Effect of maize row orientation configurations on the photosynthetic characteristics、leaf structure and yield of soybean in relay strip intercropping systems
-
摘要: 玉米−大豆带状复合种植技术具有提高土地利用率, 扩大大豆生产面积, 提高大豆产量的作用, 而田间配置直接影响大豆生长发育和产量形成。本研究通过分析玉米−大豆带状套作模式行向配置对大豆形态、光合生理参数及产量的影响, 确定南方区域玉米−大豆带状套作模式的最优行向。试验采用单因素随机区组设计, 玉米大豆行比为2∶2, 带宽2 m, 设置6个处理: 玉米西北-东南行向净作(CKm)、大豆西北-东南行向净作(CKs)和4种行向的玉米−大豆带状套作[东-西(A1)、南-北(A2)、西北-东南(A3)、东北-西南(A4)], 分析套作大豆光环境、株高、叶面积指数、光合色素、光合参数、叶片结构特性、粒叶比及产量等对复合种植系统行向的响应。结果表明, 东-西行向和西北-东南行向处理的大豆前期受荫蔽程度显著低于南-北行向和东北-西南行向处理(P<0.05); 东-西行向种植, 套作大豆受光量最大。与大豆净作处理相比, 带状套作各处理大豆叶面积指数(LAI)、地上部生物量、光合色素含量、净光合速率、叶片生产能力、叶片厚度、气孔密度显著降低, 整体趋势为东-西行向>西北-东南行向>南-北行向>东北-西南行向处理。东-西行向处理各生育时期大豆叶片LAI、地上部生物量、光合色素含量、净光合速率以及大豆叶片厚度、气孔密度、气孔长度和气孔开度均显著高于其他带状套作处理。在产量和效益方面, 东-西行向处理的大豆产量和整株粒叶比、1-5节位粒叶比及3-4节位粒叶比分别为1932.66 kg∙hm−2和952.67、498.50及207.59 g∙m−2, 高于其他带状套作处理(P<0.05)。与玉米净作处理相比, 南-北行向、西北-东南行向和东北-西南行向处理玉米实际产量显著降低, 而东-西行向处理玉米产量增加了1.67%。东-西行向处理下玉米产量贡献率最高(79.44%), 土地当量比为1.66。在中国南方地区, 东-西行向种植能显著发挥玉米−大豆套作复合种植模式的优势。Abstract: Maize-soybean belt intercropping system compound planting mode is conducive to increasing land utilization, expanding soybean production area, and improving soybean quality. At the same time, the field configuration directly affects soybean growth and yield formation. This study analyzed the effects of varying row directions configuration on morphology, photosynthetic physiological parameters, and yield of soybean under relay strip intercropping systems to find the optimal row direction treatment of maize-soybean relay strip intercropping systems in southern China. A single-factor randomized block design was adopted. The intercropping patterns used wide-narrow row planting with alternating strips of maize and soybean. The number of maize vs soybean rows per strip in the relay strip intercropping systems was 2: 2. There are six treatments: monoculture maize (CKm), monoculture soybean (CKs), and the east-west, north-south, northwest-southeast, and northeast-southwest bound (A1, A2, A3, A4). Determination indices include the light environment, plant height, leaf area index, photosynthetic pigment, photosynthetic parameters, grain leaf ratio, and yield. Compared with CKs. The results showed that the shading degree of soybeans in the east-west and northwest-southeast directions were significantly lower than that in the north-south and northeast-southwest directions (P<0.05). Planted in the east-west direction, soybeans receive the most light. The leaf area index (LAI), aboveground biomass, photosynthetic pigment content, net photosynthetic rate, leaf productivity, leaf thickness, and stomatal density of soybean in strip intercropping treatments decreased significantly, with the overall trend of the east-west bound treatment> the northwest-southeast bound treatment>the north-south bound treatment>the northeast-southwest bound treatment. The LAI, aboveground biomass, photosynthetic pigment content, net photosynthetic rate, thickness, stomatal density, stomatal length, and stomatal opening of the east-west bound treatment were significantly higher than those of other relay strip intercropping treatments at each growth stage. In terms of yield and benefit, under the east-west bound treatment, soybean yield and whole plant grain leaf ratio, grain leaf ratio at 1-5 nodes, and grain leaf ratio at 3-4 nodes were 1932.66 kg∙hm−2 and 952.67 kg∙hm−2, 498.50 g∙m−2 and 207.59 g∙m−2 respectively, which were higher than other treatments (P<0.05). Compared with the CKm treatment, the actual yield of maize in the north-south bound treatment, the northwest-southeast bound treatment, and the northeast-southwest bound treatment decreased significantly, while that in the east-west bound treatment increased by 1.67%. Moreover, the east-west bound treatment had the highest yield contribution rate (79.44%), and the land equivalent ratio was 1.66. In southern China, planting in the east-west direction can better show the advantages of maize-soybean relay strip intercropping systems.
-
图 3 不同行向处理对与玉米带状套作的大豆的光分布影响
图中横坐标为套作大豆水平方向宽行距离, 纵坐标为套作大豆垂直方向玉米株高, 所有测定均为光空间分布; 纵坐标以40 cm为起点, 其为平行于大豆冠层的玉米高度。CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。The abscissa in the figure is the horizontal width of the intercropping soybeans, and the ordinate is the maize plant height in the vertical direction. The ordinate starts at 40 cm, which is the height of the maize parallel to the soybean canopy. CKs is net soybean northwest-southeast bound intercropping, A1 is east-west bound maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping.
Figure 3. Effect of different row orientation treatments on the light distribution of soybean in relay strip intercropping systems of soybean-maize
图 4 不同行向对与玉米带状套作的大豆形态特征的影响
CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期、R1为大豆始花期、R5为大豆始粒期。不同处理不同小写字母代表差异显著(P<0.05)。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west bound maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seed stage of soybean. Different lowercase letters in the same light environment represent significant differences (P<0.05).
Figure 4. Effect of row orientation treatments on morphological characteristics of soybean in relay strip intercropping systems of soybean-maize
图 5 不同行向对与玉米带状套作的大豆光合参数的影响
CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期、R1为大豆始花期、R5为大豆始粒期。不同处理不同小写字母代表差异显著(P<0.05)。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west bound maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seed stage of soybean. Different lowercase letters in the same light environment represent significant differences (P<0.05).
Figure 5. Effect of different row orientation treatments on photosynthetic parameters of soybean in relay strip intercropping systems of soybean-maize
图 6 不同行向对与玉米带状套作的大豆的叶片气孔的影响
图A-E为V5期CKs、A1、A2、A3、A4处理; 图a-e为R1期CKs、A1、A2、A3、A4处理。CKs、A1、A2、A3、A4分别为净作大豆西北-东南行向处理、东-西行向玉米与大豆套作处理、南-北行向玉米与大豆套作处理、西北-东南行向玉米与大豆套作处理、东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R5为大豆始粒期。Fig. A-E show treatments of CKs, A1, A2, A3, A4 at V5 stage; fig. a-e show treatments of CKs, A1, A2, A3, A4 at R1 stage. Treatment CKs, A1, A2, A3, and A4 are net soybean northwest-southeast bound intercropping, east-west bound maize and soybean intercropping, south-north-direction bound maize and soybean intercropping, northwest-southeast bound maize and soybean intercropping, and northeast-southwest bound maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, and R1 is the beginning bloom stage of soybean.
Figure 6. Effect of different row orientation treatments on stomatal parameters of soybean in relay strip intercropping systems of soybean-maize
图 7 不同行向对与玉米带状套作的大豆叶片的解剖结构的影响
图A-E为V5期CKs、A1、A2、A3、A4处理; 图a-e为R1期CKs、A1、A2、A3、A4处理。CKs、A1、A2、A3、A4分别为净作大豆西北-东南行向处理、东-西行向玉米与大豆套作处理、南-北行向玉米与大豆套作处理、西北-东南行向玉米与大豆套作处理、东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R5为大豆始粒期。Fig. A-E show treatments of CKs, A1, A2, A3, A4 at V5 stage; fig. a-e show treatments of CKs, A1, A2, A3, A4 at R1 stage. Treatment CKs, A1, A2, A3, and A4 are net soybean northwest-southeast bound intercropping, east-west maize and soybean intercropping, south-north-direction bound maize and soybean intercropping, northwest-southeast bound maize and soybean intercropping, and northeast-southwest bound maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, and R1 is the beginning bloom stage of soybean.
Figure 7. Effect of different row orientation treatments on the anatomical structure of soybean in relay strip intercropping systems of soybean-maize
图 8 不同行向对与玉米带状套作的大豆的主茎节位叶面积及粒重影响
CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping.
Figure 8. Effect of different row orientation treatments on nodal leaf area and grain weight of the main stem of soybean in relay strip intercropping systems of soybean-maize
图 9 不同行向对与玉米带状套作的大豆的生产能力影响
CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。不同处理不同小写字母代表差异显著(P<0.05)。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. Different lowercase letters in the same light environment represent significant differences (P<0.05).
Figure 9. Effect of different row orientation treatments on leaf productivity of soybean in relay strip intercropping systems of soybean-maize
表 1 不同行向对与玉米带状套作的大豆光合色素含量的影响
Table 1. Effects of row orientation on the photosynthetic pigment content of soybean in relay strip intercropping systems of soybean-maize
时期
Growth stage处理
Treatment叶绿素a
Chlorophyll a
(mg∙dm−2)叶绿素b
Chlorophyll b
(mg∙dm−2)类胡萝卜素
Carotenoids
(mg∙dm−2)叶绿素总含量
Chlorophyll content
(mg∙dm−2)光合色素总含量
photosynthetic pigment content
(mg∙dm−2)叶绿素a/b
Chlorophyll a/
Chlorophyll bV5 CKs 2.65±0.20a 0.96±0.06a 0.45±0.02a 3.61±0.27a 4.05±0.28a 2.76±0.03a A1 2.48±0.08ab 0.95±0.04a 0.34±0.03b 3.43±0.09ab 3.77±0.10ab 2.61±0.13ab A2 2.11±0.20cd 0.84±0.06bc 0.29±0.06bc 2.95±0.25cd 3.24±0.30cd 2.52±0.15b A3 2.29±0.12bc 0.88±0.05ab 0.32±0.03b 3.17±0.17bc 3.49±0.19bc 2.61±0.07ab A4 1.95±0.10d 0.77±0.03c 0.23±0.02c 2.72±0.14d 2.96±0.16d 2.54±0.05b R1 CKs 3.07±0.61a 1.18±0.13a 0.51±0.12a 4.03±0.22a 4.54±0.22a 2.69±0.19a A1 2.92±0.05a 1.15±0.08ab 0.48±0.02a 4.01±0.05a 4.49±0.07a 2.55±0.19a A2 2.73±0.36a 1.08±0.10ab 0.44±0.07a 3.76±0.21ab 4.20±0.15ab 2.53±0.12a A3 2.88±0.19a 1.09±0.00ab 0.45±0.03a 3.81±0.46ab 4.25±0.43ab 2.64±0.19a A4 2.50±0.21a 0.97±0.10b 0.37±0.05a 3.48±0.29b 3.84±0.33b 2.58±0.20a R5 CKs 3.89±0.32a 1.49±0.08a 0.99±0.13a 5.13±0.43a 6.12±0.51a 2.62±0.23b A1 3.85±0.42a 1.24±0.11b 0.82±0.05b 5.06±0.53a 5.88±0.53a 3.14±0.54a A2 3.71±0.48ab 1.17±0.13bc 0.75±0.11bc 4.88±0.61ab 5.61±0.82ab 3.16±0.08a A3 3.71±0.22ab 1.21±0.12b 0.79±0.06b 4.92±0.24ab 5.71±0.25a 3.09±0.38a A4 3.17±0.37b 1.02±0.13c 0.64±0.10c 4.19±0.50b 4.84±0.59ab 3.11±0.08a CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期、R1为大豆始花期、R5为大豆始粒期。不同处理不同小写字母代表差异显著(P<0.05)。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west bound maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seed stage of soybean. Different lowercase letters in the same light environment represent significant differences (P<0.05). 表 2 行向对与玉米带状套作的大豆叶片气孔参数的影响
Table 2. Effects of row orientation on the stomatal parameters of soybean in relay strip intercropping systems of soybean-maize
时期
Growth stage处理
Treatment气孔长度
Stomata length
(μm)气孔宽度
Stomata width
(μm)气孔开度
Stomata aperture
(μm)气孔周长
Stomata circumference
(μm)气孔面积
Stomata area (μm2)气孔密度
Stomata density
(stomates∙mm−2)V5 CKs 35.56±2.26a 23.67±1.34a 4.16±0.47a 90.29±6.43a 43.43±1.77a 493.23±6.28a A1 35.44±1.25ab 21.88±1.22b 3.32±0.72b 79.17±5.69b 40.96±2.45b 482.90±5.80b A2 33.21±1.46c 23.02±1.00ab 2.89±0.64b 82.34±5.87b 42.48±1.79b 470.89±7.06c A3 33.53±2.55bc 22.10±2.16b 2.89±0.77b 81.52±3.97b 41.53±0.80ab 481.91±6.34b A4 33.06±2.72c 23.55±1.33a 2.72±0.66b 91.44±5.27a 42.58±1.78ab 466.91±5.41c R1 CKs 31.28±1.81a 23.45±2.31a 3.61±0.39a 95.18±5.36a 38.93±1.74a 510.28±11.75a A1 30.43±3.35ab 15.56±7.30c 2.48±0.31b 90.69±4.18bc 33.61±2.00b 503.71±25.81ab A2 28.01±1.68cd 21.29±0.75ab 2.03±0.44c 91.32±2.83bc 35.03±1.48b 481.88±12.50cd A3 28.84±1.54bc 19.63±1.64b 2.19±0.59bc 88.23±1.54c 33.73±1.61b 494.71±9.25bc A4 26.66±2.20d 21.85±0.93an 1.95±0.54c 93.28±2.27ab 38.42±1.46a 477.82±15.84d CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期、R1为大豆始花期。不同处理不同小写字母代表差异显著(P<0.05)。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, and R1 is the beginning bloom stage of soybean. Different lowercase letters in the same light environment represent significant differences (P<0.05). 表 3 行向对与玉米带状套作的大豆叶片的解剖结构的影响
Table 3. Effects of row orientation on the anatomical structure of soybean in relay strip intercropping systems of soybean-maize (μm)
时期
Growth stage处理
Treatment叶片厚度
Leaf thickness上表皮厚度
Upper epidermis下表皮厚度
Lower epidermis栅栏组织厚度
Palisade tissue海绵组织厚度
Sponge tissueV5 CKs 138.84±2.87a 12.15±1.32a 11.64±1.20a 59.25±5.53a 32.34±5.00a A1 132.70±4.71b 10.23±0.85b 10.21±2.91b 54.13±2.62b 29.23±3.24b A2 123.86±4.16c 8.86±1.28b 8.45±1.55cd 44.09±3.15c 25.93±2.19c A3 124.18±5.18c 10.07±2.73b 8.86±1.66bc 46.98±3.17c 26.71±3.17bc A4 123.13±6.31c 7.37±2.10c 7.16±0.67d 39.29±4.04d 25.69±2.45c R1 CKs 173.49±5.44a 15.93±1.44a 13.75±2.32a 68.62±3.85a 33.51±4.30a A1 133.31±5.79b 12.05±1.63b 13.03±1.79ab 57.47±3.38b 30.83±1.90b A2 129.75±4.71bc 10.57±1.24cd 10.09±1.63cd 50.68±3.64c 26.36±1.89c A3 130.93±6.80b 10.76±1.28c 11.45±2.31bc 51.02±4.16c 27.84±1.46c A4 126.15±4.36c 9.55±1.28d 8.63±2.38d 50.40±2.54c 25.95±3.78c CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期、R1为大豆始花期。不同处理不同小写字母代表差异显著(P<0.05)。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, and R1 is the beginning bloom stage of soybean. Different lowercase letters in the same light environment represent significant differences (P<0.05). 表 4 行向对套作大豆产量构成因素和产量的影响
Table 4. Influence of row orientation on yield components and yield of intercropping soybean
行向
Row orientation单株荚数
Pods per plant单株粒数
Grains per plant单株产量
Yield per plant (g)百粒重
Hundred grain weight (g)实际产量
Actual yield (kg hm−2)CKs 167.57±7.04a 256.14±7.69a 63.45±3.19a 19.66±0.32a 3013.42±260.08a A1 119.71±11.61b 178.14±3.76b 26.77±0.64b 17.91±0.19b 1932.66±7.35b A2 102.14±7.97c 163.71±2.81c 25.76±1.26b 17.64±0.15cd 1846.08±39.65b A3 104.43±5.68c 168.43±4.43c 26.20±1.18b 17.72±0.06bc 1861.06±29.81b A4 101.00±10.61c 157.57±6.29d 25.48±0.84b 17.44±0.15d 1818.82±31.52b CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。不同处理不同小写字母代表差异显著(P<0.05)。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. Different lowercase letters in the same light environment represent significant differences (P<0.05). 表 5 行向对玉米产量构成因素和产量的影响
Table 5. Influence of row orientation on yield components and yield of maize
行向
Row orientation穗长
Ear length
(cm)秃尖
The length of the
ear barren (cm)穗粗
Ear diameter
(cm)穗粒重
Grain weight
(g)千粒重
Thousand grain
weight (g)实际产量
Actual yield
(kg hm−2)CKm 15.10±2.78a 1.30±0.79b 49.81±4.63a 145.95±15.55a 291.97±0.06d 7345.19±236.41a A1 14.93±1.96a 2.32±0.56a 49.50±2.74b 144.85±35.68a 349.56±0.31a 7467.76±222.41a A2 14.76±1.93a 2.21±0.65a 48.70±2.22b 130.94±20.94a 329.32±0.17b 6645.92±401.66b A3 14.84±1.27a 2.24±0.74a 49.07±1.81b 140.38±29.91a 329.78±0.16c 7183.86±184.90ab A4 13.51±1.64a 1.80±0.73a 48.18±1.57b 106.56±20.98b 294.57±0.15d 5418.41±424.44c CKs为净作大豆西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。不同处理不同小写字母代表差异显著(P<0.05)。CKs is net soybean northwest-southeast bound intercropping, A1 is east-west maize and soybean intercropping, A2 is south-north-direction bound maize and soybean intercropping, A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. Different lowercase letters in the same light environment represent significant differences (P<0.05). 表 6 行向对系统产量及土地当量比的影响
Table 6. Influence of row orientation on yield and land equivalent ratio
处理
Treatment产量
Yield (kg∙hm−2)产量贡献率
The contribution rate to yield (%)土地当量比
LER玉米
Maize大豆
Soybean玉米
Maize大豆
SoybeanA1 7467.76 1932.66 79.44 20.56 1.66 A2 6645.92 1846.08 78.26 21.74 1.52 A3 7183.86 1861.06 79.42 20.58 1.60 A4 5418.41 1817.82 74.88 25.12 1.34 SM 7345.19 - 100.00 0.00 1.00 SS - 3013.42 0.00 100.00 1.00 SS为净作大豆西北-东南行向处理、SM为净作玉米西北-东南行向处理、A1为东-西行向玉米与大豆套作处理、A2为南-北行向玉米与大豆套作处理、A3为西北-东南行向玉米与大豆套作处理、A4为东北-西南行向玉米与大豆套作处理。SS is net soybean northwest-southeast bound intercropping; SM is net maize northwest-southeast bound intercropping; A1 is east-west maize and soybean intercropping; A2 is south-north-direction bound maize and soybean intercropping; A3 is northwest-southeast bound maize and soybean intercropping, and A4 is northeast-southwest bound maize and soybean intercropping. -
[1] 刘梅芳, 樊琦. 中国大豆消费、生产和进口现状及存在的问题[J]. 粮食科技与经济, 2021, 46(6): 28−35LIU M F, FAN Q. Study on the current situation and problems of soybean consumption, production and import in China[J]. Grain Science and Technology and Economy, 2021, 46(6): 28−35 [2] DU J B, HAN T F, GAI J Y, et al. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture, 2018, 17(4): 747−754 doi: 10.1016/S2095-3119(17)61789-1 [3] CHANG T G, ZHU X G. Source-sink interaction: a century old concept under the light of modern molecular systems biology[J]. Journal of Experimental Botany, 2017, 68(16): 4417−4431 doi: 10.1093/jxb/erx002 [4] 罗晓峰, 孟永杰, 刘卫国, 等. 大豆响应荫蔽胁迫的形态及生理机制研究[J]. 分子植物育种, 2018, 16(3): 979−988LUO X F, MENG Y J, LIU W G, et al. Research of architectural and physiological mechanisms in response to shade stress in soybean[J]. Molecular Plant Breeding, 2018, 16(3): 979−988 [5] 崔亮, 苏本营, 杨峰, 等. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响[J]. 中国农业科学, 2014, 47(8): 1489−1501CUI L, SU B Y, YANG F, et al. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems[J]. Scientia Agricultura Sinica, 2014, 47(8): 1489−1501 [6] 杨峰, 娄莹, 廖敦平, 等. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响[J]. 作物学报, 2015, 41(4): 642−650 doi: 10.3724/SP.J.1006.2015.00642YANG F, LOU Y, LIAO D P, et al. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system[J]. Acta Agronomica Sinica, 2015, 41(4): 642−650 doi: 10.3724/SP.J.1006.2015.00642 [7] YANG F, HUANG S, GAO R C, et al. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio[J]. Field Crops Research, 2014, 155: 245−253 doi: 10.1016/j.fcr.2013.08.011 [8] 刘小明, 雍太文, 苏本营, 等. 减量施氮对玉米-大豆套作系统中作物产量的影响[J]. 作物学报, 2014, 40(9): 1629−1638 doi: 10.3724/SP.J.1006.2014.01629LIU X M, YONG T W, SU B Y, et al. Effect of reduced N application on crop yield in maize-soybean intercropping system[J]. Acta Agronomica Sinica, 2014, 40(9): 1629−1638 doi: 10.3724/SP.J.1006.2014.01629 [9] 余利, 刘正, 王波, 等. 行距和行向对不同密度玉米群体田间小气候和产量的影响[J]. 中国生态农业学报, 2013, 21(8): 938−942 doi: 10.3724/SP.J.1011.2013.00938YU L, LIU Z, WANG B, et al. Effects of different combinations of planting density, row spacing and row direction on field microclimatic conditions and grain yield of maize[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8): 938−942 doi: 10.3724/SP.J.1011.2013.00938 [10] 宋人. 农作物东西行向种植好[J]. 农技服务, 2001, 18(5): 45SONG R. Crops are planted in the east-west direction[J]. Agricultural Technology Service, 2001, 18(5): 45 [11] 郑国喜. 不同行向麦棉套种试验[J]. 安徽农业科学, 2007, 35(17): 5113−5114ZHENG G X. Experiment on relay intercropping wheat and cotton in different row orientation[J]. Journal of Anhui Agricultural Sciences, 2007, 35(17): 5113−5114 [12] 冯永祥, 杨恒山, 李志刚, 等. 行向、行距对小麦田间光照及产量的影响[J]. 哲里木畜牧学院学报, 2000, 6(1): 21−24FENG Y X, YANG H S, LI Z G, et al. Effect of row directions and row spacing on illumination and yield of wheat colonics[J]. Journal of Zhelimu Animal Husbantry College, 2000, 6(1): 21−24 [13] 巨鹏飞. 玉米大豆间作种植行向及田间配置研究[D]. 南京: 南京农业大学, 2019JU P F. Study on planting direction and field allocation of corn and soybean intercropping[D]. Nanjing: Nanjing Agricultural University, 2019 [14] 于吉庆, 刘明贵, 张子军. 行向及插秧方式对水稻产量的影响[J]. 北方水稻, 2010, 40(5): 37−39YU J Q, LIU M G, ZHANG Z J. Effect of the row direction and seedling transplanting pattern on yield of rice[J]. North Rice, 2010, 40(5): 37−39 [15] 鲍玉巧, 姚锐, 张子学. 不同玉米品种及行向对田间漏光率和产量的影响[J]. 安徽科技学院学报, 2015, 29(6): 18−22 doi: 10.3969/j.issn.1673-8772.2015.06.004BAO Y Q, YAO R, ZHANG Z X. Effect on the field light-leaking rate and yield of different maize varieties and row direction[J]. Journal of Anhui Science and Technology University, 2015, 29(6): 18−22 doi: 10.3969/j.issn.1673-8772.2015.06.004 [16] 罗春芳, 魏云霞, 欧珍贵, 等. 种茎行向及芽向对间作木薯和花生产量及品质的影响[J]. 湖南农业大学学报(自然科学版), 2017, 43(5): 480−484,550LUO C F, WEI Y X, OU Z G, et al. Yield and quality effect of different row or bud direction of cassava cutting within cassava intercropping peanut[J]. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(5): 480−484,550 [17] 张林, 祖朝龙, 解莹莹, 等. 行向与行距对烟田水、温和光照条件及烤烟生长的影响[J]. 中国烟草科学, 2013, 34(5): 7−12ZHANG L, ZU C L, XIE Y Y, et al. Effects of row directions and row spacing on soil temperature, soil moisture, illumination and growth of flue-cured tobacco[J]. Chinese Tobacco Science, 2013, 34(5): 7−12 [18] WANG Z X, YIN H N, YANG N, et al. Effect of vineyard row orientation on microclimate, phenolic compounds, individual anthocyanins, and free volatile compounds of Cabernet Sauvignon (Vitis vinifera L. ) in a high-altitude arid valley[J]. European Food Research and Technology, 2022, 248(5): 1365−1378 doi: 10.1007/s00217-022-03961-9 [19] 尹海宁, 王兆祥, 王琳, 等. 海拔和行向对酿酒葡萄果实生长发育及品质的影响[J]. 西北-东南农林科技大学学报(自然科学版), 2021, 49(04): 93−101YI H N, WANG Z X, WANG L, et al. Effects of altitude and row orientation on growth and quality of wine grape berries[J]. Journal of Northwest A & F University(Natural Science Edition), 2021, 49(04): 93−101 [20] CHEN Y K, FENG L Y, RAZA M, et al. Effect of maize/soybean relay strip intercropping system on soybean morphology, chlorophyll fluorescence, and yield in Sichuan area[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6): 870−879 [21] 魏建军, 罗赓彤, 张力, 等. 高产大豆主要群体生理参数的变化及其对产量的影响[J]. 大豆科学, 2009, 28(3): 472−476WEI J J, LUO G T, ZHANG L, et al. Changes of main physiological parameters of soybean population and influences on yield in different year[J]. Soybean Science, 2009, 28(3): 472−476 [22] PENG J F, FENG Y H, WANG X K, et al. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations[J]. Scientific Reports, 2021, 11: 7485 doi: 10.1038/s41598-021-86858-z [23] WANG X C, WU X L, DING G H, et al. Analysis of grain yield differences among soybean cultivars under maize-soybean intercropping[J]. Agronomy, 2020, 10(1): 110 doi: 10.3390/agronomy10010110 [24] 战吉宬, 黄卫东, 王秀芹, 等. 弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化[J]. 植物生态学报, 2005, 29(1): 26−31ZHAN J C, HUANG W D, WANG X Q, et al. Leaf transpiration and stomatal structure of young grape plants grown in a low light environment[J]. Acta Phytoecologica Sinica, 2005, 29(1): 26−31 [25] FAN Y F, CHEN J X, CHENG Y J, et al. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system[J]. PLoS One, 2018, 13(5): e0198159 doi: 10.1371/journal.pone.0198159 [26] 张伟, 谢甫绨, 宋显军, 等. 大豆上部节位叶片生产效率的初步研究[J]. 作物学报, 2007, 33(5): 853−856ZHANG W, XIE F T, SONG X J, et al. Grain productivity from leaves at upper nodes of soybean[J]. Acta Agronomica Sinica, 2007, 33(5): 853−856 [27] 蔡承智, 高军, 陈阜. 土地当量比(LER)的计算校正探讨[J]. 耕作与栽培, 2003(5): 18−20CAI C Z, GAO J, CHEN F. Discussion on calculation and correction of land equivalent ratio (LER)[J]. Tillage and Cultivation, 2003(5): 18−20 [28] 陈舒炜, 唐丽玉, 尹丹. 枇杷冠层内光分布模拟及光截获分析[J]. 福州大学学报(自然科学版), 2018, 46(5): 650−656CHEN S W, TANG L Y, YIN D. Simulation of light distribution within loquat canopy and analysis of light interception[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(5): 650−656 [29] 任梦露, 刘卫国, 刘小明, 等. 荫蔽信号对大豆幼苗生长和光合特性的影响[J]. 中国生态农业学报, 2016, 24(4): 499−505REN M L, LIU W G, LIU X M, et al. Effect of shading signal on growth and photosynthetic characteristics of soybean seedlings[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 499−505 [30] 徐强, 程智慧, 卢涛, 等. 线辣椒/玉米带状套作的光能截获和利用特征[J]. 中国生态农业学报, 2010, 18(5): 969−976 doi: 10.3724/SP.J.1011.2010.00969XU Q, CHENG Z H, LU T, et al. Light interception and utilization of maize-capsicum strip relay intercrop[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 969−976 doi: 10.3724/SP.J.1011.2010.00969 [31] 吴雨珊, 龚万灼, 廖敦平, 等. 带状套作荫蔽及复光对不同大豆品种(系)生长及产量的影响[J]. 作物学报, 2015, 41(11): 1740−1747 doi: 10.3724/SP.J.1006.2015.01740WU Y S, GONG W Z, LIAO D P, et al. Effects of shade and light recovery on soybean cultivars(lines) and its relationship with yield in relay strip intercropping system[J]. Acta Agronomica Sinica, 2015, 41(11): 1740−1747 doi: 10.3724/SP.J.1006.2015.01740 [32] 龚万灼, 吴雨珊, 雍太文, 等. 玉米-大豆带状套作中荫蔽及光照恢复对大豆生长特性与产量的影响[J]. 中国油料作物学报, 2015, 37(4): 475−480GONG W Z, WU Y S, YONG T W, et al. Effects of shade and lighting recovery on growth and yield of soybean in maize - soybean relay strip intercropping[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(4): 475−480 [33] NETTO A T, CAMPOSTRINI E, DE OLIVEIRA J G, et al. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves[J]. Scientia Horticulturae, 2005, 104(2): 199−209 doi: 10.1016/j.scienta.2004.08.013 [34] 高阳, 刘卫国, 李淑贤, 等. 荫蔽锻炼对大豆苗期光合特性的影响[J]. 作物学报, 2019, 45(01): 91−99 doi: 10.3724/SP.J.1006.2019.84061GAO Y, LIU W G, LI S X, et al. Effect of shade priming on photosynthetic characteristics of soybean seedlings[J]. ACTA AGRONOMICA SINICA, 2019, 45(01): 91−99 doi: 10.3724/SP.J.1006.2019.84061 [35] POLÍVKA T, FRANK H A. Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research, 2010, 43(8): 1125−1134 doi: 10.1021/ar100030m [36] 邹长明, 王允青, 曹卫东, 等. 不同品种小豆光合作用和生长发育对弱光的响应[J]. 应用生态学报, 2015, 26(12): 3687−3692 doi: 10.13287/j.1001-9332.20151016.014ZOU C M, WANG Y Q, CAO W D, et al. Response of photosynthesis and growth to weak light regime in different Adzuki bean (Vigna angularis) varieties[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3687−3692 doi: 10.13287/j.1001-9332.20151016.014 [37] HUANG D, WU L, CHEN J R, et al. Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels[J]. Photosynthetica, 2011, 49(4): 611−618 doi: 10.1007/s11099-011-0076-1 [38] 范元芳, 杨峰, 何知舟, 等. 套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应[J]. 中国生态农业学报, 2016, 24(5): 608−617FAN Y F, YANG F, HE Z Z, et al. Effects of shading and light recovery on soybean morphology and photosynthetic characteristics in soybean-maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 608−617 [39] 杨克彤, 常海龙, 陈国鹏, 等. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2016, 24(5): 608−617YANG K T, CHANG H L, CHEN G P, et al. Stomatal traits of main greening plant species in Lanzhou[J]. Chinese Journal of Plant Ecology, 2016, 24(5): 608−617 [40] 李盛蓝, 谭婷婷, 范元芳, 等. 玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响[J]. 中国农业科学, 2019, 52(21): 3782−3793LI S L, TAN T T, FAN Y F, et al. Effects of maize shading on photosynthetic characteristics, vein and stomatal characteristics of soybean[J]. Scientia Agricultura Sinica, 2019, 52(21): 3782−3793 [41] 刘凡值, 苟兴红, 傅生华, 等. 大豆耐阴性的研究Ⅴ—大豆叶片形态特征及解剖结构与耐阴性的关系[J]. 贵州农业科学, 1990, 18(3): 9−16LIU F Z, GOU X H, FU S H, et al. Studies on shade-endurance of soybean [Glycine max (L.) Merr.] Ⅴ. a reiation between the morphogical and anatomical characters of soybean leaf and the shade-endurance[J]. Guizhou Agricultural Sciences, 1990, 18(3): 9−16 [42] 谭婷婷, 范元芳, 李盛蓝, 等. 套作模式下玉米荫蔽对大豆叶片叶绿体结构及光合特性的影响[J]. 核农学报, 2020, 34(10): 2360−2367TAN T T, FAN Y F, LI S L, et al. Effects of maize shading on chloroplast structure and photosynthetic characteristics of soybean leaves under intercropping pattern[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2360−2367 [43] 董钻, 那桂秋, 王荣先, 等. 大豆叶—粒关系的研究[J]. 大豆科学, 1993, 12(1): 1−7DONG Z, NA G Q, WANG R X, et al. Correlative performance between leaf and seed in soybeans[J]. Soybean Science, 1993, 12(1): 1−7 -