Analysis of “Production-Living-Ecological” land transformation and landscape ecological risk in the eastern counties of the Taihang Mountain: a case study in Pingshan County
-
摘要: 太行山是京津冀地区的天然生态屏障, 评估太行山区生态风险对于保障其生态功能的发挥及保障京津冀生产、生活与生态(三生)用水安全具有极其重要的生态战略意义。本文以河北省平山县为研究对象, 建立太行山区县域“三生”空间利用分类系统, 在ERDAS IMAGINE 9.2、ArcGIS 10.2和Fragstats 3.4软件支持下, 探讨平山县“三生”用地转型特征, 采用景观生态风险评价方法分析平山县“三生”用地生态风险, 并对“三生”用地转型对生态风险的贡献率进行了测算。结果表明: 1) 1990—2018年, 平山县生态用地大幅减少, 生产用地与生活用地增幅显著。增加的生产与生活用地主要来自生态用地, 转型区域主要分布在道路沿线与水域周边。2)生态空间的风险加剧区位于县中西部高海拔区, 未来应科学划定生态保护红线及加强深山区生态保护; 生产空间的风险加剧区位于县北部及东部的低山丘陵区, 未来应更关注耕地保护及其高效利用; 生活空间风险加剧区主要位于县南部, 未来应调整国土资源利用方式、科学规划旅游资源布局。3)平山县乡镇单元“三生”用地转型对生态风险的贡献差异性较大(0~29.97%), 对生态风险贡献最大的用地转型为“生态用地转为生产用地”。研究结果可为促进平山县“三生”用地协调发展提供参考, 为探索太行山区绿色发展与国土空间结构优化提供借鉴。Abstract: The Taihang Mountain is the natural ecological barrier of the Beijing-Tianjin-Hebei region. It is strategically important to assess risk to the Taihang Mountain ecology to ensure water security and assess its ecological function in the Beijing-Tianjin-Hebei region. This study established a classification system for the “Production-Living-Ecological” space land, and explored the characteristics of the “Production-Living-Ecological” land transformation in Pingshan County, a typical county in the Taihang Mountain. The landscape ecological risks in Pingshan County were explored using the landscape ecological risk evaluation method, and the contribution of land use transformation to the change in landscape ecological risk was measured. The results showed that: 1) from 1990 to 2018, the ecological land in Pingshan County decreased significantly, whereas the production and living lands increased significantly. The production and living lands were mainly transformed from ecological land, and the transformation areas were mainly distributed along the road and around the water area. 2) Areas with escalated landscape ecological risk in ecological land were mainly located in high-altitude areas in the central and western parts of the study area, and it is necessary to scientifically delineate the ecological protection redline and strengthen the ecological protection of these deep mountain areas in the future. Areas with escalated landscape ecological risks in production land were mainly located in the low mountains and hilly areas in the northern and eastern parts of the study area, where more attention should be paid to the protection and efficient use of cultivated land in the future. In contrast, the areas with escalated risk in living land were mainly located in the southern part of the study area, where the utilization of land resources should be adjusted, and the use of tourism resources should be scientifically planned in the future. 3) The contribution of land use transformation types to the change of landscape ecological risk in the Pingshan County varied greatly (0−29.97%), among which the risk of “transformation from ecological land to production land” made the greatest contribution. The results of this study can provide valuable reference information for promoting the coordinated development of the “Production-Living-Ecological” land use in Pingshan County and exploring green development and optimization of land space structure in the Taihang Mountain.
-
图 1 研究区河北省平山县地理位置与行政区划
1: 合河口乡; 2: 上观音堂乡; 3: 孟庄镇; 4: 宅北乡; 5: 东王坡乡;6: 南甸镇; 7: 上三汲乡; 8: 平山镇; 9: 东回舍镇; 10: 温塘镇; 11: 古月镇; 12: 北冶乡; 13: 下口镇; 14: 杨家桥乡; 15: 营里乡; 16: 蛟潭庄镇; 17: 小觉镇; 18: 下槐镇; 19: 西柏坡镇; 20: 苏家庄乡; 21: 岗南镇; 22: 西大吾乡; 23: 两河乡。1: Hehekou Township; 2: Shangguanyintang Township; 3: Mengzhuang Town; 4: Zhaibei Township; 5: Dongwangpo Township; 6: Nandian Town; 7: Shangsanji Township; 8: Pingshan Town; 9: Donghuishe Town; 10: Wentang Town; 11: Guyue Town; 12: Beiye Township; 13: Xiakou Town; 14: Yangjiaqiao Township; 15: Yingli Township; 16: Jiaotanzhuang Town; 17: Xiaojue Town; 18: Xiahuai Town; 19: Xibaipo Town; 20: Sujiazhuang Township; 21: Gangnan Town; 22: Xidawu Township; 23: Lianghe Township.
Figure 1. Geographical location and administrative divisions of the study area of Pingshan County, Hebei Province
图 2 1990—2018年平山县“三生”空间用地转型空间分布(a: 1990—2000年; b: 2000—2010年; c: 2010—2018年)
1: 岗南水库; 2: 黄壁庄水库; 3: 南甸镇; 4: 平山镇; 5: 温塘镇; 6: 五龙山一带。1: Gangnan Reservoir; 2: Huangbizhuang Reservoir; 3: Nandian Town; 4: Pingshan Town; 5: Wentang Town; 6: Wulongshan area.
Figure 2. Spatial distribution of “Production-Living-Ecological” spaces lands transformation in Pingshan County from 1990 to 2018 (a: 1990−2000; b: 2000−2010; c: 2010−2018)
图 3 1990—2018年平山县“三生”空间用地景观生态风险等级空间分布(a: 1990年; b: 2000年; c: 2010年; d: 2018年)
生态风险等级划分标准见表3。
Figure 3. Spatial distribution of landscape ecological rise grades of “Production-Living-Ecological” spaces lands in Pingshan County from 1990 to 2018 (a: 1990; b: 2000; c: 2010; d: 2018)
The granding standard of ecological risk is shown in Table 3.
表 1 “三生”空间分类系统与土地利用分类系统衔接表
Table 1. Linkage table of “Production-Living-Ecological” spaces classification and land use classification system
空间类型
Space type土地利用类型 Land use type 一级分类
Primary classification二级分类
Secondary classification生产空间 Production space 耕地 Cultivated land 水田、旱地 Water field, dryland 生态空间
Ecological space林地 Woodland 乔木林、灌木林、其他林地
Highwood, shrubwood, other forest land草地 Grassland 天然牧草地、人工牧草地、其他草地
Natural grassland, artificial grassland, other grasslands水域及水利设施用地
Waters and water facilities land水库水面、坑塘水面、内陆滩涂
Reservoir, pond, inland beach生活空间
Living space建设用地
Land used for building商服用地、工矿仓储用地、住宅用地、公共管理与公共服务设施用地、
交通运输用地、风景名胜设施用地
Commercial land, mining warehouse land, residential land, land for public
administration and public service facilities, transportation land, scenic spot facilities land表 2 景观生态风险测算指标及计算方法
Table 2. Measure indexes and calculation methods of landscape ecological risk
名称
Name计算公式
Computational formula公式说明
Formula description生态意义
Ecological meaning距离指数
Distance index (Dj)${D_j} = \dfrac{1}{2}\sqrt {{\rm{PD}}{_j} }$ PDj是地类j的斑块密度(Fragstats 3.4)
PDj is the patch density of land class j
(Fragstats 3.4)代表景观中斑块之间隔离程度。正向指标, 值越高, 生态风险越大
It represents the degree of isolation between patches in the landscape. As a positive indicator, the higher the value, the greater the ecological risk景观分离度
Landscape separation index (Sj)$S _{j}=\dfrac{D_{j} }{ {\rm{P L} }_{j} }$ PLj是地类j的面积指数(Fragstats 3.4)
PLj is the area index of land class j (Fragstats 3.4)代表景观类型中不同斑块个体间分离程度。正向指标, 值越大代表景观越复杂, 景观生态稳定性较低, 生态风险越高
It represents the degree of separation between individual patches in landscape types. As a positive indicator, the larger the value, the more complex the landscape, the lower the ecological stability of the landscape and the higher the ecological risk景观破碎度
Landscape fragmentation index (Fj)$F _{j}=\dfrac{N_{j} }{A_{j} }$ Nj是地类j的斑块数目(Fragstats 3.4), Aj是地类j的
斑块面积
Nj is the number of patches of land class j (Fragstats 3.4), Aj is the patch area of land class j代表景观被分割的破碎后程度。正向指标, 值越高, 生态风险越大
It represents the degree of fragmentation of the landscape. As a positive indicator, the higher the value, the greater the ecological risk景观干扰度指数 Landscape disturbance index (LDIj) LDIj=αFj+βEDj+γSj Fj是地类j的破碎度; EDj是地类j的边界密度(Fragstats 3.4); Sj是地类j的分离度; α、β、γ为权
重值, 通过熵权法计算得到
Fj is the fragmentation degree of land class j, and
EDj is the boundary density of land class j
(Fragstats 3.4), Sj is the separation degree of land class j. α, β, γ are the weight values, which are calculated by the entropy weight method表示不同景观所代表的生态系统受到干扰的损失程度。正向指标, 值越大, 生态风险越大
It indicates the loss degree due to disturb of ecosystem represented by different landscapes. As a positive indicator, the greater the value, the greater the ecological risk景观生态脆弱度指数
Landscape vulnerability index (LVIj)(1)专家综合打分
(2)归一化处理
(1) Comprehensive
expert scoring
(2) Normalization processing参考荆玉平等[22]的研究, 对14种土地利用类型进
行风险定级: 有林地、灌木林地(6级); 疏林地、
其他林地(5级); 水田、水库坑塘、滩地(4级); 高
覆盖度草地、中覆盖度草地、低覆盖度草地(3
级); 旱地、农村居民点用地(2级); 城镇用地、其他建设用地(1级)。归一化处理后得到景观脆弱
度指数(LDVj), 取值范围为(0, 1), 根据表1的衔接关系, 最后归类到“三生”用地的景观脆弱度指数
Referring to the research of Jing Yuping, et al. [22],
the risk rating of 14 land use types was carried out: closed forest land, shrubwood (level 6); sparse wood land, other forest land (level 5); water field, reservoir ponds, beach land (level 4); high coverage grassland, medium coverage grassland, low coverage grassland (level 3); dryland, rural settlement area (level 2); urban land, other construction land (level 1). The landscape fragility index (LDVj) is obtained after normalization with values in the range (0, 1); according to the articulation of Table 1, the final classification of the landscape fragility index of the “Production-Living-Ecological spaces” land sites were attained表示不同景观类型对外界干扰的敏感性。正向指标, 值越大, 生态风险越大
It indicates the sensitivity of different landscape types to external interference. As a positive indicator, the greater the value, the greater the ecological risk景观生态损失度指数
Landscape loss index (LLIj)${\rm{LLI}}_{j}={\rm{L V I}}_{j} \times {\rm{L D I}}_{j}$ LVIj是地类j的景观脆弱度指数, LDIj是地类j的景观干扰度指数
LVIj is the landscape vulnerability index of land
class j, and LDIj is the landscape interference index of land class j表示由于外界干扰导致景观敏感, 从而造成景观生态损失的程度。正向指标, 值越大, 生态风险越大
It indicates the degree of landscape ecological loss caused by landscape sensitivity caused by external interference. As a positive indicator, the greater the value, the greater the ecological risk生态风险指数
Ecological risk index (ERIi)${\rm{E R I} }_i=\displaystyle\sum {\rm{E R I} }_{{i} }$${\rm{E R I}}_{i}=\displaystyle\sum_{j=1}^{n} \dfrac{A_{j} }{A} \times {\rm{L D D}}_{j}$ ERIi是特定区域某一空间用地景观生态风险指
数, i=1,2,3, 分别代表生产空间、生态空间与生活
空间; Aj是地类j的斑块面积 (通过景观生态软件Fragstats 3.4得到); A是平山县总面积; LDDj是地
类j的景观生态损失度指数
ERIi is the landscape ecological risk index of a spatial land in a specific area, i=1, 2, 3. They represent production space, ecological space and living space respectively; Aj is the patch area of land type j (obtained by landscape ecological software Fragstats 3.4); A is the total area of Pingshan County; LDDj is the landscape ecological loss index of land type j指景观格局因为外部环境干扰造成景观生态环境风险的异变情况, 主要通过描述区域生态损失测算得到
It refers to the variation of landscape ecological environment risk caused by external environmental interference in landscape pattern, which is mainly calculated by describing the regional ecological loss表 3 平山县“三生”空间景观生态风险分级标准
Table 3. Grading standards of landscape ecological risk of “Production-Living-Ecological” spaces in Pingshan County
等级
Grade生态风险指数 Ecological risk index 生产空间
Production space生态空间
Ecological space生活空间
Living spaceⅠ 0.002~0.016 0.31~10.25 0.09~0.20 Ⅱ 0.016~0.33 10.25~18.45 0.20~0.72 Ⅲ 0.33~0.42 18.45~27.42 0.72~3.07 Ⅳ 0.42~0.88 27.42~35.24 3.07~7.32 Ⅴ 0.88~1.29 35.24~45.23 7.32~13.34 表 4 1990—2018年平山县“三生”空间面积变化
Table 4. Change of “Production-Living-Ecological” spaces areas from 1990 to 2018
空间类型
Space type面积变化 Area change (hm2) 动态变化度 Dynamic change 1990—2000 2000—2010 2010—2018 1990—2000 2000—2010 2010—2018 生产空间
Production space−546.24 452.06 1340.83 −0.10 0.08 0.30 生态空间
Ecological space103.15 −1441.15 −2733.93 0.01 −0.07 −0.17 生活空间
Living space443.09 989.09 1393.10 0.77 1.59 4.92 总和 Sum 0.68 1.6 2.42 表 5 1990—2018年平山县“三生”空间结构转移数量特征
Table 5. Quantitative characteristics of structure transfer of “Production-Living-Ecological” spaces in Pingshan County from 1990 to 2018
hm2 年份
Year生产空间
Production space生态空间
Ecological space生活空间
Living space总计
Sum1990—2000 生产空间 Production space 53 854.47 1675.25 566.19 56 095.92 生态空间 Ecological space 1569.86 198 302.84 31.56 199 904.26 生活空间 Living space 125.34 29.32 5612.49 5767.15 总计 Sum 55 549.67 200 007.41 6210.24 261 767.32 2000—2010 生产空间 Production space 53 661.23 756.28 1132.16 55 549.67 生态空间 Ecological space 2087.22 197 802.27 117.92 200 007.41 生活空间 Living space 253.28 7.72 5949.24 6210.24 总计 Sum 56 001.73 198 566.27 7199.33 261 767.32 2010—2018 生产空间 Production space 46 325.67 7156.84 2519.22 56 001.73 生态空间 Ecological space 10 075.77 188 252.27 238.23 198 566.27 生活空间 Living space 941.12 423.23 5834.98 7199.33 总计 Sum 57 342.56 195 832.34 8592.43 261 767.32 表 6 1990—2018年“三生”用地转型对景观生态风险的贡献率
Table 6. Contribution rates of “Production-Living-Ecological” spaces land transformation to landscape ecological risk from 1990 to 2018
% 转型类别
Transformation type生态空间
Ecological space生产空间
Production space生活空间
Living space生活→生态
Life→ecology0~1.19 (0.18)1) 0~1.18 (0.32) 0~0.51 (0.10) 生活→生产
Life→production0~0.53 (0.12) 0~1.85 (0.42) 0~2.93 (0.19) 生态→生活
Ecology→life0~3.48 (0.51) 0~3.48 (0.83) 0~2.43 (0.31) 生态→生产
Ecology→production0~12.28 (2.68) 0~16.36 (5.19) 0~7.65 (1.47) 生产→生活
Production→life0~3.23 (0.31) 0~14.98 (2.00) 0~29.97 (1.44) 生产→生态
Production→ecology0~11.62 (1.40) 0~11.62 (3.08) 0~7.95 (1.03) 1)各行政乡镇用地转型的生态风险贡献率范围(平山县总体用地转型的生态风险贡献率值)。1) Range of ecological risk contribution of land transformation in each administrative township (ecological risk contribution rate of overall land use transformation in Pingshan County) -
[1] 肖笃宁, 李秀珍. 当代景观生态学的进展和展望[J]. 地理科学, 1997, 17(4): 356−364XIAO D N, LI X Z. Development and prospect of contemperary landscape ecology[J]. Scientia Geographica Sinica, 1997, 17(4): 356−364 [2] 曹宇, 肖笃宁, 赵羿, 等. 近十年来中国景观生态学文献分析[J]. 应用生态学报, 2001, 12(3): 474−477 doi: 10.3321/j.issn:1001-9332.2001.03.038CAO Y, XIAO D N, ZHAO Y, et al. Analysis on landscape ecology literatures in China during recent ten years[J]. Chinese Journal of Applied Ecology, 2001, 12(3): 474−477 doi: 10.3321/j.issn:1001-9332.2001.03.038 [3] 彭建, 党威雄, 刘焱序, 等. 景观生态风险评价研究进展与展望[J]. 地理学报, 2015, 70(4): 664−677 doi: 10.11821/dlxb201504013PENG J, DANG W X, LIU Y X, et al. Review on landscape ecological risk assessment[J]. Acta Geographica Sinica, 2015, 70(4): 664−677 doi: 10.11821/dlxb201504013 [4] FOCKS A, TER HORST M, VAN DEN BERG E, et al. Integrating chemical fate and population-level effect models for pesticides at landscape scale: new options for risk assessment[J]. Ecological Modelling, 2014, 280: 102−116 doi: 10.1016/j.ecolmodel.2013.09.023 [5] ZHANG W Q, SHAN B Q, LI J, et al. Characteristics, distribution and ecological risk assessment of phosphorus in surface sediments from different ecosystems in eastern China: a 31P-nuclear magnetic resonance study[J]. Ecological Engineering, 2015, 75: 264−271 doi: 10.1016/j.ecoleng.2014.11.055 [6] 赵越, 罗志军, 李雅婷, 等. 赣江上游流域景观生态风险的时空分异−从生产-生活-生态空间的视角[J]. 生态学报, 2019, 39(13): 4676−4686ZHAO Y, LUO Z J, LI Y T, et al. Study of the spatial-temporal variation of landscape ecological risk in the upper reaches of the Ganjiang River Basin based on the “production-living-ecological space”[J]. Acta Ecologica Sinica, 2019, 39(13): 4676−4686 [7] 王有小, 刘少坤, 陆汝成, 等. “三生”空间视角下近40a广西边疆地区景观生态风险及地形梯度分析[J]. 生态与农村环境学报, 2021, 37(12): 1586−1595WANG Y X, LIU S K, LU R C, et al. Landscape ecological risk assessment and terrain gradient analysis of Guangxi’ s border areas in the past 40 years from the “production-living-ecological” space[J]. Journal of Ecology and Rural Environment, 2021, 37(12): 1586−1595 [8] 王杰云, 罗志军, 齐松. 城镇空间扩张与景观生态风险的耦合关联−以江西省袁州区为例[J]. 水土保持研究, 2021, 28(5): 142−151WANG J Y, LUO Z J, QI S. Coupling relationship between urban spatial expansion and landscape ecological risk — a case study of Yuanzhou District in Jiangxi Province[J]. Research of Soil and Water Conservation, 2021, 28(5): 142−151 [9] 张瑾青, 罗涛, 徐敏, 等. 闽三角地区城镇空间扩张对区域生态安全格局的影响[J]. 生态学报, 2020, 40(15): 5113−5123ZHANG J Q, LUO T, XU M, et al. Influence of urban spatial expansion on the regionally ecological security pattern in Min-Delta region[J]. Acta Ecologica Sinica, 2020, 40(15): 5113−5123 [10] 戴智勇. 丘陵山区“三生”空间土地利用特征及其冲突评价[D]. 重庆: 西南大学, 2019DAI Z Y. Land use characteristics and conflict evaluation of ecological-production-living space in hilly and mountainous areas[D]. Chongqing: Southwest University, 2019 [11] 杨清可, 段学军, 王磊, 等. 基于“三生空间”的土地利用转型与生态环境效应−以长江三角洲核心区为例[J]. 地理科学, 2018, 38(1): 97−106YANG Q K, DUAN X J, WANG L, et al. Land use transformation based on ecological-production-living spaces and associated eco-environment effects: a case study in the Yangtze River Delta[J]. Scientia Geographica Sinica, 2018, 38(1): 97−106 [12] 于正松, 程叶青, 李小建, 等. 工业镇“生产-生活-生态”空间演化过程、动因与重构−以河南省曲沟镇为例[J]. 地理科学, 2020, 40(4): 646−656YU Z S, CHENG Y Q, LI X J, et al. Spatial evolution process, motivation and reconstruction of “production-living-ecology” in industrial town: a case study on Qugou Town in Henan Province[J]. Scientia Geographica Sinica, 2020, 40(4): 646−656 [13] 万慧琳, 王赛鸽, 陈彬, 等. 三江平原湿地生态风险评价及空间阈值分析[J/OL]. 生态学报, 2022, 42(16): 1–12 [2022-04-28]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220419.1306.010.htmlWAN H L, WANG S G, CHEN B, et al. Ecological risk assessment and spatial threshold analysis of wetlands in the Sanjiang Plain[J/OL]. Acta Ecologica Sinica, 2022, 42(16): 1–12 [2022-04-28]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220419.1306.010.html [14] 付在毅, 许学工, 林辉平, 等. 辽河三角洲湿地区域生态风险评价[J]. 生态学报, 2001, 21(3): 365−373 doi: 10.3321/j.issn:1000-0933.2001.03.004FU Z Y, XU X G, LIN H P, et al. Regional ecological risk assessment of in the Liaohe River Delta wetlands[J]. Acta Ecologica Sinica, 2001, 21(3): 365−373 doi: 10.3321/j.issn:1000-0933.2001.03.004 [15] 曹玉红, 陈晨, 张大鹏, 等. 皖江城市带土地利用变化的生态风险格局演化研究[J]. 生态学报, 2019, 39(13): 4773−4781CAO Y H, CHEN C, ZHANG D P, et al. Evolution of ecological risk pattern of land use change in Wanjiang City Belt[J]. Acta Ecologica Sinica, 2019, 39(13): 4773−4781 [16] 周汝佳, 张永战, 何华春. 基于土地利用变化的盐城海岸带生态风险评价[J]. 地理研究, 2016, 35(6): 1017−1028ZHOU R J, ZHANG Y Z, HE H C. Ecological risk assessment based on land use changes in the coastal area in Yancheng City[J]. Geographical Research, 2016, 35(6): 1017−1028 [17] 刘欣, 葛京凤, 冯现辉. 河北太行山区土地资源生态安全研究[J]. 干旱区资源与环境, 2007, 21(5): 68−74 doi: 10.3969/j.issn.1003-7578.2007.05.015LIU X, GE J F, FENG X H. Study on ecological security of land resources in TaiHang Mountain HeBei[J]. Journal of Arid Land Resources and Environment, 2007, 21(5): 68−74 doi: 10.3969/j.issn.1003-7578.2007.05.015 [18] 刘体明, 刘芸芸. 河北太行山区生态安全评价与防护措施的研究[J]. 安徽农业科学, 2010, 38(27): 15367−15369 doi: 10.3969/j.issn.0517-6611.2010.27.195LIU T M, LIU Y Y. Ecological security assessment and protective measures in the Taihang Mountains in Heibei Province[J]. Journal of Anhui Agricultural Sciences, 2010, 38(27): 15367−15369 doi: 10.3969/j.issn.0517-6611.2010.27.195 [19] 郭年冬, 陈召亚, 李恒哲, 等. 基于土地利用变化下的县域生态敏感性及灰色预测−以河北省平山县为例[J]. 水土保持研究, 2016, 23(5): 229−234GUO N D, CHEN Z Y, LI H Z, et al. Ecological sensitivity research and their grey forecast based on land use change in Pingshan County, Hebei Province[J]. Research of Soil and Water Conservation, 2016, 23(5): 229−234 [20] 李广东, 方创琳. 城市生态—生产—生活空间功能定量识别与分析[J]. 地理学报, 2016, 71(1): 49−65 doi: 10.11821/dlxb201601004LI G D, FANG C L. Quantitative function identification and analysis of urban ecological-production-living spaces[J]. Acta Geographica Sinica, 2016, 71(1): 49−65 doi: 10.11821/dlxb201601004 [21] 张红旗, 许尔琪, 朱会义. 中国“三生用地”分类及其空间格局[J]. 资源科学, 2015, 37(7): 1332−1338ZHANG H Q, XU E Q, ZHU H Y. An ecological-living-industrial land classification system and its spatial distribution in China[J]. Resources Science, 2015, 37(7): 1332−1338 [22] 荆玉平, 张树文, 李颖. 基于景观结构的城乡交错带风险分析[J]. 生态学杂志, 2008, 27(2): 229−234JING Y P, ZHANG S W, LI Y. Risk analysis of urban-rural interlaced zone based on landscape structure[J]. Chinese Journal of Ecology, 2008, 27(2): 229−234 [23] OLIVER M A, WEBSTER R. A tutorial guide to geostatistics: computing and modelling variograms and kriging[J]. CATENA, 2014, 113: 56−69 doi: 10.1016/j.catena.2013.09.006 [24] 何莎莎, 李欣, 何春龙, 等. 基于土地利用变化的扬州市广陵区景观生态风险评价[J]. 南京师大学报(自然科学版), 2019, 42(1): 139−148HE S S, LI X, HE C L, et al. Landscape ecological risk assessment in Guangling District of Yangzhou City based on land use change[J]. Journal of Nanjing Normal University (Natural Science Edition), 2019, 42(1): 139−148 [25] 郭彦君, 郭文炯. “三生空间”视角下山西中部盆地城市群景观生态风险分析[J/OL]. 生态学杂志, 2022: 1–12 [2022-04-12]. DOI: 10.13292/j.1000-4890.202206.015GUO Y J, GUO W J. Landscape ecological risk analysis of urban agglomeration in the central basin of Shanxi from the perspective of “ production-living-ecological spaces”[J/OL]. Chinese Journal of Ecology, 2022: 1–12 [2022-04-12]. DOI: 10.13292/j.1000-4890.202206.015 [26] LIN M X, LIN T, SUN C G, et al. Using the eco-erosion index to assess regional ecological stress due to urbanization: a case study in the Yangtze River Delta urban agglomeration[J]. Ecological Indicators, 2020, 111: 106028 doi: 10.1016/j.ecolind.2019.106028 [27] 吕永龙, 王尘辰, 曹祥会. 城市化的生态风险及其管理[J]. 生态学报, 2018, 38(2): 359−370LYU Y L, WANG C C, CAO X H. Ecological risk of urbanization and risk management[J]. Acta Ecologica Sinica, 2018, 38(2): 359−370 [28] 周鹏, 邓伟, 张少尧, 等. 太行山区国土空间格局演变特征及其驱动力[J]. 山地学报, 2020, 38(2): 276−289ZHOU P, DENG W, ZHANG S Y, et al. Evolution characteristics and its driving force of territory space pattern in the Taihang Mountain, China[J]. Mountain Research, 2020, 38(2): 276−289 [29] 温雪静, 周智, 张美丽, 等. 太行山区国土空间生态修复关键区域识别−以唐县为例[J]. 中国生态农业学报(中英文), 2021, 29(12): 2093−2106 doi: 10.12357/cjea.20210387WEN X J, ZHOU Z, ZHANG M L, et al. Identification of key areas of territorial ecological restoration in Taihang Mountains — A case study of Tang County[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2093−2106 doi: 10.12357/cjea.20210387 [30] 朱建佳, 刘金铜, 梁红柱, 等. 太行山区水资源供需关系的垂直梯度特征[J]. 应用生态学报, 2019, 30(2): 472−480ZHU J J, LIU J T, LIANG H Z, et al. Vertical gradients of water supply and demand in Taihang Mountains, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 472−480 -