-
摘要: 地球关键带是大气圈、水圈、生物圈、岩石圈、土壤圈相互作用并发生物质迁移转化的区域, 也是决定人类社会生存和发展的关键区域。我国学者根据土地利用的差异对地球关键带开展了分类, 其中农田关键带是人类活动影响最为强烈的一类。但已有研究更多考虑的是地表要素, 包含包气带和含水层方面的要素较少, 对关键带地下部分的属性关注不够。华北平原作为我国重要粮食高产区, 地下水超采严重, 农业生产引起的环境污染风险日益引发关注。开展农田关键带分类研究可以为该区域地下水水量/水质演化及保护提供基础科学支撑。本研究综合考虑华北平原的第四纪沉积物特征、浅层地下水埋深、地下水矿化度以及农业土地利用类型等要素, 在遵循综合性原则和主导因素原则的基础上, 制定了华北平原农田关键带三级分类方案。通过使用叠置法对分类要素进行叠加和合并, 提出了华北平原农田关键带的分类方案, 将华北平原分为38个农田关键带类型。本研究对于深入认识农业活动对地下水环境的影响具有重要意义。Abstract: The Earth’s critical zone is an area where water and solutes, as well as energy, gases, solids, and organisms, are exchanged among the atmosphere, hydrosphere, biosphere, lithosphere, and pedosphere, creating a life-sustaining environment for human society. In the vertical direction, the Earth’s critical zone goes up to the plant canopy and down through soil layers, unsaturated vadose zones, and saturated aquifers. Laterally, the Earth’s critical zones include not only weathered loose strata but also lakes, rivers, shallow marine environments, and vegetation. Earth’s critical zone studies mostly focus on the interaction between air, water, organisms, soil, surface rocks, and soil, integrating aboveground and belowground, time and space, and living and abiotic factors. This provides a basis for a comprehensive analysis of the evolution of complex terrestrial ecosystems and interdisciplinary research. The critical zones of the Earth are classified according to the differences in land use, among which the agricultural critical zone is the most strongly affected by human activities. However, most studies only consider surface function elements, without considering the important elements in the vadose zone and aquifers. The North China Plain (NCP) is a highly productive region where groundwater overexploitation and pollution are the major concerns. The crop-soil-aquifer critical zone perspective can provide new ideas for groundwater protection. Classification of the agricultural critical zone is the early basis for the study of regional groundwater volume/quality evolution and spatial differences. However, there has been little research on the classification of critical agricultural zones in the NCP. The classification of the agricultural critical zones in the NCP refers to the scheme for a comprehensive natural zone to a certain extent. By analyzing the hydrogeological conditions of the area and other information, combined with regional characteristics, the new classification followed the principles of comprehensiveness and dominant factors were developed with a three-level classification scheme for agricultural critical zones in the NCP by comprehensively considering the quaternary geology and geomorphology, shallow groundwater salinity, groundwater table depth, and agricultural land use factors. Taking the NCP as an example, agricultural critical zone zoning and mapping were carried out using the superposition method to superimpose and merge the classification elements, and an agricultural zone classification scheme was proposed. Finally, the results of this study divided the agricultural critical zone in the North China Plain into three first-level units, 13 second-level units, and 38 third-level units. This study has important reference significance for promoting the development of Earth critical zones, systematically understanding agricultural activities and their impacts on critical zone processes, and conducting research on the integrated management of regional groundwater and natural resources based on protection.
-
图 2 华北平原农田关键带第二级分区空间分布
Ⅰ-2: middle deep buried fresh water alluvial-proluvial plain; Ⅰ-3: deep buried fresh water alluvial-proluvial plain; Ⅰ-5: middle deep buried brackish water alluvial-proluvial plain; Ⅱ-1: shallow buried freshwater alluvial plain; Ⅱ-2: middle deep buried freshwater alluvial plain; Ⅱ-3: deep buried freshwater alluvial plain; Ⅱ-4: shallow buried brackish water alluvial plain; Ⅱ-5: medium deep buried brackish water alluvial plain; Ⅱ-6: deep buried brackish water alluvial plain; Ⅱ-7: shallow buried salt water alluvial plain; Ⅱ-8: middle deep buried salt water alluvial plain; Ⅲ-4: shallow buried brackish water marine plain; Ⅲ-7: shallow buried salt water marine plain.
Figure 2. Spatial distribution of the second level of agricultural critical zone in the North China Plain
图 3 华北平原农田关键带第三级分区空间分布
Figure 3. Spatial distribution of the third level of agricultural critical zone (CZ) in the North China Plain
Ⅰ-21: alluvial-proluvial middle deep buried in the freshwater grain agricultural CZ; Ⅰ-22: alluvial-proluvial middle deep buried in the freshwater forest and fruit agricultural CZ; Ⅰ-24: alluvial-proluvial middle deep buried freshwater vegetable field agricultural CZ; Ⅰ-31: alluvial-proluvial deep buried freshwater grain agricultural CZ; Ⅰ-32: alluvial-proluvial deep buried freshwater forest and fruit agricultural CZ; Ⅰ-34: alluvial-proluvial deep buried freshwater vegetable field agricultural CZ; Ⅰ-51: alluvial-proluvial middle deep buried brackish water grain agricultural CZ; Ⅰ-54: alluvial-proluvial middle deep buried brackish water vegetable field agricultural CZ; Ⅱ-11: alluvial shallow buried freshwater grain agricultural CZ; Ⅱ-21: alluvial middle deep buried freshwater grain agricultural CZ; Ⅱ-22: alluvial middle deep buried freshwater forest and fruit agricultural CZ; Ⅱ-23: alluvial middle deep buried freshwater cotton agricultural CZ; Ⅱ-24: alluvial middle deep buried freshwater vegetable field agricultural CZ; Ⅱ-31: alluvial deep buried freshwater grain agricultural CZ; Ⅱ-41: alluvial shallow buried brackish water grain agricultural CZ; Ⅱ-42: alluvial shallow buried brackish water forest and fruit agricultural CZ; Ⅱ-44: alluvial shallow buried brackish vegetable field agricultural CZ; Ⅱ-51: alluvial middle deep buried brackish water grain agricultural CZ; Ⅱ-52: alluvial middle deep buried brackish water forest and fruit agricultural CZ; Ⅱ-53: alluvial middle deep buried brackish water cotton agricultural CZ; Ⅱ-54: alluvial middle deep buried brackish water vegetable field agricultural CZ; Ⅱ-61: alluvial deep buried brackish water grain agricultural CZ; Ⅱ-62: alluvial deep buried brackish water forest and fruit agricultural CZ; Ⅱ-63: alluvial deep buried brackish water cotton agricultural CZ; Ⅱ-64: alluvial deep buried brackish water vegetable field agricultural CZ; Ⅱ-71: alluvial shallow buried salt water grain agricultural CZ; Ⅱ-72: alluvial shallow buried salt water forest and fruit agricultural CZ; Ⅱ-73: alluvial shallow buried salt water cotton agricultural CZ; Ⅱ-74: alluvial shallow buried salt water vegetable field agricultural CZ; Ⅱ-81: alluvial middle deep buried salt water grain agricultural CZ; Ⅱ-82: alluvial middle deep buried salt water forest and fruit agricultural CZ; Ⅱ-83: alluvial middle deep buried salt water cotton agricultural CZ; Ⅲ-41: marine shallow buried brackish water grain agricultural CZ; Ⅲ-43: marine shallow buried brackish water cotton agricultural CZ; Ⅲ-70: marine saline alkali wasteland agricultural CZ; Ⅲ-71: marine shallow buried salt water grain agricultural CZ; Ⅲ-73: marine shallow buried salt water cotton agricultural CZ; Ⅳ: non-cultivated land.
表 1 华北平原农田关键带分类层次及类型
Table 1. Classification levels and type characteristics of agricultural critical zones in the North China Plain
级别
Level第一级
First level第二级
Second level第三级
Third level包含要素
Contain element地质地貌
Geology and geomorphology地下水矿化度、浅层地下水埋深
Groundwater salinity, shallow groundwater depth农作物类型
Crop type类型
Type冲积平原、冲洪积平原、
海积平原
Alluvial plain, alluvial-proluvial plain, marine plain淡水、微咸水、咸水;
浅埋、中深埋、深埋
Freshwater, brackish water, salt water;
shallow buried, middle deep buried, deep buried小麦/玉米、棉花、菜地、
林果、水稻
Wheat / corn, cotton, vegetable,
forest and fruit, rice单元种类
Types of units3 13 38 编码举例
Coding exampleⅡ
冲积平原 Alluvial plainⅡ-3
深埋淡水冲积平原区
Alluvial plain with deep buried freshwaterⅡ-31
冲积型深埋淡水谷物农田关键带
Alluvial deep buried freshwater grain agricultural critical zone表 2 占总面积百分比前10的华北平原农田关键带第三级分区分布
Table 2. Distribution of the third level zones with top 10 area proportion of the total arae of agricultural critical zone in the North China Plain
第三级分区
Third division面积比
Area proportion (%)编码
Code冲积型中深埋微咸水谷物农田关键带
Alluvial middle deep buried brackish water grain agricultural critical zone17.74 Ⅱ-51 冲洪积型深埋淡水谷物农田关键带
Alluvial-proluvial deep buried freshwater grain agricultural critical zone13.02 Ⅰ-31 冲积型中深埋淡水谷物农田关键带
Alluvial middle deep buried freshwater grain agricultural critical zone12.99 Ⅱ-21 冲积型浅埋微咸水谷物农田关键带
Alluvial shallow brackish water grain agricultural critical zone5.84 Ⅱ-41 冲洪积型中深埋淡水林果农田关键带
Alluvial-proluvial middle deep buried in the freshwater forest and fruit agricultural critical zone4.63 Ⅰ-22 冲积型深埋微咸水谷物农田关键带
Alluvial deep buried brackish water grain agricultural critical zone3.97 Ⅱ-61 冲洪积型中深埋淡水谷物农田关键带
Alluvial-proluvial middle deep buried in the freshwater grain agricultural critical zone3.31 Ⅰ-21 冲积型深埋淡水谷物农田关键带
Alluvial deep buried freshwater grain agricultural critical zone3.29 Ⅱ-31 冲积型中深埋微咸水棉花农田关键带
Alluvial middle deep buried brackish water cotton agricultural critical zone2.81 Ⅱ-53 冲积型中深埋咸水谷物农田关键带
Alluvial middle deep buried salt water grain agricultural critical zone2.45 Ⅱ-81 -
[1] ANDERSON S P, BALES R C, DUFFY C J. Critical Zone Observatories: building a network to advance interdisciplinary study of earth surface processes[J]. Mineralogical Magazine, 2008, 72(1): 7−10 doi: 10.1180/minmag.2008.072.1.7 [2] LIN H. Earth’s critical zone and hydropedology: concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences, 2010, 14(1): 25−45 doi: 10.5194/hess-14-25-2010 [3] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228−1234AN P J, ZHANG Z Q, WANG L W. Review of earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1228−1234 [4] 张甘霖, 宋效东, 吴克宁. 地球关键带分类方法与中国案例研究[J]. 中国科学: 地球科学, 2021, 51(10): 1681−1692ZHANG G L, SONG X D, WU K N. Earth’s critical zone and hydropedology: concepts, characteristics, and advances[J]. Scientia Sinica (Terrae), 2021, 51(10): 1681−1692 [5] 金钊, 王云强, 高光耀, 等. 地球关键带与地表通量综合观测研究为黄土高原生态保护和可持续发展提供有力的科技支撑[J]. 中国科学院院刊, 2020, 35(3): 378−387JIN Z, WANG Y Q, GAO G Y, et al. Comprehensive Earth critical zone observation and terrestrial surface flux monitoring provide strong scientific support for ecological protection and regional sustainable development on the loess plateau of China[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(3): 378−387 [6] LV Y, HU J, FU B J, et al. A framework for the regional critical zone classification: the case of the Chinese Loess Plateau[J]. National Science Review, 2018, 6(1): 14−18 [7] GUO L, LIN H. Critical zone research and observatories: current status and future perspectives[J]. Vadose Zone Journal, 2016, 15(9): 1−14 doi: 10.2136/vzj2016.06.0050 [8] 张甘霖, 朱永官, 邵明安. 地球关键带过程与水土资源可持续利用的机理[J]. 中国科学: 地球科学, 2019, 49(12): 1945−1947ZHANG G L, ZHU Y G, SHAO M A. Understanding sustainability of soil and water resources in a critical zone perspective[J]. Scientia Sinica (Terrae), 2019, 49(12): 1945−1947 [9] 张光辉, 连英立, 刘春华, 等. 华北平原水资源紧缺情势与因源[J]. 地球科学与环境学报, 2011, 33(2): 172−176 doi: 10.3969/j.issn.1672-6561.2011.02.012ZHANG G H, LIAN Y L, LIU C H, et al. Situation and origin of water resources in short supply in North China Plain[J]. Journal of Earth Sciences and Environment, 2011, 33(2): 172−176 doi: 10.3969/j.issn.1672-6561.2011.02.012 [10] 李文鹏, 王龙凤, 杨会峰, 等. 华北平原地下水超采状况与治理对策建议[J]. 中国水利, 2020(13): 26−30 doi: 10.3969/j.issn.1000-1123.2020.13.017LI W P, WANG L F, YANG H F, et al. The groundwater overexploitation status and countermeasure suggestions of the North China Plain[J]. China Water Resources, 2020(13): 26−30 doi: 10.3969/j.issn.1000-1123.2020.13.017 [11] WU C, XU Q H, ZHANG X Q, et al. Palaeochannels on the North China Plain: types and distributions[J]. Geomorphology, 1996, 18(1): 5−14 doi: 10.1016/0169-555X(95)00147-W [12] 吴爱民, 李长青, 徐彦泽, 等. 华北平原地下水可持续利用的主要问题及对策建议[J]. 南水北调与水利科技, 2010, 8(6): 110−113, 128WU A M, LI C Q, XU Y Z, et al. Key issues influencing sustainable groundwater utilization and its countermeasures in North China Plain[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(6): 110−113, 128 [13] SUN H Y, SHEN Y J, YU Q, et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain[J]. Agricultural Water Management, 2009, 97(8): 1139−1145 [14] 夏军. 华北地区水循环与水资源安全: 问题与挑战(二)[J]. 海河水利, 2003(4): 1−4 doi: 10.3969/j.issn.1004-7328.2003.04.001XIA J. Water cycle and water resources safety in North China: problems and challenges (2)[J]. Haihe Water Resources, 2003(4): 1−4 doi: 10.3969/j.issn.1004-7328.2003.04.001 [15] 傅伯杰, 刘国华, 陈利顶, 等. 中国生态区划方案[J]. 生态学报, 2001, 21(1): 1−6 doi: 10.3321/j.issn:1000-0933.2001.01.001FU B J, LIU G H, CHEN L D, et al. Scheme of ecological regionalization in China[J]. Acta Ecologica Sinica, 2001, 21(1): 1−6 doi: 10.3321/j.issn:1000-0933.2001.01.001 [16] 任美锷, 杨纫章. 从矛盾观点论中国自然区划的若干理论问题−再论中国自然区划问题[J]. 南京大学学报: 自然科学版, 1963, 16(2): 1−12REN M E, YANG R Z. On some theoretical problems of China’s natural regionalization from the perspective of contradiction — another discussion on China’s natural regionalization[J]. Journal of Nanjing University: Natural Sciences, 1963, 16(2): 1−12 [17] 程维明, 周成虎, 李炳元, 等. 中国地貌区划理论与分区体系研究[J]. 地理学报, 2019, 74(5): 839−856 doi: 10.11821/dlxb201905001CHENG W M, ZHOU C H, LI B Y, et al. Geomorphological regionalization theory system and division methodology of China[J]. Acta Geographica Sinica, 2019, 74(5): 839−856 doi: 10.11821/dlxb201905001 [18] 周成虎, 程维明, 钱金凯, 等. 中国陆地1∶100万数字地貌分类体系研究[J]. 地球信息科学学报, 2009, 11(6): 707−724 doi: 10.3969/j.issn.1560-8999.2009.06.006ZHOU C H, CHENG W M, QIAN J K, et al. Research on the classification system of digital land geomorphology of 1∶1 000 000 in China[J]. Journal of Geo-Information Science, 2009, 11(6): 707−724 doi: 10.3969/j.issn.1560-8999.2009.06.006 [19] 沈彦俊, 闵雷雷, 吴林, 等. 华北山前平原农田关键带观测研究平台(栾城关键带观测平台)[J]. 中国科学院院刊, 2021, 36(4): 502−511, 521SHEN Y J, MIN L L, WU L, et al. Functions and applications of critical zone observatory of Luancheng Agro-ecosystem Experimental Station, Chinese Academy of Sciences (Luancheng Critical Zone Observatory)[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(4): 502−511, 521 [20] 郑度, 葛全胜, 张雪芹, 等. 中国区划工作的回顾与展望[J]. 地理研究, 2005, 24(3): 330−344 doi: 10.3321/j.issn:1000-0585.2005.03.002ZHENG D, GE Q S, ZHANG X Q, et al. Regionalization in China: retrospect and prospect[J]. Geographical Research, 2005, 24(3): 330−344 doi: 10.3321/j.issn:1000-0585.2005.03.002 [21] 倪绍祥. 中国综合自然地理区划新探[J]. 南京大学学报: 自然科学版, 1994, 30(4): 706−714NI S X. A recent exploration of China’s comprehensive physiographic regionalization[J]. Journal of Naijing University: Natural Sciences, 1994, 30(4): 706−714 [22] 张光辉, 费宇红, 刘克岩. 海河平原地下水演变与对策[M]. 北京: 科学出版社, 2004ZHANG G H, FEI Y H, LIU K Y. Groundwater Evolution and Policy in Haihe Plain[M]. Beijing: Science Press, 2004 [23] 张兆吉, 雒国中, 王昭, 等. 华北平原地下水资源可持续利用研究[J]. 资源科学, 2009, 31(3): 355−360 doi: 10.3321/j.issn:1007-7588.2009.03.001ZHANG Z J, LUO G Z, WANG Z, et al. Study on sustainable utilization of groundwater in North China Plain[J]. Resources Science, 2009, 31(3): 355−360 doi: 10.3321/j.issn:1007-7588.2009.03.001 [24] 张兆吉, 费宇红. 华北平原地下水可持续利用图集[M]. 北京: 中国地图出版社, 2009ZHANG Z J, FEI Y H. Atlas of Groundwater Sustainable Utilization in North China Plain[M]. Beijing: Sino Maps Press, 2009 [25] 王红营, 潘学鹏, 罗建美, 等. 基于遥感的华北平原农作物时空分布变化特征分析[J]. 中国生态农业学报, 2015, 23(9): 1199−1209WANG H Y, PAN X P, LUO J M, et al. Using remote sensing to analyze spatiotemporal variations in crop planting in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2015, 23(9): 1199−1209 [26] 李晓欣, 王仕琴, 陈肖如, 等. 北方区域尺度地下水-包气带硝酸盐分布与变化特征[J]. 中国生态农业学报(中英文), 2021, 29(1): 208−216LI X X, WANG S Q, CHEN X R, et al. Spatial distribution and changes of nitrate in the vadose zone and underground water in Northern China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 208−216 [27] SUN H Y, SHEN Y J, YU Q, et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain[J]. Agricultural Water Management, 2010, 97(8): 1139−1145 doi: 10.1016/j.agwat.2009.06.004 [28] ZHANG Y C, LEI H M, ZHAO W G, et al. Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain[J]. Agricultural Water Management, 2018, 198: 53−64 doi: 10.1016/j.agwat.2017.12.027 [29] 侯萌瑶, 张丽, 王知文, 等. 中国主要农作物化肥用量估算[J]. 农业资源与环境学报, 2017, 34(4): 360−367HOU M Y, ZHANG L, WANG Z W, et al. Estimation of fertilizer usage from main crops in China[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 360−367 [30] 牛新胜, 张翀, 巨晓棠. 华北潮土冬小麦-夏玉米轮作包气带氮素淋溶机制[J]. 中国生态农业学报(中英文), 2021, 29(1): 53−65NIU X S, ZHANG C, JU X T. Mechanism of nitrogen leaching in fluvo-aquic soil and deep vadose zone in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 53−65 [31] 黄峰, 杜太生, 王素芬, 等. 华北地区农业水资源现状和未来保障研究[J]. 中国工程科学, 2019, 21(5): 28−37HUANG F, DU T S, WANG S F, et al. Current situation and future security of agricultural water resources in North China[J]. Strategic Study of CAE, 2019, 21(5): 28−37 [32] 王仕琴, 郑文波, 孔晓乐. 华北农区浅层地下水硝酸盐分布特征及其空间差异性[J]. 中国生态农业学报, 2018, 26(10): 1476−1482WANG S Q, ZHENG W B, KONG X L. Spatial distribution characteristics of nitrate in shallow groundwater of the agricultural area of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1476−1482 -