Effects of long-term nutrient recycling pathways on soil nutrient dynamics and fertility in farmland
-
摘要: 农业生态系统养分循环再利用对土壤养分涵养发挥着重要作用, 是培肥地力的有效措施。本研究依托中国科学院栾城农业生态系统试验站始于2001年的农业经营制度长期定位试验, 研究长期不同养分循环再利用途径对土壤养分演替规律与土壤固碳效应的影响, 为制定地力培育和提升土壤固碳潜能的农业管理措施提供理论依据。选择定位试验的对照处理(CK, 不施肥、秸秆不还田)、全部施用化肥(NPK)、化肥+80%地上产出物饲喂猪过腹还田(MNPK)和化肥+全部秸秆粉碎直接还田(SNPK) 4个处理作为研究对象, 监测土壤有机质、全氮、有效磷含量的动态变化以及土壤碳氮库组成。研究结果表明: 实施养分循环再利用显著提高了土壤有机质、全氮和有效磷含量, 各养分含量由高到低的顺序均为MNPK>SNPK>NPK>CK。经历18年的不同施肥措施后, 与对照相比, MNPK处理0~20 cm土壤有机碳、全氮和有效磷储量分别增加9.21 t(C)∙hm−2、1.01 t(N)∙hm−2和144.87 t(P)∙hm−2, SNPK则分别增加4.51 t(C)∙hm−2、0.56 t(N)∙hm−2和24.68 t(P)∙hm−2, 而NPK的变化依次为0.64 t(C)∙hm−2、0.16 t(N)∙hm−2和29.00 t(P)∙hm−2。这表明秸秆过腹还田的培肥效果显著高于直接还田; 秸秆直接还田对碳氮库扩容效果显著, 但在秸秆直接还田的有效磷库建设效果甚微。本研究的施肥水平下, 若仅施用化肥, 则只能维系土壤有机碳氮库基本平衡, 对磷库扩容效果显著。从各施肥方式对土壤有机碳组分的影响来看, MNPK和SNPK较NPK显著增加了土壤易氧化有机碳(LOC)和惰性有机碳(ROC)含量, 同时也显著增加了活性有机碳在总有机碳中的占比, 使(LOC+DOC)/TOC比值由NPK的9.2%分别增加到19.0%和16.3%。表明施用化肥基础上实施养分的循环再利用不仅促进了稳定性碳库积累, 亦扩增了土壤活性碳库, 对提高土壤的保肥和供肥能力起到了积极作用。从各施肥方式对土壤氮库组分的影响来看, MNPK较SNPK显著增加了硝态氮和铵态氮含量, 提高了土壤供氮能力; 而SNPK则显著提高了氨基糖态氮含量, 表明秸秆直接还田较过腹还田更有利于微生物将速效性氮素固持到过渡库中, 不仅降低了活性氮素向环境的输出风险, 还提高了土壤对氮素的蓄供能力。鉴于养分过腹还田和秸秆直接还田的培肥效果存在互补作用, 建议农业生产中推行秸秆还田基础上提倡有机粪肥替代部分化肥。Abstract: Nutrient recycling plays an important role in soil nutrient conservation and is an effective measure for fertilizing soils in agro-ecosystems. This study relied on a long-term experiment (since 2001) on an agricultural management system conducted by the Luancheng Agroecosystem Experimental Station of the Chinese Academy of Sciences. The aim of this study was to provide a theoretical basis for developing agricultural management measures for soil fertility cultivation and enhancing soil carbon sequestration potential. Four treatments were set: no fertilization (i.e., conventional, CK), all applications of chemical fertilizer (NPK), chemical fertilizer and 80% of the above-ground output feeding pigs through belly (as pig manure) to the field (MNPK), and chemical fertilizer and straw crushed direct return to the field (SNPK). The soil organic matter (SOM), total nitrogen (TN), available phosphorus content (AP), and composition of soil carbon and nitrogen pools of the treatments were determined. The results showed that the implementation of nutrient recycling significantly increased the contents of SOM, TN, and AP in the soil in the order of MNPK > SNPK > NPK > CK. After 18 years, we found that SOC, TN, and AP storage in the 0–20 cm soil layer increased in MNPK by 9.21 t(C)∙hm−2, 1.01 t(N)∙hm−2, and 144.87 t(P)∙hm−2, respectively. The SOC, TN, and AP storage in SNPK increased by 4.51 t(C)∙hm−2, 0.56 t(N)∙hm−2, and 24.68 t(P)∙hm−2, respectively. The SOC, TN, and AP storage in NPK increased by 0.64 t(C)∙hm−2, 0.16 t(N)∙hm−2, and 29.00 t(P)∙hm−2, respectively. This shows that the fertilizing effect of pig manure was significantly higher than that of direct straw return; and the effect of direct straw return on the expansion of carbon and nitrogen pools was significant, but direct straw return had a minor effect on the construction of an effective phosphorus pool. Under the fertilization level of this study, the application of chemical fertilizer alone can maintain the basic balance of soil organic carbon and nitrogen pool, and have a significant effect on phosphorus pool expansion. Compared to NPK, MNPK and SNPK significantly increased the contents of soil labile organic carbon (LOC) and resistant organic carbon (ROC), and significantly increased the proportion of active organic carbon in total organic carbon; thus, the ratio of LOC+DOC to TOC increased from 9.2% of NPK to 19.0% (MNPK) and 16.3% (SNPK), respectively. The results showed that the recycling of nutrients based on the application of chemical fertilizer not only promoted the accumulation of a stable carbon pool but also expanded the soil active carbon pool, which played a positive role in improving the fertilizer conservation and supply capacity of soil. Based on the effects of different fertilization methods on the composition of the soil nitrogen pool, the contents of soil nitrate, ammonium, and total nitrogen supply capacity in the MNPK treatment was higher than those in the SNPK treatment, whereas the SNPK treatment had a significantly higher amino-sugar-nitrogen content than MNPK. This indicates that straw return was more favorable for microorganisms to fix available nitrogen into the transition pool than belly return. Not only does it reduce the export risk of active nitrogen to the environment but also improves the storage and supply capacity of soil to nitrogen. In view of the complementary effect of nutrients returning to the field and straw returning directly to the field, it is suggested that organic manure should be promoted to replace part of the chemical fertilizer based on straw returning in agricultural production.
-
图 1 长期不同农业经营模式对土壤有机质含量(a)和年递增率(b)的影响
CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw.
Figure 1. Effects of different long-term agricultural management patterns on contents (a) and annual change rates (b) of soil organic matter
图 2 长期不同农业经营模式对土壤有机碳组分的影响
ROC: 惰性有机碳; LOC: 易氧化有机碳; DOC: 可溶性有机碳。CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。不同小写字母表示处理间在P<0.05水平差异显著。ROC: resistant organic carbon; LOC: labile organic carbon; DOC: dissolved organic carbon. CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw. Different lowercase letters indicate significant differences among treatments at P<0.05.
Figure 2. Effects of different long-term agricultural management patterns on soil organic carbon components
图 3 长期不同农业经营模式对土壤全氮含量(a)和年递增率(b)的影响
CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw.
Figure 3. Effects of different long-term agricultural management patterns on contents (a) and annual change rates (b) of soil total nitrogen
图 4 长期不同农业经营模式对土壤氮库构成(A)和土壤氨基葡萄糖(Glu)和胞壁酸(Mur)含量(B)的影响
图a中, AN和ASN分别为碱解氮和氨基糖态氮。CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。不同小写字母表示处理间在P<0.05水平差异显著。In figure a, AN and ASN are available nitrogen and amino sugar nitrogen. CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw. Different lowercase letters indicate significant differences among treatments at P<0.05.
Figure 4. Effects of long-term agricultural management patterns on soil nitrogen pool composition (A) and contents of soil glucosamine (Glu) and muramic acid (Mur) (B)
图 5 长期不同农业经营模式对土壤有效磷含量(a)和年递增率(b)的影响
CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw.
Figure 5. Effects of long-term agricultural management patterns on contents (a) and annual change rates (b) of soil available phosphorus
图 6 长期不同农业经营模式对土壤磷素转化相关的酶活性(A)和与微生物多样性(B)的影响
CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。不同小写字母表示处理间在P<0.05水平差异显著。CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw. Different lowercase letters indicate significant differences among treatments at P<0.05.
Figure 6. Effects of different long-term agricultural management patterns on soil enzyme activities related to phosphorus transformation (A) and microbial diversity (B)
表 1 长期不同农业经营模式下土壤有机碳储量变化
Table 1. Change of soil organic carbon storage under different long-term agricultural management patterns
处理
Treatment2002 2020 增量
Incrementt(C)∙hm−2 CK 20.67±0.63aA 17.88±0.03dB −2.79±0.62d NPK 21.53±0.62aA 22.17±0.96cA 0.64±0.74c SNPK 21.09±0.28aB 25.60±0.68bA 4.51±0.96b MNPK 21.06±0.86aB 30.27±0.24aA 9.21±0.89a CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。数据为3次重复的平均值±标准误差。同列不同小写字母表示处理间在P<0.05水平差异显著, 同行不同大写字母表示两年间在P<0.05水平差异显著。CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw. Values are means±S.E (n=3). Different lowercase letters within a column indicate significant differences among treatments at P<0.05. Different capital letters within a line indicate differences at P<0.05 between two years. 表 2 长期不同农业经营模式对土壤净固碳效率和碳库管理指数的影响
Table 2. Effects of different long-term agricultural management patterns on soil net carbon sequestration efficiency and carbon pool management index
处理
Treatment固碳效率Carbon sequestration efficiency(kg∙hm−2∙a−1) 净固碳效率Net carbon sequestration efficiency
(kg∙hm−2∙a−1)碳库活度
Carbon pool activity活度指数
Carbon pool activity index碳库指数
Carbon pool index碳库管理指数
Carbon pool management indexCK −163.98±36.27d 0.09±0.01ab NPK 38.07±18.03c 202.04±18.03c 0.06±0.00b 0.69±0.04b 1.24±0.02c 85.40±4.69b SNPK 265.71±56.41b 429.69±56.41b 0.14±0.02a 1.59±0.25a 1.43±0.04b 226.97±36.43a MNPK 541.98±56.63a 705.96±52.63a 0.12±0.03a 1.44±0.31ab 1.69±0.01a 242.30±50.54a CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。数据为3次重复的平均值加减标准误。同列不同小写字母表示处理间在P<0.05水平差异显著。CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw. Values are means±S.E (n=3). Different lowercase letters within a column indicate significant differences among treatments at P<0.05. 表 3 土壤有机碳(TOC)、惰性有机碳(ROC)、易氧化有机碳(LOC)、碳库管理指数(CPMI)及净固碳效率(NCSE)之间的相关系数
Table 3. Pearson correlation coefficients between total carbon (TOC), resistant organic carbon (ROC), labile organic carbon (LOC), carbon pool management index (CPMI) and net carbon sequestration efficiency (NCSE)
TOC LOC ROC CPMI NCSE TOC 1.000 0.691* 0.690* 0.663 0.969*** LOC 1.000 0.790* 0.999*** 0.696* ROC 1.000 0.780* 0.700* CPMI 1.000 0.669* NCSE 1.000 *: P<0.05; **: P<0.01; ***: P<0.001. 表 4 长期不同农业经营模式下土壤氮库储量变化
Table 4. Change of soil nitrogen storage under different long-term agricultural management patterns
处理
Treatment2002 2020 增量
Incrementt(N)∙hm−2 CK 2.20±0.11aA 1.96±0.06dA −0.24±0.05d NPK 2.22±0.09aA 2.38±0.12cA 0.16±0.13c SNPK 2.19±0.01aB 2.75±0.08bA 0.56±0.07b MNPK 2.12±0.05aB 3.13±0.07aA 1.01±0.03a CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。数据为3次重复的平均值加减标准误。同列不同小写字母表示处理间在P<0.05水平差异显著; 同行不同大写字母表示两年间在P<0.05水平差异显著。CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw. Values are means±S.E (n=3). Different lowercase letters within a column indicate significant differences among treatments at P<0.05. Different capital letters within a line indicate differences at P<0.05 between two years. 表 5 长期不同农业经营模式下土壤有效磷储量变化
Table 5. Change of soil available phosphorus storage under different long-term agricultural management patterns
处理
Treatment2002 2020 增量
Incrementt(P)∙hm−2 CK 14.97±2.75aA 3.86±0.09cB −11.11±2.67c NPK 14.32±2.92aB 43.32±6.01bA 29.00±5.94b SNPK 14.80±0.83aB 39.48±4.13bA 24.68±4.06b MNPK 15.12±0.51aB 159.99±14.74aA 144.87±14.54a CK: 不施肥无有机物料还田; NPK: 单施化肥; MNPK: 化肥配施猪圈肥; SNPK: 施用化肥并秸秆直接还田。数据为3次重复的平均值加减标准误。同列不同小写字母表示处理间在P<0.05水平差异显著; 同行不同大写字母表示两年间在P<0.05水平差异显著。CK: no fertilizer without organic materials; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and pig manure; SNPK: combined application of chemical fertilizers and straw. Values are means±S.E (n=3). Different lowercase letters within a column indicate significant differences among treatments at P<0.05. Different capital letters within a line indicate differences at P<0.05 between two years. -
[1] 宇万太, 张璐, 殷秀岩, 等. 农业生态系统养分循环再利用作物产量增益的地理分异[J]. 农业工程学报, 2003, 19(6): 28−31 doi: 10.3321/j.issn:1002-6819.2003.06.008YU W T, ZHANG L, YIN X Y, et al. Geographic differentiation of yield-increase efficiency caused by recycled nutrients in agro-ecosystems[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(6): 28−31 doi: 10.3321/j.issn:1002-6819.2003.06.008 [2] 刘鸿翔, 王德禄, 王守宇, 等. 黑土长期施肥及养分循环再利用的作物产量及土壤肥力质量变化Ⅲ. 土壤养分收支[J]. 应用生态学报, 2002, 13(11): 1410−1412 doi: 10.3321/j.issn:1001-9332.2002.11.012LIU H X, WANG D L, WANG S Y, et al. Changes of crop yield and soil fertility under long-term application of fertilizer and recycled nutrients in manure on a black soil Ⅲ. Soil nutrient budget[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1410−1412 doi: 10.3321/j.issn:1001-9332.2002.11.012 [3] 张璐, 沈善敏, 宇万太. 辽西褐土施肥及养分循环再利用中长期试验Ⅳ. 土壤肥力变化[J]. 应用生态学报, 2002, 13(11): 1413−1416 doi: 10.3321/j.issn:1001-9332.2002.11.013ZHANG L, SHEN S M, YU W T. A long-term field trial on fertilization and on use of recycled nutrients in farming systems Ⅳ. Soil fertility changes[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1413−1416 doi: 10.3321/j.issn:1001-9332.2002.11.013 [4] 刘鸿翔, 王德禄, 张素君, 等. 松嫩平原黑土区不同养分循环结构农业经营制度比较研究[J]. 应用生态学报, 1994, 5(2): 148−151 doi: 10.3321/j.issn:1001-9332.1994.02.002LIU H X, WANG D L, ZHANG S J, et al. Comparative study on the agricultural management systems in black soil region of Songhuajiang River-Nenjiang River Plain of Northeast China[J]. Chinese Journal of Applied Ecology, 1994, 5(2): 148−151 doi: 10.3321/j.issn:1001-9332.1994.02.002 [5] 沈善敏, 廉鸿志, 张璐, 等. 磷肥残效及农业系统养分循环再利用中长期试验[J]. 植物营养与肥料学报, 1998, 4(4): 339−344 doi: 10.3321/j.issn:1008-505X.1998.04.003SHEN S M, LIAN H Z, ZHANG L, et al. A long-term field trial on residual effect of phosphorus and on the use of recycled nutrients in a farming system[J]. Plant Nutrition and Fertilizer Science, 1998, 4(4): 339−344 doi: 10.3321/j.issn:1008-505X.1998.04.003 [6] 刘玲, 刘振, 杨贵运, 等. 不同秸秆还田方式对土壤碳氮含量及高油玉米产量的影响[J]. 水土保持学报, 2014, 28(5): 187−192LIU L, LIU Z, YANG G Y, et al. Effects of different modes of straw returned on contents of soil carbon and nitrogen and yield of high oil maize[J]. Journal of Soil and Water Conservation, 2014, 28(5): 187−192 [7] 尤锦伟, 王俊, 胡红青, 等. 秸秆还田对再生稻田土壤有机碳组分的影响[J]. 植物营养与肥料学报, 2020, 26(8): 1451−1458 doi: 10.11674/zwyf.19438YOU J W, WANG J, HU H Q, et al. Effects of straw returning on soil organic carbon components in ratoon rice field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1451−1458 doi: 10.11674/zwyf.19438 [8] 袁嫚嫚, 邬刚, 胡润, 等. 秸秆还田配施化肥对稻油轮作土壤有机碳组分及产量影响[J]. 植物营养与肥料学报, 2017, 23(1): 27−35 doi: 10.11674/zwyf.16092YUAN M M, WU G, HU R, et al. Effects of straw returning plus fertilization on soil organic carbon components and crop yields in rice-rapeseed rotation system[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 27−35 doi: 10.11674/zwyf.16092 [9] 蔡岸冬, 徐明岗, 张文菊, 等. 土壤有机碳储量与外源碳输入量关系的建立与验证[J]. 植物营养与肥料学报, 2020, 26(5): 934−941 doi: 10.11674/zwyf.19287CAI A D, XU M G, ZHANG W J, et al. Establishment and verification of the relationship between soil organic carbon storage and exogenous carbon input[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 934−941 doi: 10.11674/zwyf.19287 [10] YANG S Q, WANG Y S, LIU R L, et al. Effects of straw application on nitrate leaching in fields in the Yellow River irrigation zone of Ningxia, China[J]. Scientific Reports, 2018, 8(1): 954 doi: 10.1038/s41598-017-18152-w [11] 林葆. 长期施肥的作物产量和土壤肥力变化: 全国化肥试验网论文汇编[M]. 北京: 中国农业科技出版社, 1996LIN B. Changes of Crop Yield and Soil Fertility under Long-term Fertilization[M]. Beijing: China Agriculture Scientech Press, 1996 [12] 徐明岗, 于荣, 孙小凤, 等. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J]. 植物营养与肥料学报, 2006, 12(4): 459−465 doi: 10.3321/j.issn:1008-505X.2006.04.001XU M G, YU R, SUN X F, et al. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 459−465 doi: 10.3321/j.issn:1008-505X.2006.04.001 [13] 史康婕, 周怀平, 杨振兴, 等. 长期施肥下褐土易氧化有机碳及有机碳库的变化特征[J]. 中国生态农业学报, 2017, 25(4): 542−552SHI K J, ZHOU H P, YANG Z X, et al. Characteristics of readily oxidizable organic carbon and soil organic carbon pool under long-term fertilization in cinnamon soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 542−552 [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000 [15] ZHANG X D, AMELUNG W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils[J]. Soil Biology and Biochemistry, 1996, 28(9): 1201−1206 doi: 10.1016/0038-0717(96)00117-4 [16] 张璐, 张文菊, 徐明岗, 等. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响[J]. 中国农业科学, 2009, 42(5): 1646−1655 doi: 10.3864/j.issn.0578-1752.2009.05.018ZHANG L, ZHANG W J, XU M G, et al. Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China[J]. Scientia Agricultura Sinica, 2009, 42(5): 1646−1655 doi: 10.3864/j.issn.0578-1752.2009.05.018 [17] 田慎重, 王瑜, 张玉凤, 等. 旋耕转深松和秸秆还田增加农田土壤团聚体碳库[J]. 农业工程学报, 2017, 33(24): 133−140 doi: 10.11975/j.issn.1002-6819.2017.24.018TIAN S Z, WANG Y, ZHANG Y F, et al. Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 133−140 doi: 10.11975/j.issn.1002-6819.2017.24.018 [18] MOORE T R, DE SOUZA W, KOPRIVNJAK J F. Controls on the sorption of dissolved organic carbon by soils[J]. Soil Science, 1992, 154(2): 120−129 doi: 10.1097/00010694-199208000-00005 [19] 胡海清, 陆昕, 孙龙. 土壤活性有机碳分组及测定方法[J]. 森林工程, 2012, 28(5): 18−22 doi: 10.3969/j.issn.1001-005X.2012.05.005HU H Q, LU X, SUN L. Research review on soil active organic carbon fractionation and analytical methods[J]. Forest Engineering, 2012, 28(5): 18−22 doi: 10.3969/j.issn.1001-005X.2012.05.005 [20] 汪伟, 杨玉盛, 陈光水, 等. 罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化[J]. 生态学杂志, 2008, 27(6): 924−928WANG W, YANG Y S, CHEN G S, et al. Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China[J]. Chinese Journal of Ecology, 2008, 27(6): 924−928 [21] LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155/156(1): 399−402 doi: 10.1007/BF00025067 [22] 徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化[J]. 土壤学报, 2006, 43(5): 723−729 doi: 10.3321/j.issn:0564-3929.2006.05.003XU M G, YU R, WANG B R. Labile organic matter and carbon management index in red soil under long-term fertilization[J]. Acta Pedologica Sinica, 2006, 43(5): 723−729 doi: 10.3321/j.issn:0564-3929.2006.05.003 [23] BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 doi: 10.1071/AR9951459 [24] BIEDERBECK V O, JANZEN H H, CAMPBELL C A, et al. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology and Biochemistry, 1994, 26(12): 1647−1656 doi: 10.1016/0038-0717(94)90317-4 [25] PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5): 1173−1179 doi: 10.2136/sssaj1987.03615995005100050015x [26] 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829−4838YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829−4838 [27] SRIVASTAVA P, SINGH R, TRIPATHI S, et al. Soil carbon dynamics under changing climate — a research transition from absolute to relative roles of inorganic nitrogen pools and associated microbial processes: a review[J]. Pedosphere, 2017, 27(5): 792−806 doi: 10.1016/S1002-0160(17)60488-0 [28] WANG Y Y, HU C S, DONG W X, et al. Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain[J]. Agriculture, Ecosystems & Environment, 2015, 206: 33−45 [29] 栾文楼, 宋泽峰, 李随民, 等. 河北平原土壤有机碳含量的变化[J]. 地质学报, 2011, 85(9): 1528−1535LUAN W L, SONG Z F, LI S M, et al. Changes of soil organic carbon content in Hebei Plain[J]. Acta Geologica Sinica, 2011, 85(9): 1528−1535 [30] CARTER M R, ANGERS D A, GREGORICH E G, et al. Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fractions[J]. Canadian Journal of Soil Science, 2003, 83(1): 11−23 doi: 10.4141/S01-087 [31] 林心雄. 中国土壤有机质状况及其管理[M]//沈善敏. 中国土壤肥力. 北京: 中国农业出版社, 1998: 111−159LIN X X. Soil organic matter status and management in China[M]//SHEN S M. Soil Fertility in China. Beijing: China Agriculture Press, 1998: 111−159 [32] 徐虎, 蔡岸冬, 周怀平, 等. 长期秸秆还田显著降低褐土底层有机碳储量[J]. 植物营养与肥料学报, 2021, 27(5): 768−776 doi: 10.11674/zwyf.2021177XU H, CAI A D, ZHOU H P, et al. Long-term straw incorporation significantly reduced subsoil organic carbon stock in cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 768−776 doi: 10.11674/zwyf.2021177 [33] SILVER W L, MIYA R K. Global patterns in root decomposition: comparisons of climate and litter quality effects[J]. Oecologia, 2001, 129(3): 407−419 doi: 10.1007/s004420100740 [34] XU H, LIU K L, ZHANG W J, et al. Long-term fertilization and intensive cropping enhance carbon and nitrogen accumulated in soil clay-sized particles of red soil in South China[J]. Journal of Soils and Sediments, 2020, 20(4): 1824–1833 [35] 董扬红, 曾全超, 安韶山, 等. 黄土高原不同林型植被对土壤活性有机碳及腐殖质的影响[J]. 水土保持学报, 2015, 29(1): 143−148DONG Y H, ZENG Q C, AN S S, et al. Effects of different forest types on soil active organic carbon and soil humus composition in the Loess Plateau[J]. Journal of Soil and Water Conservation, 2015, 29(1): 143−148 [36] 申小冉, 徐明岗, 张文菊, 等. 长期不同施肥对土壤各粒级组分中氮含量及分配比例的影响[J]. 植物营养与肥料学报, 2012, 18(5): 1127−1134SHEN X R, XU M G, ZHANG W J, et al. Effect of various long-term fertilizations on soil nitrogen concentration and distribution percentage in particle-size fractions[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1127−1134 [37] 李俊娣, 张玉铭, 赵宝华, 等. 长期添加外源有机物料对华北平原不同粒级土壤氮素和氨基糖的影响[J]. 中国生态农业学报(中英文), 2019, 27(4): 507−518LI J D, ZHANG Y M, ZHAO B H, et al. Effect of long-term addition of organic substances on soil nitrogen and amino sugars in particle-size fractions in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4): 507−518 [38] 张威, 何红波, 解宏图, 等. 东北黑土氨基糖的矿化动态及其对外源物质添加的响应[J]. 应用生态学报, 2010, 21(10): 2593−2598ZHANG W, HE H B, XIE H T, et al. Amino sugars mineralization and its responses to exogenous substances in black soil of Northeast China[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2593−2598 -