1.5~1.712.0~14.0MS
    番茄 Tomato0.9~2.5 9.0MS
    葫芦科蔬菜 Cucurbitaceae vegetables
    黄瓜 Cucumber1.1~2.57.0~13.0MS
    南瓜、冬瓜 Pumplkin, winter squash1.213.0MS
    西葫芦 Zucchini4.710.0MT
    笋瓜(小胡瓜) Squash (scallop)3.216.0MS
    西瓜 WatermalonMS
    根茎和块茎 Roots and tubers
    甜菜 Beets4.0 9.0MT
    欧洲萝卜 ParsnipS
    马铃薯 Potato1.712.0MS
    甘薯(红薯) Sweet potato1.5~2.510.0MS
    芜菁 Turnip0.9 9.0MS
    胡萝卜 Suger beet7.0 5.9T
    豆科植物 Leguminosae crops
    豆角(鲜) Beans1.019.0S
    蚕豆 Broadbean1.5~1.6 9.6MS
    黎豆 Cowpea4.912.0MT
    花生 Peanut3.229.0MS
    豌豆 Peas1.514.0S
    黄豆 Soybeans5.020.0MT
    1)表中数据仅是一种指南, 因为耐盐度随气候、土壤条件和耕作方法而变化, 作物经常在发芽期和结籽期耐盐度较低; 2)电导率上限指产量开始降低时根系层盐分的平均值; 3) b 是指电导率超过电导率上限后每增加一个单位电导度作物产量减少的百分数; 4)耐盐等级分为耐盐(T)、中等耐盐(MT)、中度敏感(MS)和敏感(S)。1) The data serve only as a guideline: Tolerance varies depending upon climate, soil conditions and cultural practices. Crops are often less tolerant during germination and seedling stage. 2) Electrical conductivity up limit is the average root zone salinity at which yield starts to decline. 3) b is the reducting percentage in crop yield per 1 dS·m−1 increase when electrical conductivity beyond its’ up limit. 4) Ratings is salt tolerant rank, which is divided into four grades: tolerant (T), moderately tolerant (MT), moderately sensitive (MS) and sensitive (S).
    下载: 导出CSV
  • [1] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020

    Statistics Bureau of the People’s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020
    [2] 康绍忠, 孙景生, 张喜英. 中国北方主要作物需水量与耗水管理[M]. 北京: 中国水利水电出版社, 2018

    KANG S Z, SUN J S, ZHANG X Y. Water Demand and Water Consumption Management of Major Crops in Northern China[M]. Beijing: China Water&Power Press, 2018
    [3] 孟建, 姚旭擎, 杨晓琳, 等. 地下水超采区农业种植结构与作物耗水时空演变研究[J]. 农业机械学报, 2020, 51(11): 302−312 doi: 10.6041/j.issn.1000-1298.2020.11.033

    MENG J, YAO X Q, YANG X L, et al. Spatial and temporal evolution of agricultural planting structure and crop water consumption in groundwater overdraft area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 302−312 doi: 10.6041/j.issn.1000-1298.2020.11.033
    [4] 孙宏勇, 张喜英, 邵立威. 调亏灌溉在果树上应用的研究进展[J]. 中国生态农业学报, 2009, 17(6): 1288−1291

    SUN H Y, ZHANG X Y, SHAO L W. Regulated deficit irrigation and its application on fruit trees[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6): 1288−1291
    [5] 王全九, 单鱼洋. 微咸水灌溉与土壤水盐调控研究进展[J]. 农业机械学报, 2015, 46(12): 117−126 doi: 10.6041/j.issn.1000-1298.2015.12.017

    WANG Q J, SHAN Y Y. Review of research development on water and soil regulation with brackish water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 117−126 doi: 10.6041/j.issn.1000-1298.2015.12.017
    [6] 张伟. 咸水灌溉研究进展[J]. 山西水利科技, 2012(1): 12−13, 39 doi: 10.3969/j.issn.1006-8139.2012.01.005

    ZHANG W. Research progress of salt water irrigation[J]. Shanxi Hydrotechnics, 2012(1): 12−13, 39 doi: 10.3969/j.issn.1006-8139.2012.01.005
    [7] 刘昌明. 中国水文地理[M]. 北京: 科学出版社, 2014

    LIU C M. Hydrogeography of China[M]. Beijing: Science Press, 2014
    [8] 高从堦. 海水淡化及海水与苦咸水利用发展建议[M]. 北京: 高等教育出版社, 2007

    GAO C J. Suggestions on Seawater Desalination and Utilization of Seawater and Brackish Water[M]. Beijing: Higher Education Press, 2007
    [9] 马中昇, 谭军利, 魏童. 中国微咸水利用的地区和作物适应性研究进展[J]. 灌溉排水学报, 2019, 38(3): 70−75

    MA Z S, TAN J L, WEI T. The variation of salt-tolerance of crops in different regions irrigated with brackish water in China[J]. Journal of Irrigation and Drainage, 2019, 38(3): 70−75
    [10] 阮明艳. 咸水灌溉的应用及发展措施[J]. 新疆农垦经济, 2006(4): 66−68 doi: 10.3969/j.issn.1000-7652.2006.04.017

    RUAN M Y. Application and development measures of salt water irrigation[J]. Xinjiang State Farms Economy, 2006(4): 66−68 doi: 10.3969/j.issn.1000-7652.2006.04.017
    [11] 霍海霞, 张建国. 咸水灌溉下土壤盐分运移研究进展与展望[J]. 节水灌溉, 2015(4): 41−45 doi: 10.3969/j.issn.1007-4929.2015.04.012

    HUO H X, ZHANG J G. Advance and prospects of research on soil salt movement under saline irrigation[J]. Water Saving Irrigation, 2015(4): 41−45 doi: 10.3969/j.issn.1007-4929.2015.04.012
    [12] 屈东星, 沈秀云, 刘晓燕. 河北沧州市粮食安全目标下的缺水问题及对策[J]. 中国防汛抗旱, 2010, 20(4): 39−41

    QU D X, SHEN X Y, LIU X Y. Water shortage and its countermeasures in Cangzhou City, Hebei Province under the target of food security[J]. China Flood & Drought Management, 2010, 20(4): 39−41
    [13] 张余良, 陆文龙. 微咸水灌溉对小麦生理特性及产量的影响[J]. 河南农业科学, 2007, 36(8): 31−34 doi: 10.3969/j.issn.1004-3268.2007.08.008

    ZHANG Y L, LU W L. Affects of brackish water irrigation on output and physiological characters of wheat[J]. Journal of Henan Agricultural Sciences, 2007, 36(8): 31−34 doi: 10.3969/j.issn.1004-3268.2007.08.008
    [14] 王卫光, 王修贵, 沈荣开, 等. 微咸水灌溉研究进展[J]. 节水灌溉, 2003(2): 9−11, 46 doi: 10.3969/j.issn.1007-4929.2003.02.003

    WANG W G, WANG X G, SHEN R K, et al. Progress of research on light salt water irrigation[J]. Water Saving Irrigation, 2003(2): 9−11, 46 doi: 10.3969/j.issn.1007-4929.2003.02.003
    [15] 曹玲, 王艳芳, 陈宝悦, 等. 主要蔬菜作物耐盐性比较[J]. 华北农学报, 2013, 28(S1): 233−237 doi: 10.7668/hbnxb.2013.S1.043

    CAO L, WANG Y F, CHEN B Y, et al. The comparison of salt tolerance in major vegetable crops[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(S1): 233−237 doi: 10.7668/hbnxb.2013.S1.043
    [16] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration - guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56 [J]. FAO, 1998
    [17] 张福海, 罗会, 崔松山, 等. 耐盐促生菌剂对盐碱环境下枸杞生长的影响[J]. 园艺与种苗, 2017, 37(7): 33−35

    ZHANG F H, LUO H, CUI S S, et al. Effects of relieving-salt-stress and promoting growth microbial inoculum on Lycium barbarum in saline-alkali soil[J]. Horticulture & Seed, 2017, 37(7): 33−35
    [18] WANG P, LI X Y, TIAN L, et al. Low salinity promotes the growth of broccoli sprouts by regulating hormonal homeostasis and photosynthesis[J]. Horticulture, Environment, and Biotechnology, 2019, 60(1): 19−30 doi: 10.1007/s13580-018-0095-y
    [19] 李丹, 万书勤, 康跃虎, 等. 滨海盐碱地微咸水滴灌水盐调控对番茄生长及品质的影响[J]. 灌溉排水学报, 2020, 39(7): 39−50

    LI D, WAN S Q, KANG Y H, et al. Effects of water-salt regulation on tomato growth and quality under drip irrigation with brackish water in coastal saline-alkali soil[J]. Journal of Irrigation and Drainage, 2020, 39(7): 39−50
    [20] 万书勤, 康跃虎, 王丹, 等. 华北半湿润地区微咸水滴灌对番茄生长和产量的影响[J]. 农业工程学报, 2008, 24(8): 30−35 doi: 10.3321/j.issn:1002-6819.2008.08.007

    WAN S Q, KANG Y H, WANG D, et al. Effect of saline water on tomato growth and yield by drip irrigation in semi-humid regions of North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 30−35 doi: 10.3321/j.issn:1002-6819.2008.08.007
    [21] 武育芳, 杨官凯, 曹行行, 等. 不同基质下咸、淡水灌溉对番茄生长和品质的影响[J]. 干旱地区农业研究, 2021, 39(5): 153−159, 168 doi: 10.7606/j.issn.1000-7601.2021.05.20

    WU Y F, YANG G K, CAO H H, et al. Effects of brackish and fresh water irrigation on tomato growth and quality under different substrates[J]. Agricultural Research in the Arid Areas, 2021, 39(5): 153−159, 168 doi: 10.7606/j.issn.1000-7601.2021.05.20
    [22] 汪洋, 田军仓, 高艳明, 等. 非耕地温室番茄微咸水灌溉试验研究[J]. 灌溉排水学报, 2014, 33(1): 12−16

    WANG Y, TIAN J C, GAO Y M, et al. Brackish water irrigation of greenhouse tomato in non-cultivated land[J]. Journal of Irrigation and Drainage, 2014, 33(1): 12−16
    [23] CHISARI M, TODARO A, BARBAGALLO R N, et al. Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. cv. Duende)[J]. Food Chemistry, 2010, 119(4): 1502−1506 doi: 10.1016/j.foodchem.2009.09.033
    [24] 翟红梅, 董宝娣, 乔匀周, 等. 基质栽培对微咸水灌溉下不同种类蔬菜生长的影响[J]. 干旱地区农业研究, 2013, 31(4): 11−15 doi: 10.3969/j.issn.1000-7601.2013.04.002

    ZHAI H M, DONG B D, QIAO Y Z, et al. Effect of substrate culture on the growth of different vegetables under brackish water irrigation[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 11−15 doi: 10.3969/j.issn.1000-7601.2013.04.002
    [25] 张荠文, 吴昊. 微咸水膜下滴灌对沙漠温室黄瓜产量的影响研究[J]. 地下水, 2018, 40(6): 96−98 doi: 10.3969/j.issn.1004-1184.2018.06.035

    ZHANG J W, WU H. Effect of drip irrigation with brackish water under plastic film on cucumber yield in desert greenhouse[J]. Ground Water, 2018, 40(6): 96−98 doi: 10.3969/j.issn.1004-1184.2018.06.035
    [26] PASTERNAK D, MALACH Y D. Irrigation with brackish water under desert conditions X. Irrigation management of tomatoes (Lycopersicon esculentum Mills) on desert sand dunes[J]. Agricultural Water Management, 1995, 28(2): 121−132 doi: 10.1016/0378-3774(95)01171-E
    [27] GAWAD G A, ARSLAN A, GAIHBE A, et al. The effects of saline irrigation water management and salt tolerant tomato varieties on sustainable production of tomato in Syria (1999−2002)[J]. Agricultural Water Management, 2005, 78(1/2): 39−53
    [28] PATEL R M, PRASHER S O, DONNELLY D, et al. Subirrigation with brackish water for vegetable production in arid regions[J]. Bioresource Technology, 1999, 70(1): 33−37 doi: 10.1016/S0960-8524(99)00012-7
    [29] 焦艳平, 张艳红, 潘增辉, 等. 不同矿化度微咸水灌溉对大白菜生长和土壤盐分累积的影响[J]. 节水灌溉, 2012(12): 4−8

    JIAO Y P, ZHANG Y H, PAN Z H, et al. Effect of saline water irrigation on Chinese cabbage growth and soil salt accumulation[J]. Water Saving Irrigation, 2012(12): 4−8
    [30] SAVVAS D, LENZ F. Effects of NaCl or nutrient-induced salinity on growth, yield, and composition of eggplants grown in rockwool[J]. Scientia Horticulturae, 2000, 84(1/2): 37−47
    [31] MENDLINGER S. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon[J]. Scientia Horticulturae, 1994, 57(1/2): 41−49
    [32] SAHIN U, EKINCI M, ORS S, et al. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata)[J]. Scientia Horticulturae, 2018, 240: 196−204 doi: 10.1016/j.scienta.2018.06.016
    [33] DEL AMOR F M, MARTINEZ V, CERDÁ A. Salinity duration and concentration affect fruit yield and quality, and growth and mineral composition of melon plants grown in perlite[J]. HortScience, 1999, 34(7): 1234−1237 doi: 10.21273/HORTSCI.34.7.1234
    [34] 江雪飞, 乔飞, 邹志荣. 不同生育期咸水灌溉对砂培甜瓜产量和品质的影响[J]. 西北农林科技大学学报: 自然科学版, 2006, 34(10): 87−90

    JIANG X F, QIAO F, ZOU Z R. Effects of brackish irrigation on fruit yield and quality of melon in sand culture[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry: Natural Science Edition, 2006, 34(10): 87−90
    [35] 吴蕴玉, 金星, 徐元, 等. 秸秆覆盖条件下微咸水灌溉对番茄生长和产量品质的影响[J]. 节水灌溉, 2015(7): 21−24 doi: 10.3969/j.issn.1007-4929.2015.07.006

    WU Y Y, JIN X, XU Y, et al. Effects of saline water irrigation on tomato growth, quality and yield under straw mulching[J]. Water Saving Irrigation, 2015(7): 21−24 doi: 10.3969/j.issn.1007-4929.2015.07.006
    [36] ZIPELEVISH E, GRINBERGE A, AMAR S, et al. Eggplant dry matter composition fruit yield and quality as affected by phosphate and total salinity caused by potassium fertilizers in the irrigation solution[J]. Journal of Plant Nutrition, 2000, 23(4): 431−442 doi: 10.1080/01904160009382030
    [37] HAND M J, TAFFOUO V D, NOUCK A E, et al. Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45(2): 481−490 doi: 10.15835/nbha45210928
    [38] VÍLLORA G, MORENO D A, PULGAR G, et al. Zucchini growth, yield, and fruit quality in response to sodium chloride stress[J]. Journal of Plant Nutrition, 1999, 22(6): 855−861 doi: 10.1080/01904169909365677
    [39] NAVARRO J M, GARRIDO C, CARVAJAL M, et al. Yield and fruit quality of pepper plants under sulphate and chloride salinity[J]. The Journal of Horticultural Science and Biotechnology, 2002, 77(1): 52−57 doi: 10.1080/14620316.2002.11511456
    [40] SAKAMOTO K, KOGI M, YANAGISAWA T. Effects of salinity and nutrients in seawater on hydroponic culture of red leaf lettuce[J]. Environmental Control in Biology, 2014, 52(3): 189−195 doi: 10.2525/ecb.52.189
    [41] NEOCLEOUS D, KOUKOUNARAS A, SIOMOS A S, et al. Assessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuce[J]. Journal of Food Quality, 2014, 37(1): 1−8 doi: 10.1111/jfq.12066
    [42] KIM H J, FONSECA J M, CHOI J H, et al. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.)[J]. Journal of Agricultural and Food Chemistry, 2008, 56(10): 3772−3776 doi: 10.1021/jf0733719
    [43] 李国安, 蒋静, 马娟娟, 等. 咸水灌溉对土壤水盐分布和小麦产量的影响[J]. 排灌机械工程学报, 2018, 36(6): 544−552

    LI G A, JIANG J, MA J J, et al. Effect of saline water irrigation on water-salt distribution and yield of wheat[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(6): 544−552
    [44] 陈丽娟, 冯起, 王昱, 等. 微咸水灌溉条件下含黏土夹层土壤的水盐运移规律[J]. 农业工程学报, 2012, 28(8): 44−51 doi: 10.3969/j.issn.1002-6819.2012.08.007

    CHEN L J, FENG Q, WANG Y, et al. Water and salt movement under saline water irrigation in soil with clay interlayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 44−51 doi: 10.3969/j.issn.1002-6819.2012.08.007
    [45] LIU B X, WANG S Q, KONG X L, et al. Soil matric potential and salt transport in response to different irrigated lands and soil heterogeneity in the North China Plain[J]. Journal of Soils and Sediments, 2019, 19(12): 3982−3993 doi: 10.1007/s11368-019-02331-5
    [46] 马文军, 程琴娟, 李良涛, 等. 微咸水灌溉下土壤水盐动态及对作物产量的影响[J]. 农业工程学报, 2010, 26(1): 73−80 doi: 10.3969/j.issn.1002-6819.2010.01.013

    MA W J, CHENG Q J, LI L T, et al. Effect of slight saline water irrigation on soil salinity and yield of crop[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 73−80 doi: 10.3969/j.issn.1002-6819.2010.01.013
    [47] 刘静, 高占义. 中国利用微咸水灌溉研究与实践进展[J]. 水利水电技术, 2012, 43(1): 101−104 doi: 10.3969/j.issn.1000-0860.2012.01.024

    LIU J, GAO Z Y. Research and practice progress of brackish water irrigation in China[J]. Water resources and hydropower technology, 2012, 43(1): 101−104 doi: 10.3969/j.issn.1000-0860.2012.01.024
    [48] 宋露露, 田军仓, 王怀博. 基于正交试验的温室甜瓜微咸水灌溉管理模式优化[J]. 灌溉排水学报, 2014, 33(2): 36−39

    SONG L L, TIAN J C, WANG H B. Optimization of brackish water irrigation management mode for greenhouse muskmelon based on orthogonal experimental design[J]. Journal of Irrigation and Drainage, 2014, 33(2): 36−39
    [49] 刘小媛, 高佩玲, 杨大明, 等. 咸淡水间歇组合灌溉对盐碱耕地土壤水盐运移特性的影响[J]. 土壤学报, 2017, 54(6): 1404−1413

    LIU X Y, GAO P L, YANG D M, et al. Effects of intermittent combined irrigation on the characteristics of soil water and salt movement in farm land of salt-affected soil[J]. Acta Pedologica Sinica, 2017, 54(6): 1404−1413
    [50] 杨树青, 叶志刚, 史海滨, 等. 内蒙河套灌区咸淡水交替灌溉模拟及预测[J]. 农业工程学报, 2010, 26(8): 8−17 doi: 10.3969/j.issn.1002-6819.2010.08.002

    YANG S Q, YE Z G, SHI H B, et al. Simulation and prediction of rotational irrigation with salty and fresh water in the Hetao irrigation area of Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 8−17 doi: 10.3969/j.issn.1002-6819.2010.08.002
    [51] 王全九, 徐益敏, 王金栋, 等. 咸水与微咸水在农业灌溉中的应用[J]. 灌溉排水, 2002, 21(4): 73−77 doi: 10.3969/j.issn.1672-3317.2002.04.020

    WANG Q J, XU Y M, WANG J D, et al. Application of saline and slight saline water for farmland irrigation[J]. Irrigation and Drainage, 2002, 21(4): 73−77 doi: 10.3969/j.issn.1672-3317.2002.04.020
    [52] 牛君仿, 冯俊霞, 路杨, 等. 咸水安全利用农田调控技术措施研究进展[J]. 中国生态农业学报, 2016, 24(8): 1005−1015

    NIU J F, FENG J X, LU Y, et al. Advances in agricultural practices for attenuating salt stress under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1005−1015
    [53] NOVAK J M, BUSSCHER W J, WATTS D W, et al. Biochars impact on soil-moisture storage in an ultisol and two aridisols[J]. Soil Science, 2012, 177(5): 310−320 doi: 10.1097/SS.0b013e31824e5593
    [54] AKHTAR S S, ANDERSEN M N, NAVEED M, et al. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize[J]. Functional Plant Biology: FPB, 2015, 42(8): 770−781 doi: 10.1071/FP15054
    [55] SHE D L, SUN X Q, GAMARELDAWLA A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports, 2018, 8(1): 14743 doi: 10.1038/s41598-018-33040-7
    [56] DU S T, LIU Y, ZHANG P, et al. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.)[J]. Food Chemistry, 2015, 173: 905−911 doi: 10.1016/j.foodchem.2014.10.115
    [57] UCHIDA A, JAGENDORF A T, HIBINO T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163(3): 515−523 doi: 10.1016/S0168-9452(02)00159-0
    [58] DONG C J, WANG X L, SHANG Q M. Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings[J]. Scientia Horticulturae, 2011, 129(4): 629−636 doi: 10.1016/j.scienta.2011.05.005
    [59] HORVÁTH E, CSISZÁR J, GALLÉ Á, et al. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress[J]. Journal of Plant Physiology, 2015, 183: 54−63 doi: 10.1016/j.jplph.2015.05.010
    [60] HAO J H, DONG C J, ZHANG Z G, et al. Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis[J]. Plant Science: an International Journal of Experimental Plant Biology, 2012, 187: 69−82
    [61] MIAO Y X, LUO X Y, GAO X X, et al. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings[J]. Scientia Horticulturae, 2020, 272: 109577 doi: 10.1016/j.scienta.2020.109577
    [62] CUARTERO J, FERNÁNDEZ-MUÑOZ R. Tomato and salinity[J]. Scientia Horticulturae, 1998, 78(1/2/3/4): 83−125
    [63] 郭小俊, 谢成俊. 外源ABA对NaCl胁迫下黄瓜幼苗不同离子含量的影响[J]. 中国蔬菜, 2008(9): 27−30

    GUO X J, XIE C J. Effect of exogenous ABA on ionic contents of cucumber seedlings under NaCl stress[J]. China Vegetables, 2008(9): 27−30
    [64] 束胜, 孙锦, 郭世荣, 等. 外源腐胺对盐胁迫下黄瓜幼苗叶片PSⅡ光化学特性和体内离子分布的影响[J]. 园艺学报, 2010, 37(7): 1065−1072

    SHU S, SUN J, GUO S R, et al. Effects of exogenous putrescine on PSⅡ photochemistry and ion distribution of cucumber seedlings under salt stress[J]. Acta Horticulturae Sinica, 2010, 37(7): 1065−1072
    [65] 周艳, 刘慧英, 崔金霞, 等. 外源GSH对NaCl胁迫下番茄幼苗叶片及根系离子微域分布的影响[J]. 植物营养与肥料学报, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311

    ZHOU Y, LIU H Y, CUI J X, et al. Effects of exogenous glutathione on ions micro-distribution in leaf and root of tomato seedlings under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311
    [66] 庞强强, 孙光闻, 蔡兴来, 等. 硝酸盐胁迫下黄腐酸对小白菜活性氧代谢及相关基因表达的影响[J]. 分子植物育种, 2018, 16(17): 5812−5820

    PANG Q Q, SUN G W, CAI X L, et al. Effects of fulvic acid on reactive oxygen metabolism and related gene expression in pakchoi under NO3 stress[J]. Molecular Plant Breeding, 2018, 16(17): 5812−5820
    [67] LOTFI R, PESSARAKLI M, GHARAVI-KOUCHEBAGH P, et al. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity[J]. The Crop Journal, 2015, 3(5): 434−439 doi: 10.1016/j.cj.2015.05.006
    [68] 高同国, 袁红莉, 荣小焕, 等. 盐胁迫下黄腐酸对大豆种子萌发及抗氧化酶活性的影响[J]. 腐植酸, 2016(3): 22−25 doi: 10.3969/j.issn.1671-9212.2016.03.007

    GAO T G, YUAN H L, RONG X H, et al. Effects of fulvic acid on soybean germination and antioxidant enzymes activities under salt stress[J]. Humic Acid, 2016(3): 22−25 doi: 10.3969/j.issn.1671-9212.2016.03.007
    [69] 庞晓燕. 营养液中添加不同剂量黄腐酸对基质栽培黄瓜生长、品质及产量的影响[D]. 泰安: 山东农业大学, 2017

    PANG X Y. Effects of different doses of fulvic acid added in nutrient solution on growth, quality and yield of cucumber cultivated in organic substrate[D]. Tai’an: Shandong Agricultural University, 2017
    [70] NAVADA S, VADSTEIN O, GAUMET F, et al. Biofilms remember: Osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms[J]. Water Research, 2020, 176: 115732 doi: 10.1016/j.watres.2020.115732
    [71] ISAYENKOV S V, MAATHUIS F J M. Plant salinity stress: many unanswered questions remain[J]. Frontiers in Plant Science, 2019, 10: 80 doi: 10.3389/fpls.2019.00080
    [72] El GHAZALI GAMAL E B. Suaeda vermiculata forssk. ex J. F. gmel. : structural characteristics and adaptations to salinity and drought: a review[J]. International Journal of Sciences, 2020, 9(2): 28−33 doi: 10.18483/ijSci.2268
    [73] PAN T, LIU M M, KRESLAVSKI V D, et al. Non-stomatal limitation of photosynthesis by soil salinity[J]. Critical Reviews in Environmental Science and Technology, 2020, 51(8): 1−35
    [74] TSAI Y C, CHEN K C, CHENG T S, et al. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency[J]. BMC Plant Biology, 2019, 19(1): 403 doi: 10.1186/s12870-019-1983-8
  • 加载中
表(1)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  69
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-03-24
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回