Spatiotemporal pattern of the tea industry in Sichuan Province and its driving forces based on the geographical detector
-
摘要: 茶产业时空格局形成和演变是自然因素和人类活动共同作用的结果, 理解茶产业时空格局变化过程, 揭示不同自然-社会-经济驱动因子对茶产业时空格局演变的作用机制, 对区域茶叶种植结构调整具有重要意义。本文基于1980—2019年四川省县区尺度茶叶生产统计年鉴数据, 运用产业集中度、探索性空间数据分析和产业重心模型分析了四川省茶产业时空格局演化过程, 对研究区内海拔、土壤酸碱度、年降水量、年活动积温、生长季日平均气温、越冬期日极端最低气温、生长季日极端最高气温等自然因素, 土地利用强度、乡村劳动力、化肥、农药、灌溉等生产要素以及人均可支配收入、科技、政策等社会经济要素进行离散分层并确定最优尺度单元, 基于地理探测器探讨了各驱动因子对四川省茶产业分布的解释力以及交互作用。结果表明: 从时间上看, 四川省茶产业规模总体呈上升趋势, 区位基尼系数均大于0.5, 空间特征呈现出高度集聚, 且集聚程度随时间波动上升。从空间上看, 全局莫兰指数均大于0, 县域尺度上表现出明显的空间集聚, 且相邻县域之间相互影响, 热点区主要分布在川南地区和成都平原区南部, 茶产业重心整体上向西迁移。忽视可变面域问题会影响地理探测器建模结果, 因此对连续型因子离散化和空间单元尺度优化, 得到最优参数。单个因子对茶产业空间影响程度排前3的是土地利用强度(0.91)、乡村劳动力(0.87)和化肥(0.86); 影响因子相互作用主要表现为非线性增强和双因子增强, 生产与社会经济因子平均交互作用最大(0.8870), 四川省茶产业表现出生产要素驱动为主的空间格局。基于此, 本研究认为四川省茶产业应: 1)关注生长季缺水、突发性强降水以及低温冻害对茶树的影响; 2)加强“宜机采”茶园建设, 树立绿色茶园绿色发展理念; 3)提升良种普及率以及推广新技术, 保障用地、劳动力、化肥、农药等生产要素的稳定投入。Abstract: The growth of tea industry is the result of interactions between natural and social factors. An understanding of the spatiotemporal pattern of the tea industry and the effects of natural and socioeconomic factors provides an important basis for the adjustment of tea planting structures. Based on the statistical yearbook data of the tea industry in Sichuan Province over the last 40 years, from 1980 to 2019, the spatiotemporal pattern of tea industry in Sichuan Province and its driving forces were studied using industrial concentration, exploratory data analysis, and an industrial gravity model. Natural factors, such as elevation, soil pH, annual precipitation, accumulated temperature, average temperature of tea growing season, extreme minimum temperature of the overwintering period, and extreme maximum temperature of tea growing season; production factors, such as land use intensity, labor, fertilizer, pesticides, and irrigation; as well as socioeconomic factors, such as per capita disposable income, technology, and policy were statistically divided by the geographical detector. The impact of separate driving factors and the interactions between these factors on the spatial pattern of tea industry in Sichuan Province were systematically discussed. The results of this study were as follows: in the past 40 years, the tea industry in Sichuan Province had shown an expanding trend; the spatial distribution showed a high degree of concentration; and a wavelike increase with time (locational Gini index > 0.5). There was a significant geographical agglomeration on the county scale, showing a hot spatial structure in southern Sichuan and the southern Chengdu Plain (global Moran’s I > 0). The center of gravity of the tea industry in Sichuan migrated to the west. The modifiable areal unit problem (MAUP) is a fundamental issue in geographical detectors. To address this issue, both scale and zoning effects were tested to examine the MAUP before applying the geographical detector model in this study. Among the 15 influencing factors selected, land use intensity, labor, and fertilizer had the highest deciding power. The interactions between these factors mainly manifested as dual-factor enhancement and nonlinear enhancement types, and the average interaction of production factors and socioeconomic factors had the highest decisive power (0.8870). Thus, the tea industry in Sichuan Province was mainly driven by production factors. Evidence-based hypothetical solutions derived from these observations focused on three aspects: 1) Pay close attention to the influence of water shortage in the tea growth period, intense rainfall, and freezing damage on tea trees and react effectively. 2) Implement corresponding countermeasures, including strengthening the construction of machine-plucking tea gardens “suitable for mechanization” and establishing the concept of green development. 3) Accelerate the promotion and application of modern agricultural technology; breed new tea varieties that fit local conditions; and set up a system of steady land, labor, fertilizer, and pesticide input.
-
图 5 不同空间格网尺度下各影响因素对茶产业空间格局的决定力(影响因子的q值)及其排名变化
图中15个影响因子分别是: 海拔(X1)、土壤酸碱度(X2)、年降水量(X3)、年活动积温(X4)、生长季日平均气温(X5)、越冬期日极端最低气温(X6)、生长季日极端最高气温(X7)、土地利用强度(X8)、乡村劳动力(X9)、化肥(X10)、农药(X11)、灌溉(X12)、人均可支配收入(X13)、科技(X14)和政策 (X15)。There are 15 influence factors as follows: elevation (X1), pH (X2), annual precipitation (X3), accumulated temperature (X4), average temperature of growing season (X5), extreme minimum temperature of overwintering period (X6), extreme maximum temperature of growing season (X7), land use intensity (X8), labor (X9), fertilizer (X10), pesticides (X11), irrigation (X12), per capita disposable income (X13), technology (X14), policy (X15).
Figure 5. Deciding power (q value) and its rank of each influencing factor on spatial patterns of tea industry under different spatial grid scales in Sichuan Province
表 1 1980—2019年四川省茶产业空间Moran’s I指数变化
Table 1. Changes of space Moran’s I of tea industry in Sichuan Province from 1980 to 2019
年份 Year 1980 1985 1990 1995 2000 2005 2010 2015 2019 Moran’s I 0.48 0.47 0.45 0.40 0.34 0.38 0.42 0.42 0.42 Z 11.34 11.48 10.70 9.71 8.45 9.30 10.04 9.90 9.38 P 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 表 2 1980—2019年四川省茶产业空间重心迁移变化
Table 2. Change of center of gravity of tea industry area in Sichuan Province from 1980 to 2019
年份
Year坐标 Coordinate 重心迁移距离
Moving distance of gravity
center (km)年份
Year坐标 Coordinate 重心迁移距离
Moving distance of gravity
center (km)经度 Longitude (°) 纬度 Latitude (°) 经度 Longitude (°) 纬度 Latitude (°) 1980 104.71 30.08 2006 104.29 30.08 3.71 1985 104.78 30.23 18.04 2007 104.28 30.10 1.59 1990 104.88 30.12 16.00 2008 104.28 30.07 2.73 1995 104.71 30.13 19.05 2009 104.30 30.03 5.03 1996 104.75 30.20 9.27 2010 104.28 30.01 2.93 1997 104.65 30.20 10.57 2011 104.31 29.95 7.47 1998 104.68 30.21 2.96 2012 104.34 29.96 3.40 1999 104.51 30.12 20.99 2013 104.35 29.96 1.04 2000 104.60 30.14 9.94 2014 104.34 29.92 5.24 2001 104.66 30.23 11.99 2015 104.26 29.88 10.05 2002 104.47 30.15 22.43 2016 104.48 29.96 26.29 2003 104.39 30.11 9.54 2017 104.54 29.98 6.66 2004 104.34 30.13 6.12 2018 104.54 29.98 0.89 2005 104.31 30.11 4.15 2019 104.57 29.97 4.20 表 3 四川省茶产业空间格局的地理探测因子
Table 3. Indicators of space geographical detector of tea industry in Sichuan Province
类型
Category影响因子
Influence factor因子意义
Significance of factor自然要素
Physical factor海拔
Elevation (X1)通过温度间接影响茶叶生长
Indirectly affecting tea growth土壤酸碱度
Hydrogen ion concentration of soil (X2)茶叶生长在酸性土壤环境
Acid soil is suitable for tea growth年降水量
Annual precipitation (X3)一年总的水分条件
Moisture conditions年活动积温
Accumulated temperature (X4)积温越多, 年生长期越长
Accumulated heat during tea growth生长季日平均气温
Average temperature of growing season (X5)15~23 ℃范围内, 茶梢生长快
The suitable rang is 15–23 ℃越冬期日极端最低气温
Extreme minimum temperature of overwintering period (X6)≤−10 ℃, 四川主要栽培的茶树品种不能存活
Tea varieties planted in Sichuan cannot survive at ≤−10 ℃生长季日极端最高气温
Extreme maximum temperature of growing season (X7)受到热害导致生长停滞甚至死亡
Excessive temperature will inhibit tea growth生产要素
Production
factor土地利用强度
Land use intensity (X8)反映地区茶叶种植的土地投入指标
Directly land resource input on tea production乡村劳动力
Labor (X9)茶叶生产需要大量的劳动力
Tea production requires a lot of labor化肥
Fertilizer (X10)化肥投入是提升茶叶生产不断提高的重要原因
Fertilizer can increase tea yield.农药
Pesticides (X11)农药投入能抑制病虫害发生, 提高茶叶产量
Controlling the diseases and insect pests of tea灌溉
Irrigation (X12)茶叶生产需要灌溉保障
Guaranteeing water supply for tea production社会经济要素
Socioeconomic factor人均可支配收入
Per capita disposable income (X13)收入反映出消费能力, 评价市场需求
Reflecting consumption ability科技
Technology (X14)科技与单产有直接关系, 用单产衡量科技
Increasing tea yield政策
Policy (X15)政策对茶叶生产空间影响
The agricultural policy is an important factor表 4 基于先验知识对四川省茶产业空间格局影响因子分类
Table 4. Classify the quantitative variables of tea industry in Sichuan Province by prior knowledge
要素
Variable切割值
Cutting value赋值
Value海拔
Elevation (X1)<200 m 1 200~500 m 2 500~1000 m 3 >1000 m 4 土壤酸碱度
Hydrogen ion concentration of soil (X2)0~5.5 1 5.5~6.5 2 6.5~7.5 3 7.5~8.5 4 >8.5 5 人均可支配收入
Per capita disposable income (X13)0~20% 1 20%~40% 2 40%~60% 3 60%~80% 4 80%~100% 5 政策
Policy (X15)1, 2, 3, 4, 5 表 5 基于最优离散的四川茶产业空间格局影响因子分类
Table 5. Classify the quantitative variables of tea industry in Sichuan Province by optimal classification algorithms
要素
Variableq值 q value 5 6 7 8 9 10 年降水量 Annual precipitation (X3) 0.2643 0.2646 0.2607 0.2648 0.2631 0.2642 年活动积温 Accumulated temperature (X4) 0.1104 0.1098 0.1317 0.1360 0.1387 0.1466 生长季日平均气温 Average temperature of growing season (X5) 0.1339 0.1639 0.1710 0.2091 0.2302 0.2244 越冬期日极端最低气温 Extreme minimum temperature of overwintering period (X6) 0.1203 0.1234 0.1212 0.1210 0.1425 0.1570 生长季日极端最高气温 Extreme maximum temperature of growing season (X7) 0.1242 0.1387 0.1369 0.1491 0.1572 0.1628 土地利用强度 Land use intensity (X8) 0.9032 0.9108 0.8860 0.8893 0.8896 0.8897 乡村劳动力 Labor (X9) 0.8613 0.8425 0.8392 0.8483 0.8485 0.8487 化肥 Fertilizer (X10) 0.7886 0.8341 0.8324 0.8584 0.8589 0.8589 农药 Pesticides (X11) 0.7360 0.7411 0.7253 0.7411 0.7553 0.7573 灌溉 Irrigation (X12) 0.0943 0.1569 0.1156 0.1293 0.1476 0.1611 科技 Technology (X14) 0.2805 0.2754 0.2995 0.3120 0.4119 0.3012 表 6 影响因子对四川省茶产业空间格局的交互作用
Table 6. Interactive effects of influence factors on tea industry in Sichuan Province
自然要素 Physical factor 生产要素 Production factor 社会经济要素 Socioeconomic factor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X1 0.2202 X2 0.2919 0.1149 X3 0.4567 0.4368 0.3125 X4 0.3110 0.2793 0.4548 0.1733 X5 0.2738 0.3027 0.4591 0.3469 0.2236 X6 0.2869 0.2872 0.4626* 0.2695 0.3153 0.1812 X7 0.2592 0.2476 0.4439 0.4308 0.3391 0.3629 0.1607 X8 0.9423 0.9214 0.9258 0.9507* 0.9235 0.9465 0.9283 0.9112 X9 0.9299 0.8909 0.9125 0.9262 0.9066 0.9152 0.9086 0.9324 0.8684 X10 0.9119 0.9166 0.9372 0.9366 0.9095 0.9457 0.9242 0.9497 0.9447 0.8650 X11 0.8829 0.7945 0.8418 0.8814 0.8409 0.8748 0.8789 0.9391 0.9343 0.9309 0.7472 X12 0.3132 0.2943 0.5297 0.3778 0.3401 0.3686 0.3596 0.9644* 0.9527 0.9373 0.9421 0.1729 X13 0.3718 0.2543 0.4610 0.3079 0.3447 0.3182 0.3853 0.9601 0.9178 0.9543 0.8984 0.4706 0.1441 X14 0.5502 0.5616 0.7323 0.5993 0.6567 0.5942 0.6239 0.9752 0.9714 0.9779* 0.9499 0.6631 0.6320 0.4285 X15 0.7803 0.7544 0.8062* 0.7762 0.7660 0.7734 0.7913 0.9425 0.9080 0.9341 0.9112 0.8707 0.7679 0.8493* 0.7365 下划线表示交互作用为非线性增强, 其余交互作用均为双因子增强; “*”表示每类因子交互作用中的最大值; 表中15个影响因子分别是: 海拔(X1)、土壤酸碱度(X2)、年降水量(X3)、年活动积温(X4)、生长季日平均气温(X5)、越冬期日极端最低气温(X6)、生长季日极端最高气温(X7)、土地利用强度(X8)、乡村劳动力(X9)、化肥(X10)、农药(X11)、灌溉(X12)、人均可支配收入(X13)、科技(X14)和政策(X15)。“_” denotes nonlinear enhancement of factors A and B. The symbol “*” denotes the largest interaction of each type. There are 15 influence factors as follows: elevation (X1), pH (X2), annual precipitation (X3), accumulated temperature (X4), average temperature of growing season (X5), extreme minimum temperature of overwintering period (X6), extreme maximum temperature of growing season (X7), land use intensity (X8), labor (X9), fertilizer (X10), pesticides (X11), irrigation (X12), per capita disposable income (X13), technology (X14), policy (X15). -
[1] 吴文斌, 杨鹏, 李正国, 等. 农作物空间格局变化研究进展评述[J]. 中国农业资源与区划, 2014, 35(1): 12−20 doi: 10.7621/cjarrp.1005-9121.20140103WU W B, YANG P, LI Z G, et al. Overview of research progresses in crop spatial pattern changes[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(1): 12−20 doi: 10.7621/cjarrp.1005-9121.20140103 [2] 林正雨, 邓良基, 陈强, 等. 四川省柑橘生产格局变化及驱动因素[J]. 西南农业学报, 2020, 33(11): 2591−2604LIN Z Y, DENG L J, CHEN Q, et al. Analysis on change of citrus production patterns and driving factors in Sichuan Province[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(11): 2591−2604 [3] 叶志标, 李文娟. 基于埃塔平方法(η2)的中国小麦生产驱动因素贡献份额研究[J]. 中国农业资源与区划, 2017, 38(6): 63−70YE Z B, LI W J. Using eta square method (η2) to estimate the contribution share of driving factors on wheat production in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(6): 63−70 [4] 林正雨, 陈强, 邓良基, 等. 中国柑橘生产空间变迁及其驱动因素[J]. 热带地理, 2021, 41(2): 374−387LIN Z Y, CHEN Q, DENG L J, et al. Spatial pattern changes and driving factors of citrus production in China[J]. Tropical Geography, 2021, 41(2): 374−387 [5] 夏四友, 赵媛, 许昕, 等. 江苏省粮食生产时空格局及其驱动因素[J]. 经济地理, 2018, 38(12): 166−175 doi: 10.15957/j.cnki.jjdl.2018.12.021XIA S Y, ZHAO Y, XU X, et al. Spatiotemporal pattern and driving factors of grain production in Jiangsu Province[J]. Economic Geography, 2018, 38(12): 166−175 doi: 10.15957/j.cnki.jjdl.2018.12.021 [6] 肖智. 全球化背景下中国茶叶生产格局及其演变研究[D]. 南京: 南京大学, 2018: 93–100XIAO Z. The research of spatio-temporal variation of tea production in China under globalization[D]. Nanjing: Nanjing University, 2018: 93–100 [7] FANG S, GERTNER G Z, SUN Z, et al. The impact of interactions in spatial simulation of the dynamics of urban sprawl[J]. Landscape and Urban Planning, 2005, 73(4): 294−306 doi: 10.1016/j.landurbplan.2004.08.006 [8] 陈实. 中国北部冬小麦种植北界时空变迁及其影响机制研究[D]. 北京: 中国农业科学院, 2020: 62–64CHEN S. The spatiotemporal shift of the northern limit of winter wheat in northern China and its influence mechanism[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020: 62–64 [9] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116−134WANG J F, XU C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116−134 [10] WANG J F, LI X H, CHRISTAKOS G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107−127 doi: 10.1080/13658810802443457 [11] 魏海涛, 刘岩, 田智慧, 等. 河南省肺癌空间分布格局及环境因素影响[J]. 地理学报, 2022, 77(1): 245−258WEI H T, LIU Y, TIAN Z H, et al. Spatial distribution pattern and environmental impact of lung cancer in Henan[J]. Acta Geographica Sinica, 2022, 77(1): 245−258 [12] YANG R, XU Q, LONG H, et al. Spatial distribution characteristics and optimized reconstruction analysis of China’s rural settlements during the process of rapid urbanization[J]. Journal of Rural Studies, 2016, 47: 413−424 doi: 10.1016/j.jrurstud.2016.05.013 [13] 高枫, 李少英, 吴志峰, 等. 广州市主城区共享单车骑行目的地时空特征与影响因素[J]. 地理研究, 2019, 38(12): 2859−2872GAO F, LI S Y, WU Z F, et al. Spatial-temporal characteristics and the influencing factors of the ride destination of bike sharing in Guangzhou City[J]. Geographical Research, 2019, 38(12): 2859−2872 [14] 马芳芳, 丁志伟. 中国抖音直播带货行业发展的空间分异及影响因素[J]. 经济地理, 2021, 41(12): 22−32MA F F, DING Z W. Spatial differentiation and influencing factors of livestreaming ecommerce development level in China: a case of Douyin[J]. Economic Geography, 2021, 41(12): 22−32 [15] 刘彦随, 杨忍. 中国县域城镇化的空间特征与形成机理[J]. 地理学报, 2012, 67(8): 1011−1020 doi: 10.11821/xb201208001LIU Y S, YANG R. The spatial characteristics and formation mechanism of the county urbanization in China[J]. Acta Geographica Sinica, 2012, 67(8): 1011−1020 doi: 10.11821/xb201208001 [16] 支泽民, 陈琼, 张强, 等. 地理探测器在判别滑坡稳定性影响因素中的应用−以西藏江达县为例[J]. 中国地质灾害与防治学报, 2020, 32(2): 19−26 doi: 10.16031/j.cnki.issn.1003-8035.2021.02.03ZHI Z M, CHEN Q, ZHANG Q, et al. Application of geographic detector in identifying influencing factors of landslide stability: a case study of the Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2020, 32(2): 19−26 doi: 10.16031/j.cnki.issn.1003-8035.2021.02.03 [17] 赵正贤, 许泉立. 基于地理探测器的昆明市主城区房价时空分异特征及影响因子分析[J]. 西南师范大学学报(自然科学版), 2022, 47(1): 62−73ZHAO Z X, XU Q L. On spatial-temporal differentiation characteristics and influencing factors of housing price in main city zone of Kunming based on geodector[J]. Journal of Southwest China Normal University (Natural Science Edition), 2022, 47(1): 62−73 [18] JU H, ZHANG Z, ZUO L, et al. Driving forces and their interactions of built-up land expansion based on the geographical detector — A case study of Beijing, China[J]. International Journal of Geographical Information Science, 2016, 30(11): 2188−2207 doi: 10.1080/13658816.2016.1165228 [19] 陈江平, 张瑶, 余远剑. 空间自相关的可塑性面积单元问题效应[J]. 地理学报, 2011, 66(12): 1597−1606 doi: 10.11821/xb201112002CHEN J P, ZHANG Y, YU Y J. Effect of MAUP in spatial autocorrelation[J]. Acta Geographica Sinica, 2011, 66(12): 1597−1606 doi: 10.11821/xb201112002 [20] JELINSKI D E, WU J. The modifiable areal unit problem and implications for landscape ecology[J]. Landscape Ecology, 1996, 11(3): 129−140 doi: 10.1007/BF02447512 [21] 李双成, 蔡运龙. 地理尺度转换若干问题的初步探讨[J]. 地理研究, 2005(1): 11−18 doi: 10.3321/j.issn:1000-0585.2005.01.002LI S C, CAI Y L. Some scaling issue of geography[J]. Geographical Research, 2005(1): 11−18 doi: 10.3321/j.issn:1000-0585.2005.01.002 [22] GAO F, LI S, TAN Z, et al. Understanding the modifiable areal unit problem in dockless bike sharing usage and exploring the interactive effects of built environment factors[J]. International Journal of Geographical Information Science, 2021, 35(9): 1905−1925 doi: 10.1080/13658816.2020.1863410 [23] 肖智, 黄贤金, 孟浩, 等. 2009—2014年中国茶叶生产空间演变格局及变化特征[J]. 地理研究, 2017, 36(1): 109−120XIAO Z, HUANG X J, MENG H, et al. Spatial structure and evolution of tea production in China from 2009 to 2014[J]. Geographical Research, 2017, 36(1): 109−120 [24] 税伟, 杜勇, 陈毅萍, 等. 基于地理加权回归的茶叶种植专业化空间格局及影响因素−以福建省安溪县为例[J]. 应用生态学报, 2017, 28(4): 1298−1308 doi: 10.13287/j.1001-9332.201704.037SHUI W, DU Y, CHEN Y P, et al. Spatial patterns and influence factors of specialization in tea cultivation based on geographically weighted regression model: a case study of Anxi County of Fujian Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1298−1308 doi: 10.13287/j.1001-9332.201704.037 [25] 林正雨, 何鹏, 李晓, 等. 1990—2015年四川省茶叶生产空间演变格局及特征研究[J]. 中国农学通报, 2018, 34(31): 76−84 doi: 10.11924/j.issn.1000-6850.casb17080044LIN Z Y, HE P, LI X. Spatial structure evolution of tea production in Sichuan Province, 1990 to 2015[J]. Chinese Agricultural Science Bulletin, 2018, 34(31): 76−84 doi: 10.11924/j.issn.1000-6850.casb17080044 [26] 黄修杰, 姚飞, 马力, 等. 茶叶生产格局演变及空间集聚效应研究−以广东省为例[J]. 茶叶科学, 2020, 40(3): 415−429 doi: 10.3969/j.issn.1000-369X.2020.03.012HUANG X J, YAO F, MA L, et al. Study on pattern evolution and spatial agglomeration of tea production: a case study of Guangdong Province[J]. Journal of Tea Science, 2020, 40(3): 415−429 doi: 10.3969/j.issn.1000-369X.2020.03.012 [27] 肖智, 黄贤金. 长江经济带茶叶生产空间格局演变[J]. 经济地理, 2017, 37(5): 110−115 doi: 10.15957/j.cnki.jjdl.2017.05.015XIAO Z, HUANG X J. Spatial characteristics of tea production in the Yangtze River economic zone[J]. Economic Geography, 2017, 37(5): 110−115 doi: 10.15957/j.cnki.jjdl.2017.05.015 [28] 邹雨伽, 杨柳, 张秀琼, 等. 基于GIS的茶叶生产适宜性区划研究−以旺苍县为例[J]. 西南大学学报(自然科学版), 2021, 43(3): 53−59 doi: 10.13718/j.cnki.xdzk.2021.03.008ZOU Y J, YANG L, ZHANG X Q, et al. Zoning of ecological suitability of tea production based on GIS: taking Wangcang County as an example[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(3): 53−59 doi: 10.13718/j.cnki.xdzk.2021.03.008 [29] 金志凤, 黄敬峰, 李波, 等. 基于GIS及气候-土壤-地形因子的浙江省茶树栽培适宜性评价[J]. 农业工程学报, 2011, 27(3): 231−236 doi: 10.3969/j.issn.1002-6819.2011.03.044JIN Z F, HUANG J F, LI B, et al. Suitability evaluation of tea trees cultivation based on GIS in Zhejiang Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 231−236 doi: 10.3969/j.issn.1002-6819.2011.03.044 [30] 王银峰, 翟海国, 张继红, 等. 中国茶树生态区划的新方案[J]. 地理研究, 1993(4): 39−45WANG Y F, ZHAI H G, ZHANG J H, et al. A new scheme for tea tree ecological environment regionalization in China[J]. Geographical Research, 1993(4): 39−45 [31] 蒲业潇. 理解区位基尼系数: 局限性与基准分布的选择[J]. 统计研究, 2011, 28(9): 101–109PU Y X. Understanding locational Gini index: limitations and selection of benchmark distribution[J]. Statistical Research, 2011, 28(9): 101–109 [32] 甘书龙, 付绶宁, 唐洪潜, 等. 四川省农业资源与区划[M]. 成都: 四川省社会科学院出版社, 1986: 521–523GAN S L, FU S N, TANG H Q, et al. Agricultural Resources and Regional Planning of Sichuan[M]. Chengdu: Sichuan Academy of Social Science Press, 1986: 521–523 [33] 王安怡, 康平, 张洋, 等. 2003—2018年四川盆地气溶胶光学厚度空间分异及驱动因子[J]. 中国环境科学, 2022, 42(2): 528−538WANG A Y, KANG P, ZHANG Y, et al. Spatial differentiation and driving factors of aerosol optical depth in Sichuan Basin from 2003 to 2018[J]. China Environmental Science, 2022, 42(2): 528−538 [34] 谢帅, 刘士彬, 段建波, 等. OSDS注册用户空间分布特征及影响因素分析[J]. 地球信息科学学报, 2016, 18(10): 1332−1340XIE S, LIU S B, DUAN J B, et al. Spatial distribution characteristics of OSDS registered users and its influencing factors[J]. Journal of Geo-Information Science, 2016, 18(10): 1332−1340 [35] 高文波, 林正雨, 王明田, 等. 1971—2020年西南茶区灌木型茶树晚霜冻害危险性时空演变特征[J]. 应用生态学报, 2021, 32(11): 4029–4038GAO W B, LIN Z Y, WANG M T, et al. Spatiotemporal evolution characteristics of the late frost damage risk to shrubby tea trees in tea region, Southwest China from 1971 to 2020[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4029–4038 [36] 汪可可, 康平, 周明卫, 等. 四川盆地臭氧浓度空间分异及驱动因子研究[J]. 中国环境科学, 2020, 40(6): 2361−2370 doi: 10.3969/j.issn.1000-6923.2020.06.005WANG K K, KANG P, ZHOU M W, et al. Spatial differentiation and driving factors of ozone concentration in Sichuan Basin[J]. China Environmental Science, 2020, 40(6): 2361−2370 doi: 10.3969/j.issn.1000-6923.2020.06.005 -