留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北平原蒸散发变化及对植被生产力的响应

王林娜 韩淑敏 李会龙 杨永辉

王林娜, 韩淑敏, 李会龙, 杨永辉. 华北平原蒸散发变化及对植被生产力的响应[J]. 中国生态农业学报 (中英文), 2022, 30(5): 735−746 doi: 10.12357/cjea.20210922
引用本文: 王林娜, 韩淑敏, 李会龙, 杨永辉. 华北平原蒸散发变化及对植被生产力的响应[J]. 中国生态农业学报 (中英文), 2022, 30(5): 735−746 doi: 10.12357/cjea.20210922
WANG L N, HAN S M, LI H L, YANG Y H. Variation of evapotranspiration and its response to vegetation productivity in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 735−746 doi: 10.12357/cjea.20210922
Citation: WANG L N, HAN S M, LI H L, YANG Y H. Variation of evapotranspiration and its response to vegetation productivity in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 735−746 doi: 10.12357/cjea.20210922

华北平原蒸散发变化及对植被生产力的响应

doi: 10.12357/cjea.20210922
基金项目: 国家重点研发计划项目(2018YFE0110100)和国家自然科学基金项目(42171046)资助
详细信息
    作者简介:

    王林娜, 主要研究方向为遥感水文。E-mail: lnwang@sjziam.ac.cn

    通讯作者:

    杨永辉, 主要研究方向为生态水文。E-mail: yonghui.yang@sjziam.ac.cn

  • 中图分类号: P426.2

Variation of evapotranspiration and its response to vegetation productivity in the North China Plain

Funds: This study was supported by the National Key Research and Development Program of China (2018YFE0110100) and the National Natural Science Foundation of China (42171046).
More Information
  • 摘要: 华北平原是我国粮食主产区, 水资源短缺是限制区域粮食生产和社会经济发展的重要因素。研究蒸散发动态变化、分析演变发展的驱动因素, 对于探明区域水资源演变、优化水资源管理具有重要参考价值。本文基于500 m空间分布率的PML_V2遥感蒸散产品, 选择华北平原和蒸散量变化存在差异的3类农业类型区的4个典型区: 以石家庄和保定为代表的山前平原区, 以衡水为代表的中部低平原区, 以德州为代表的黄河灌区, 对像元尺度蒸散发变化、变化的显著性和影响因素开展研究。结果表明: 1) 2001—2019年, 华北平原年均蒸散量为588.1 mm, 年际变化呈震荡波动上升态势; 小麦季蒸散量受地下水压采、休耕政策影响, 呈不显著下降趋势; 玉米季蒸散量上升趋势显著(P<0.05)。2)基于Theil-Sen Median斜率和Mann-Kendall方法的显著性检验结果表明, 蒸散量显著增加的区域主要位于中部低平原和黄河灌区; 不同土地利用类型下蒸散量变化有显著差异, 农业用地内有85.5%的地区蒸散量变化呈上升趋势, 其中有42.3%达到显著上升(P<0.05), 主要分布在黄河灌区一带, 城市化发展导致城市外围区蒸散量显著减少(P<0.05), 但在北京、天津等大城市内部蒸散量有增加趋势。3)蒸散量与总初级生产力(GPP)和归一化植物指数(NDVI)相关性分析表明, 蒸散量与GPP的相关性较高, 更能反映粮食主产区植被生产力对蒸散发的影响, 尤其在黄河灌区和中部低平原区均达到显著相关水平(P<0.05)。
  • 图  1  华北平原和典型研究区位置

    Figure  1.  Locations of the North China Plain and typical areas

    图  2  2001—2019年华北平原全年和不同作物生长季的蒸散量(ET)变化特征

    Figure  2.  Evapotranspiration (ET) of year and crop growth seasons in the North China Plain from 2001 to 2019

    图  3  华北平原全年及不同作物生长季蒸散量及其显著性变化趋势的空间分布

    SI: 显著上升趋势; NSI: 不显著上升趋势; SD: 显著下降趋势; NSD: 不显著下降趋势。SI: significant increase; NSI: non-significant increase; SD: significant decrease; NSD: non-significant decrease.

    Figure  3.  Spatial distribution of evapotranspiration (ET) and its’ significant change trends in the North China Plain for annual and different crop growing seasons

    图  4  2001—2019年华北平原及典型区不同土地利用类型蒸散量(ET)变化

    Figure  4.  Evapotranspiration (ET) under different land use types in the North China Plain and typical areas from 2001 to 2019

    图  5  2001—2019年华北平原蒸散量(ET)与归一化植被指数(NDVI)、总初级生产力(GPP)的相关系数及显著性相关的区域

    SPC: 显著正相关; SNC: 显著负相关。SPC: significantly positive correlation; SNC: significantly negative correlation.

    Figure  5.  Distributions of correlation coefficients and significance between evapotranspiration (ET), gross primary productivity (GPP) and normalized difference vegetation index (NDVI) in the North China Plain from 2001 to 2019

    图  6  2001—2019年华北平原4个典型区域蒸散量(ET)、总初级生产力(GPP)、归一化植被指数(NDVI)的年际变化

    Figure  6.  Annual evapotranspiration (ET), gross primary productivity (GPP) and normalized difference vegetation index (NDVI) in four typical agricultural areas of the North China Plain from 2001 to 2019

    图  7  华北平原4个典型农业区蒸散量(ET)与归一化植被指数(NDVI)、总初级生产力(GPP)的相关性

    Figure  7.  Correlations between evapotranspiration (ET) and normalized difference vegetation index (NDVI) / gross primary productivity (GPP) in four typical agricultural areas of the North China Plain

    图  8  2001—2019年华北平原玉米季蒸散量(ET)与总初级生产力(GPP)的相关性及显著性

    Figure  8.  Correlation and significance between evapotranspiration (ET) and gross primary productivity (GPP) for corn growing season in the North China Plain from 2001 to 2019

    表  1  数据类型、名称和来源及时空分辨率

    Table  1.   Data type, name and source, and temporal and spatial resolution used in the study

    数据类型
    Data type
    时间分辨率
    Temporal resolution
    空间分辨率
    Spatial resolution
    数据名称及来源
    Data name and source
    蒸散发
    Evapotranspiration (ET)
    8 d500 m全球PML_V2陆地蒸散发与总初级生产力(GPP)数据集
    PML_V2 global evapotranspiration and gross primary (GPP) production
    https://earthengine.google.com/
    总初级生产力
    Gross primary productivity (GPP)
    8 d500 m全球PML_V2陆地蒸散发与GPP数据集
    PML_V2 global evapotranspiration and GPP
    https://earthengine.google.com/
    归一化植被指数
    Normalized Difference Vegetation Index (NDVI)
    月度 Month1 km中国月度1 km归一化植被指数(NDVI)空间分布数据集
    China month vegetation index (NDVI) spatial distribution dataset
    https://www.resdc.cn/Default.aspx
    土地利用
    Land use
    30 m30 m全球地表覆盖数据
    GLOBELAND30
    http://www.globallandcover.com/home.html?type=data
    下载: 导出CSV

    表  2  2001—2019年华北平原不同土地利用类型蒸散变化显著性区域面积比例及主要分布区

    Table  2.   Significant area proportions and main distribution areas of evapotranspiration change under different land use types in the North China Plain from 2001 to 2019

    土地利用类型
    Land use type
    面积比例 Area proportion (%)分布区 Distribution area
    增加趋势
    Increasing
    显著增加趋势
    Significant increasing
    减少趋势
    Decreasing
    显著减少趋势
    Significant decreasing
    增加区域
    Increasing area
    减少区域
    Decreasing area
    农业用地
    Agricultural land
    85.542.314.51.0黄灌区、太行山前平原
    Yellow River irrigation area / Piedmont plain of the Taihang Mountains
    与城市交界地带
    Junction with the city
    城市用地
    City land
    49.111.450.98.6北京、天津主城区
    Main urban areas of Beijing and Tianjin
    大部分城市区域
    Most urban areas
    下载: 导出CSV
  • [1] ALLEN R G, PEREIRA L S, HOWELL T A, et al. Evapotranspiration information reporting: Ⅰ. Factors governing measurement accuracy[J]. Agricultural Water Management, 2011, 98(6): 899−920 doi: 10.1016/j.agwat.2010.12.015
    [2] KUNDU S, KHARE D, MONDAL A. Past, present and future land use changes and their impact on water balance[J]. Journal of Environmental Management, 2017, 197: 582−596 doi: 10.1016/j.jenvman.2017.04.018
    [3] MU Q Z, ZHAO M S, RUNNING S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781−1800 doi: 10.1016/j.rse.2011.02.019
    [4] MARTENS B, MIRALLES D G, LIEVENS H, et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903−1925 doi: 10.5194/gmd-10-1903-2017
    [5] SENAY G B, BOHMS S, SINGH R K, et al. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach[J]. JAWRA Journal of the American Water Resources Association, 2013, 49(3): 577−591 doi: 10.1111/jawr.12057
    [6] ZHANG K, KIMBALL J S, NEMANI R R, et al. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006[J]. Water Resources Research, 2010, 46(9): W09522
    [7] ZHANG Y Q, KONG D D, GAN R, et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002−2017[J]. Remote Sensing of Environment, 2019, 222: 165−182 doi: 10.1016/j.rse.2018.12.031
    [8] ZHANG Y Y, XIA J, YU J J, et al. Simulation and assessment of urbanization impacts on runoff metrics: insights from landuse changes[J]. Journal of Hydrology, 2018, 560: 247−258 doi: 10.1016/j.jhydrol.2018.03.031
    [9] LI C C, ZHANG Y Q, SHEN Y J, et al. Decadal water storage decrease driven by vegetation changes in the Yellow River Basin[J]. Science Bulletin, 2020, 65(22): 1859−1861 doi: 10.1016/j.scib.2020.07.020
    [10] LUAN J K, ZHANG Y Q, TIAN J, et al. Coal mining impacts on catchment runoff[J]. Journal of Hydrology, 2020, 589: 125101 doi: 10.1016/j.jhydrol.2020.125101
    [11] GHALAMI V, SAGHAFIAN B, RAZIEI T. Trend analysis of evapotranspiration over Iran based on NEX-GDDP high-resolution dataset[J]. International Journal of Climatology, 2021, 41(S1): E2073−E2096
    [12] LI M, CHU R H, ISLAM A R M T, et al. Characteristics of surface evapotranspiration and its response to climate and land use and land cover in the Huai River Basin of eastern China[J]. Environmental Science and Pollution Research International, 2021, 28(1): 683−699 doi: 10.1007/s11356-020-10432-9
    [13] 谷佳贺, 薛华柱, 董国涛, 等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158−167 doi: 10.12118/j.issn.10006060.2021.01.17

    GU J H, XUE H Z, DONG G T, et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021, 44(1): 158−167 doi: 10.12118/j.issn.10006060.2021.01.17
    [14] ZHANG Y C, LEI H M, ZHAO W G, et al. Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain[J]. Agricultural Water Management, 2018, 198: 53−64 doi: 10.1016/j.agwat.2017.12.027
    [15] SUN H Y, LIU C M, ZHANG X Y, et al. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain[J]. Agricultural Water Management, 2006, 85(1/2): 211−218
    [16] ZHANG X Y, CHEN S Y, LIU M Y, et al. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain[J]. Agronomy Journal, 2005, 97(3): 783−790 doi: 10.2134/agronj2004.0194
    [17] GRAFTON R Q, WILLIAMS J, PERRY C J, et al. The paradox of irrigation efficiency[J]. Science, 2018, 361(6404): 748−750 doi: 10.1126/science.aat9314
    [18] YANG Y M, YANG Y H, LIU D L, et al. Regional water balance based on remotely sensed evapotranspiration and irrigation: an assessment of the Haihe Plain, China[J]. Remote Sensing, 2014, 6(3): 2514−2533 doi: 10.3390/rs6032514
    [19] GAO G, XU C Y, CHEN D L, et al. Spatial and temporal characteristics of actual evapotranspiration over Haihe River Basin in China[J]. Stochastic Environmental Research and Risk Assessment, 2012, 26(5): 655−669 doi: 10.1007/s00477-011-0525-1
    [20] 贾绍凤, 李媛媛, 吕爱锋, 等. 海河流域平原区浅层地下水超采量估算[J]. 南水北调与水利科技, 2016, 14(4): 1−7, 71

    JIA S F, LI Y Y, LYU A F, et al. Estimation of excess pumping of shallow groundwater aquifer in Haihe Plain[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(4): 1−7, 71
    [21] 徐新良. 中国年度植被指数(NDVI)空间分布数据集[DB/OL]. 北京: 资源科学与数据中心, 2018 [2021-04-20]. http: //www. resdc. cn/DOI, 2018. DOI: 10.12078/2018060601

    XU X L. China Annual Vegetation Index (NDVI) spatial distribution dataset [DB/OL]. Beijing: Resource and Environment Science and Data Center, 2018 [2021-04-20]. http://www.resdc.cn/DOI, 2018. DOI: 10.12078/2018060601
    [22] ZHOU Q M, ISMAEEL A. Seasonal cropland trends and their nexus with agrometeorological parameters in the Indus River Plain[J]. Remote Sensing, 2020, 13(1): 41 doi: 10.3390/rs13010041
    [23] 秦孟晟, 郝璐, 郑箐舟, 等. 秦淮河流域土地利用/覆被变化对蒸散量变化的贡献[J]. 中国农业气象, 2019, 40(5): 269−283 doi: 10.3969/j.issn.1000-6362.2019.05.001

    QIN M S, HAO L, ZHENG Q Z, et al. Contributions of land use/cover change to the change of evapotranspiration in Qinhuai River Basin[J]. Chinese Journal of Agrometeorology, 2019, 40(5): 269−283 doi: 10.3969/j.issn.1000-6362.2019.05.001
    [24] 何韶阳, 田静, 张永强. 三种高分辨率地表蒸散发产品在华北地区的验证与对比[J]. 资源科学, 2020, 42(10): 2035−2046

    HE S Y, TIAN J, ZHANG Y Q. Verification and comparison of three high-resolution surface evapotranspiration products in North China[J]. Resources Science, 2020, 42(10): 2035−2046
    [25] 张喜英. 华北典型区域农田耗水与节水灌溉研究[J]. 中国生态农业学报, 2018, 26(10): 1454−1464

    ZHANG X Y. Water use and water-saving irrigation in typical farmlands in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1454−1464
    [26] LIU C M, ZHANG X Y, ZHANG Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2): 109−120 doi: 10.1016/S0168-1923(02)00015-1
    [27] 莫兴国, 刘苏峡, 林忠辉, 等. 华北平原蒸散和GPP格局及其对气候波动的响应[J]. 地理学报, 2011, 66(5): 589−598 doi: 10.11821/xb201105002

    MO X G, LIU S X, LIN Z H, et al. Patterns of evapotranspiration and GPP and their responses to climate variations over the North China Plain[J]. Acta Geographica Sinica, 2011, 66(5): 589−598 doi: 10.11821/xb201105002
    [28] 吴喜芳, 沈彦俊, 张丛, 等. 基于植被遥感信息的作物蒸散量估算模型−以华北平原冬小麦为例[J]. 中国生态农业学报, 2014, 22(8): 920−927

    WU X F, SHEN Y J, ZHANG C, et al. Modeling crop evapotranspiration using remotely sensed vegetation data: a case study of winter wheat in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 920−927
    [29] 方蓓婧. 华北平原蒸散发估算及其时空变化规律研究[D]. 北京: 清华大学, 2018

    FANG B J. Simulating temporal and spatial variation of evapotranspiration over the North China Plain[D]. Beijing: Tsinghua University, 2018
    [30] 周明勤. 积极推进华北地区地下水超采综合治理[J]. 当代农村财经, 2014(11): 8−10 doi: 10.3969/j.issn.1007-3604.2014.11.005

    ZHOU M Q. Actively promote comprehensive control of groundwater overexploitation in North China Plain[J]. Contemporary Rural Finance and Economics, 2014(11): 8−10 doi: 10.3969/j.issn.1007-3604.2014.11.005
    [31] 杨艳敏, 杨永辉, 王璐, 等. 白洋淀流域农业节水潜力及种植结构调整研究[J]. 中国水利, 2021(11): 32−34

    YANG Y M, YANG Y H, WANG L, et al. The agricultural water-saving potential and plantation structure research in the Baiyangdian Basin[J]. China Water Resources, 2021(11): 32−34
    [32] 吴乐, 孔德帅, 李颖, 等. 地下水超采区农业生态补偿政策节水效果分析[J]. 干旱区资源与环境, 2017, 31(3): 38−44

    WU L, KONG D S, LI Y, et al. Analysis on the water-saving effect of agro-ecology compensation policy in groundwater overdraft areas[J]. Journal of Arid Land Resources and Environment, 2017, 31(3): 38−44
    [33] 李静, 刘迪, 常媛媛. 地下水超采的农业项目综合治理效率及影响因素−基于河北省49个试点县区的实证研究[J]. 环境经济研究, 2021, 6(3): 75−96

    LI J, LIU D, CHANG Y Y. Governance efficiency and influencing factors of agricultural projects for overexploitation of groundwater: empirical study of 49 pilot counties in Hebei Province[J]. Journal of Environmental Economics, 2021, 6(3): 75−96
    [34] 周琳. 北京市城市蒸散发研究[D]. 北京: 清华大学, 2015

    ZHOU L. Urban evapotranspiration in Beijing[D]. Beijing: Tsinghua University, 2015
    [35] 唐婷, 冉圣宏, 谈明洪. 京津唐地区城市扩张对地表蒸散发的影响[J]. 地球信息科学学报, 2013, 15(2): 233−240 doi: 10.3724/SP.J.1047.2013.001233

    TANG T, RAN S H, TAN M H. Urbanization and its impact on the evapotranspiration in Beijing-Tianjin-Tangshan area[J]. Journal of Geo-Information Science, 2013, 15(2): 233−240 doi: 10.3724/SP.J.1047.2013.001233
    [36] 胡楠, 李雄, 戈晓宇. 因水而变−从城市绿地系统视角谈对海绵城市体系的理性认知[J]. 中国园林, 2015, 31(6): 21−25 doi: 10.3969/j.issn.1000-6664.2015.06.005

    HU N, LI X, GE X Y. Change with water — the rational cognition of sponge city system from the perspective of urban green space system[J]. Chinese Landscape Architecture, 2015, 31(6): 21−25 doi: 10.3969/j.issn.1000-6664.2015.06.005
    [37] LI H J, ZHENG L, LEI Y P, et al. Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology[J]. Agricultural Water Management, 2008, 95(11): 1271−1278 doi: 10.1016/j.agwat.2008.05.003
    [38] 张雅芳, 郭英, 沈彦俊, 等. 华北平原种植结构变化对农业需水的影响[J]. 中国生态农业学报(中英文), 2020, 28(1): 8−16

    ZHANG Y F, GUO Y, SHEN Y J, et al. Impact of planting structure changes on agricultural water requirement in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 8−16
    [39] LIANG W, ZHANG W B, JIN Z, et al. Rapid urbanization and agricultural intensification increase regional evaporative water consumption of the Loess Plateau[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(23): e2020JD033380
    [40] ZHANG K, KIMBALL J S, NEMANI R R, et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration[J]. Scientific Reports, 2015, 5: 15956 doi: 10.1038/srep15956
    [41] JIN Z, LIANG W, YANG Y T, et al. Separating vegetation greening and climate change controls on evapotranspiration trend over the loess plateau[J]. Scientific Reports, 2017, 7(1): 8191 doi: 10.1038/s41598-017-08477-x
    [42] CHEN S Y, ZHANG X Y, SUN H Y, et al. Effects of winter wheat row spacing on evapotranpsiration, grain yield and water use efficiency[J]. Agricultural Water Management, 2010, 97(8): 1126−1132 doi: 10.1016/j.agwat.2009.09.005
    [43] JIANG X L, KANG S Z, TONG L, et al. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of Northwest China[J]. Agricultural Water Management, 2014, 142: 135−143 doi: 10.1016/j.agwat.2014.05.006
    [44] WU X F, QI Y Q, SHEN Y J, et al. Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain[J]. Journal of Geographical Sciences, 2019, 29(6): 891−908 doi: 10.1007/s11442-019-1635-9
    [45] 王红营, 潘学鹏, 罗建美, 等. 基于遥感的华北平原农作物时空分布变化特征分析[J]. 中国生态农业学报, 2015, 23(9): 1199−1209

    WANG H Y, PAN X P, LUO J M, et al. Using remote sensing to analyze spatiotemporal variations in crop planting in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2015, 23(9): 1199−1209
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  57
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 录用日期:  2022-03-29
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回