留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增温施肥对农田土壤有机碳和全氮含量及δ13C、δ15N值的影响

李佳珍 董文旭 陈拓 胡春胜

李佳珍, 董文旭, 陈拓, 胡春胜. 增温施肥对农田土壤有机碳和全氮含量及δ13C、δ15N值的影响[J]. 中国生态农业学报 (中英文), 2022, 30(5): 842−850 doi: 10.12357/cjea.20220071
引用本文: 李佳珍, 董文旭, 陈拓, 胡春胜. 增温施肥对农田土壤有机碳和全氮含量及δ13C、δ15N值的影响[J]. 中国生态农业学报 (中英文), 2022, 30(5): 842−850 doi: 10.12357/cjea.20220071
LI J Z, DONG W X, CHEN T, HU C S. Effects of warming and fertilization on soil organic carbon and total nitrogen contents, and δ13C and δ15N in farmland[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 842−850 doi: 10.12357/cjea.20220071
Citation: LI J Z, DONG W X, CHEN T, HU C S. Effects of warming and fertilization on soil organic carbon and total nitrogen contents, and δ13C and δ15N in farmland[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 842−850 doi: 10.12357/cjea.20220071

增温施肥对农田土壤有机碳和全氮含量及δ13C、δ15N值的影响

doi: 10.12357/cjea.20220071
基金项目: 国家重点研发计划项目(2021YFD190100202)资助
详细信息
    作者简介:

    李佳珍, 主要研究方向为农田碳氮循环和环境效应。E-mail: lijiazhenle@163.com

    通讯作者:

    陈拓, 主要研究方向为农田碳氮循环和环境效应, E-mail: chent9@163.com

    胡春胜, 主要研究方向为农田碳氮循环和环境效应,E-mail: cshu@sjziam.ac.cn

  • 中图分类号: S3

Effects of warming and fertilization on soil organic carbon and total nitrogen contents, and δ13C and δ15N in farmland

Funds: This study was supported by the National Key Research and Development Program of China (2021YFD190100202).
More Information
  • 摘要: 农田土壤是重要的碳氮库, 对气候变化极其敏感, 但土壤碳氮循环对气候变化的响应目前还不清楚。在全球变暖背景下, 为了实现我国碳达峰、碳中和目标, 研究增温对土壤有机碳、全氮含量及其碳氮同位素的影响具有重要的现实意义。本研究采用红外辐射加热器模拟全球变暖, 使5 cm土壤温度增加约2 ℃。通过测定灌溉前后土壤有机碳和全氮含量及δ13C和δ15N值的变化, 研究增温、施氮和灌溉对华北平原小麦田土壤碳氮库的影响。试验共设4个处理: 不施氮不增温(N0T0)、不施氮增温(N0T1)、施氮不增温(N1T0)和施氮增温(N1T1)。结果表明: 灌溉前, 增温降低了土壤有机碳含量, 0~10 cm土层N1T1处理与不增温处理(N0T0和N1T0)之间差异显著(P<0.05), 10~20 cm土层N1T1处理与其他处理差异均显著(P<0.05); 灌溉后, 增温虽有降低土壤有机碳含量的趋势, 但差异不显著; 施氮条件下, 增温显著提升了δ13C值(P<0.05)。增温降低了土壤全氮含量, 并在灌溉前10~20 cm土层和灌溉后0~10 cm土层达显著水平(P<0.05); 增温提升了土壤δ15N值, 灌溉前0~10 cm土层N0T0处理与增温处理(N0T1和N1T1)差异显著(P<0.05), 灌溉后0~10 cm土层仅N0T1和N1T0处理间差异显著(P<0.05), 而10~20 cm土层增温处理(N0T1和N1T1)均与N1T0处理差异显著(P<0.05)。同一处理同一时期, 土壤有机碳和全氮的含量随土壤深度的增加而降低, δ13C和δ15N值随深度增加而升高, 但土壤有机碳和δ13C值的变化差异不显著, 全氮含量和δ15N值的变化差异显著(P<0.05)。土壤有机碳、全氮含量及δ13C和δ15N值在灌溉前后的差异均不显著。连续5年的增温施氮试验表明, 未来气候变暖可能会加快土壤有机碳和全氮的分解, 造成更多轻组有机碳损失。灌溉在短期内不会显著改变土壤碳氮含量及δ13C和δ15N值, 但其长期影响还需进一步探究。此外, 未来研究还应该重视多因素交互作用对土壤碳氮循环的影响。
  • 图  1  2012—2013年冬小麦季大气温度和降雨量

    Figure  1.  Daily mean air temperature and precipitation during wheat growing season of 2012 to 2013

    图  2  2013年灌溉前(3月28日, A)和灌溉后(4月26日, B)不同增温和施氮处理下不同土层的有机碳含量

    N0T0: 不施氮不增温; N0T1: 不施氮增温; N1T0施氮不增温; N1T1: 施氮增温。不同小写字母表示同一土层不同处理间差异显著(P<0.05), 不同大写字母表示同一处理两个土层间差异显著。N0T0: no nitrogen and no warming; N0T1: no nitrogen and warming; N1T0: nitrogen application and no warming; N1T1: nitrogen application and warming. Different lowercase letters mean significant differences among treatments in the same soil depth at P<0.05 level. Different capital letters mean significant differences between two soil layers for the same treatment at P<0.05 level.

    Figure  2.  Contents of soil organic carbon at two depths before (on March 28, A) and after (on April 26, B) irrigation under different fertilization and warming treatments in 2013

    图  3  2013年灌溉前(3月28日, A)和灌溉后(4月26日, B)不同增温和施氮处理下不同土层的有机碳δ13C值

    N0T0: 不施氮不增温; N0T1: 不施氮增温; N1T0施氮不增温; N1T1: 施氮增温。不同小写字母表示同一土层不同处理间差异显著(P<0.05), 不同大写字母表示同一处理两个土层间差异显著。N0T0: no nitrogen and no warming; N0T1: no nitrogen and warming; N1T0: nitrogen application and no warming; N1T1: nitrogen application and warming. Different lowercase letters mean significant differences among treatments in the same soil depth at P<0.05 level. Different capital letters mean significant differences between two soil layers for the same treatment at P<0.05 level.

    Figure  3.  δ13C natural abundances at two depths before (on March 28, A) and after (on April 26, B) irrigation under different fertilization and warming treatments in 2013

    图  4  2013年灌溉前(3月28日, A)和灌溉后(4月26日, B)不同增温和施氮处理下不同土层的全氮含量

    N0T0: 不施氮不增温; N0T1: 不施氮增温; N1T0施氮不增温; N1T1: 施氮增温。不同小写字母表示同一土层不同处理间差异显著(P<0.05), 不同大写字母表示同一处理两个土层间差异显著。N0T0: no nitrogen and no warming; N0T1: no nitrogen and warming; N1T0: nitrogen application and no warming; N1T1: nitrogen application and warming. Different lowercase letters mean significant differences among treatments in the same soil depth at P<0.05 level. Different capital letters mean significant differences between two soil layers for the same treatment at P<0.05 level.

    Figure  4.  Contents of soil nitrogen at two depths before (on March 28, A) and after (on April 26, B) irrigation under different fertilization and warming treatments in 2013

    图  5  2013年灌溉前(3月28日, A)和灌溉后(4月26日, B)不同增温和施氮处理下不同土层的δ15N值

    N0T0: 不施氮不增温; N0T1: 不施氮增温; N1T0施氮不增温; N1T1: 施氮增温。不同小写字母表示同一土层不同处理间差异显著(P<0.05), 不同大写字母表示同一处理两个土层间差异显著。N0T0: no nitrogen and no warming; N0T1: no nitrogen and warming; N1T0: nitrogen application and no warming; N1T1: nitrogen application and warming. Different lowercase letters mean significant differences among treatments in the same soil depth at P<0.05 level. Different capital letters mean significant differences between two soil layers for the same treatment at P<0.05 level.

    Figure  5.  δ15N natural abundances at two depths before (on March 28, A) and after (on April 26, B) irrigation under different fertilization and warming treatments in 2013

    图  6  2013年灌溉前(3月28日, A)和灌溉后(4月26日, B)不同增温和施氮处理下不同土层的碳氮比

    N0T0: 不施氮不增温; N0T1: 不施氮增温; N1T0施氮不增温; N1T1: 施氮增温。不同小写字母表示同一土层不同处理间差异显著(P<0.05), 不同大写字母表示同一处理两个土层间差异显著。N0T0: no nitrogen and no warming; N0T1: no nitrogen and warming; N1T0: nitrogen application and no warming; N1T1: nitrogen application and warming. Different lowercase letters mean significant differences among treatments in the same soil depth at P<0.05 level. Different capital letters mean significant differences between two soil layers for the same treatment at P<0.05 level.

    Figure  6.  C/N ratios at two depths before (on March 28, A) and after (on April 26, B) irrigation under different fertilization and warming treatments in 2013

  • [1] SOLOMON S, QIN D, MANNING M, et al. Climate Change 2007: the Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers[M]. Cambrideg: Cambridge Univeristy Press, 2007
    [2] XU W F, YUAN W P. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis[J]. Soil Biology and Biochemistry, 2017, 115: 265−274 doi: 10.1016/j.soilbio.2017.08.033
    [3] DAI Z M, YU M J, CHEN H H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5267−5276 doi: 10.1111/gcb.15211
    [4] LUO Y, WAN S, HUI D, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856): 622−625 doi: 10.1038/35098065
    [5] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081): 165−173 doi: 10.1038/nature04514
    [6] CHENG X, LUO Y, XU X, et al. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming[J]. Biogeosciences, 2011, 8(6): 1487−1498 doi: 10.5194/bg-8-1487-2011
    [7] RÜTTING T, HOVENDEN M J. Soil nitrogen cycle unresponsive to decadal long climate change in a Tasmanian grassland[J]. Biogeochemistry, 2020, 147(1): 99−107 doi: 10.1007/s10533-019-00627-9
    [8] SMITH P, FANG C, DAWSON J J C, et al. Impact of global warming on soil organic carbon[J]. Advances in Agronomy, 2008, 97: 1−43
    [9] MARIN-SPIOTTA E, SILVER W L, SWANSTON C W, et al. Soil organic matter dynamics during 80 years of reforestation of tropical pastures[J]. Global Change Biology, 2009, 15(6): 1584−1597 doi: 10.1111/j.1365-2486.2008.01805.x
    [10] FANG C M, SMITH P, MONCRIEFF J B, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433(7021): 57−59 doi: 10.1038/nature03138
    [11] CRAINE J M, FIERER N, MCLAUCHLAN K K. Widespread coupling between the rate and temperature sensitivity of organic matter decay[J]. Nature Geoscience, 2010, 3(12): 854−857 doi: 10.1038/ngeo1009
    [12] CONANT R T, DRIJBER R A, HADDIX M L, et al. Sensitivity of organic matter decomposition to warming varies with its quality[J]. Global Change Biology, 2008, 14(4): 868−877 doi: 10.1111/j.1365-2486.2008.01541.x
    [13] BASSO B, DUMONT B, MAESTRINI B, et al. Soil organic carbon and nitrogen feedbacks on crop yields under climate change[J]. Agricultural & Environmental Letters, 2018, 3(1): 180026
    [14] DAY T A, RUHLAND C T, XIONG F S. Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra[J]. Global Change Biology, 2008, 14(8): 1827−1843 doi: 10.1111/j.1365-2486.2008.01623.x
    [15] DING X L, CHEN S Y, ZHANG B, et al. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow[J]. Soil Biology and Biochemistry, 2019, 135: 13−19 doi: 10.1016/j.soilbio.2019.04.004
    [16] XU X, SHERRY R A, NIU S L, et al. Long-term experimental warming decreased labile soil organic carbon in a tallgrass prairie[J]. Plant and Soil, 2012, 361(1/2): 307−315
    [17] 李发东, 赵广帅, 李运生, 等. 灌溉对农田土壤有机碳影响研究进展[J]. 生态环境学报, 2012, 21(11): 1905−1910 doi: 10.3969/j.issn.1674-5906.2012.11.024

    LI F D, ZHAO G S, LI Y S, et al. Effects of irrigation on soil organic carbon in farmland: a review[J]. Ecology and Environmental Sciences, 2012, 21(11): 1905−1910 doi: 10.3969/j.issn.1674-5906.2012.11.024
    [18] LICHTFOUSE É, DOU S, GIRARDIN C, et al. Unexpected 13C-enrichment of organic components from wheat crop soils: evidence for the in situ origin of soil organic matter[J]. Organic Geochemistry, 1995, 23(9): 865−868 doi: 10.1016/0146-6380(95)80009-G
    [19] ZHOU X Q, CHEN C R, WANG Y F, et al. Effects of warming and increased precipitation on soil carbon mineralization in an Inner Mongolian grassland after 6 years of treatments[J]. Biology and Fertility of Soils, 2012, 48(7): 859−866 doi: 10.1007/s00374-012-0686-1
    [20] KANDA T, TAMURA K, ASANO M, et al. The 13C and 15N natural abundances to characterize soil organic matter associated with clay minerals in Eurasian steppe soils[J]. Journal of Arid Land Studies, 2015, 25(3): 153−156
    [21] PAUL E A. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization[J]. Soil Biology and Biochemistry, 2016, 98: 109−126 doi: 10.1016/j.soilbio.2016.04.001
    [22] LI J, DONG W, OENEMA O, et al. Irrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensity[J]. Science of the Total Environment, 2019, 646: 290−299 doi: 10.1016/j.scitotenv.2018.07.296
    [23] BIRD M I, VEENENDAAL E M, LLOYD J J. Soil carbon inventories and δ13C along a moisture gradient in Botswana[J]. Global Change Biology, 2004, 10(3): 342−349 doi: 10.1046/j.1365-2486.2003.00695.x
    [24] 胡诚, 乔艳, 李双来, 等. 长期不同施肥方式下土壤有机碳的垂直分布及碳储量[J]. 中国生态农业学报, 2010, 18(4): 689−692 doi: 10.3724/SP.J.1011.2010.00689

    HU C, QIAO Y, LI S L, et al. Vertical distribution and storage of soil organic carbon under long-term fertilization[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 689−692 doi: 10.3724/SP.J.1011.2010.00689
    [25] KUZYAKOV Y, DOMANSKI G. Carbon input by plants into the soil. Review[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421−431 doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
    [26] LI X J, XIE J S, ZHANG Q F, et al. Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia[J]. Geoderma, 2020, 364: 114198 doi: 10.1016/j.geoderma.2020.114198
    [27] LIU L T, HU C S, OLESEN J E, et al. Effect of warming and nitrogen addition on evapotranspiration and water use efficiency in a wheat-soybean/fallow rotation from 2010 to 2014[J]. Climatic Change, 2016, 139(3/4): 565−578
    [28] ZHU E X, CAO Z J, JIA J, et al. Inactive and inefficient: warming and drought effect on microbial carbon processing in alpine grassland at depth[J]. Global Change Biology, 2021, 27(10): 2241−2253 doi: 10.1111/gcb.15541
    [29] GUAN S, AN N, ZONG N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry, 2018, 116: 224−236 doi: 10.1016/j.soilbio.2017.10.011
    [30] HARTLEY I P, INESON P. Substrate quality and the temperature sensitivity of soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2008, 40(7): 1567−1574 doi: 10.1016/j.soilbio.2008.01.007
    [31] ATERE C T, GUNINA A, ZHU Z K, et al. Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: tracing of pathways by 13C natural abundance[J]. Soil Biology and Biochemistry, 2020, 149: 107931 doi: 10.1016/j.soilbio.2020.107931
    [32] FENG W T, LIANG J Y, HALE L E, et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming[J]. Global Change Biology, 2017, 23(11): 4765−4776 doi: 10.1111/gcb.13755
    [33] LIN J J, ZHU B, CHENG W X. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon[J]. Global Change Biology, 2015, 21(12): 4602−4612 doi: 10.1111/gcb.13071
    [34] CHENG L, ZHANG N F, YUAN M T, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities[J]. The ISME Journal, 2017, 11(8): 1825−1835 doi: 10.1038/ismej.2017.48
    [35] XU C H, XU X, JU C H, et al. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide[J]. Global Change Biology, 2021, 27(6): 1170−1180 doi: 10.1111/gcb.15489
    [36] PERI P L, LADD B, PEPPER D A, et al. Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in southern Patagonia’s native forests[J]. Global Change Biology, 2012, 18(1): 311−321 doi: 10.1111/j.1365-2486.2011.02494.x
    [37] DE CARVALHO CONCEIÇÃO TELLES E, DE CAMARGO P B, MARTINELLI L A, et al. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia[J]. Global Biogeochemical Cycles, 2003, 17(2): 1040
    [38] HARRIS P, BOL R, EVANS J, et al. Effect of long-term drainage on plant community, soil carbon and nitrogen contents and stable isotopic (δ13C, δ15N) composition of a permanent grassland[J]. European Journal of Soil Science, 2018, 69(1): 48−68 doi: 10.1111/ejss.12504
    [39] ZHOU Y, MUSHINSKI R M, HYODO A, et al. Vegetation change alters soil profile δ15N values at the landscape scale[J]. Soil Biology and Biochemistry, 2018, 119: 110−120 doi: 10.1016/j.soilbio.2018.01.012
    [40] HOBBIE E A, OUIMETTE A P. Controls of nitrogen isotope patterns in soil profiles[J]. Biogeochemistry, 2009, 95(2/3): 355−371
    [41] BAMMINGER C, POLL C, MARHAN S. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application[J]. Global Change Biology, 2018, 24(1): e318−e334 doi: 10.1111/gcb.13871
    [42] TANG S R, CHENG W G, HU R G, et al. Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan[J]. The Science of the Total Environment, 2021, 756: 143845 doi: 10.1016/j.scitotenv.2020.143845
    [43] ZHANG Q F, XIE J S, LYU M K, et al. Short-term effects of soil warming and nitrogen addition on the N∶P stoichiometry of Cunninghamia lanceolata in subtropical regions[J]. Plant and Soil, 2017, 411(1/2): 395−407
    [44] LIN L, ZHU B, CHEN C R, et al. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau[J]. Scientific Reports, 2016, 6: 31438 doi: 10.1038/srep31438
    [45] CHEN X P, WANG G X, ZHANG T, et al. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow[J]. Atmospheric Environment, 2017, 157: 111−124 doi: 10.1016/j.atmosenv.2017.03.024
    [46] CHNECKER J, BORKEN W, SCHINDLBACHER A, et al. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming[J]. Soil Biology & Biochemistry, 2016, 103: 300−307
    [47] BIJOOR N S, CZIMCZIK C I, PATAKI D E, et al. Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn[J]. Global Change Biology, 2008, 14(9): 2119−2131 doi: 10.1111/j.1365-2486.2008.01617.x
    [48] LIU W X, ZHANG Z, WAN S Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland[J]. Global Change Biology, 2009, 15(1): 184−195 doi: 10.1111/j.1365-2486.2008.01728.x
  • 加载中
图(6)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  40
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 录用日期:  2022-04-08
  • 网络出版日期:  2022-04-11
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回