留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧纳米气泡制备及其在农业领域的应用研究进展

张羽嘉 徐书含 李德天 串丽敏 朱元宏 王丰 曹林奎 沙之敏

张羽嘉, 徐书含, 李德天, 串丽敏, 朱元宏, 王丰, 曹林奎, 沙之敏. 氧纳米气泡制备及其在农业领域的应用研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1780−1791 doi: 10.12357/cjea.20230066
引用本文: 张羽嘉, 徐书含, 李德天, 串丽敏, 朱元宏, 王丰, 曹林奎, 沙之敏. 氧纳米气泡制备及其在农业领域的应用研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1780−1791 doi: 10.12357/cjea.20230066
ZHANG Y J, XU S H, LI D T, CHUAN L M, ZHU Y H, WANG F, CAO L K, SHA Z M. Progress in research on preparation and application of oxygen nanobubbles in agriculture[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1780−1791 doi: 10.12357/cjea.20230066
Citation: ZHANG Y J, XU S H, LI D T, CHUAN L M, ZHU Y H, WANG F, CAO L K, SHA Z M. Progress in research on preparation and application of oxygen nanobubbles in agriculture[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1780−1791 doi: 10.12357/cjea.20230066

氧纳米气泡制备及其在农业领域的应用研究进展

doi: 10.12357/cjea.20230066
基金项目: 上海市水稻产业体系项目(202203)资助
详细信息
    作者简介:

    张羽嘉, 主要研究方向为农业资源与环境。E-mail: yjzhang09@126.com

    通讯作者:

    沙之敏, 主要研究方向为植物营养学与农业面源污染控制研究。E-mail: zhiminsha@sjtu.edu.cn

  • 中图分类号: S-2; X-1

Progress in research on preparation and application of oxygen nanobubbles in agriculture

Funds: This study was supported by the Agriculture Research System of Shanghai, China (202203).
More Information
  • 摘要: 为系统了解氧纳米气泡及其在农业领域的应用研究进展与发展趋势, 本文就近15年来氧纳米气泡的研究进展与成果, 总结了氧纳米气泡的研究概况; 对氧纳米气泡的制备方法与性质进行了探讨; 重点综述了氧纳米气泡在农业生产领域与农业环境治理领域的应用。农业生产领域的应用包括促进种子发育与作物生长、提高水产养殖产量与经济效益等, 农业环境治理领域的应用, 包括促进稻田甲烷减排、去除土壤中的重金属等污染物质、治理农业面源污染等。展望了氧纳米气泡技术今后的研究重点与对策建议, 包括深入研究氧纳米气泡的增氧机理及作用机制, 进一步开发农业领域氧纳米气泡的制备技术, 拓展氧纳米气泡技术在农业生产及环境修复中的适用性, 开展氧纳米气泡的规模化应用研究等。研究成果可为氧纳米气泡的基础研究和在农业领域的应用研究提供思路与方法。
  • 图  1  1998—2022年纳米气泡与氧纳米气泡主题发文数量

    Figure  1.  Quantity of publications on nanobubble and oxygen nanobubble from 1998 to 2022

    图  2  2002—2022年氧纳米气泡主题研究热点分布

    圆圈的大小代表关键词出现的频次, 出现频次越高, 圆圈越大。不同颜色代表不同的聚类, 图2中共有5个聚类, 连线代表两者间相互联系。The size of the circle represents the frequency of keywords. The higher the frequency, the larger the circle. Different colors represent different clusters. There are 5 clusters in Figure 2, and the connecting lines represent the relationship between them.

    Figure  2.  Hot spots distribution of oxygen nanobubble theme research from 2002 to 2022

    图  3  氧纳米气泡在农业领域中的应用

    Figure  3.  Application of oxygen nanobubbles in the agriculture

    图  4  氧纳米气泡对作物栽培的影响机理

    Figure  4.  Impact mechanism of oxygen nanobubbles on crop cultivation

    图  5  氧纳米气泡对稻田甲烷减排与土壤重金属污染治理的影响机理

    Figure  5.  Impact mechanism of oxygen nanobubbles on methane emission reduction in rice fields and soil heavy metal pollution control

    图  6  氧纳米气泡对农业面源污染治理的影响机理

    Figure  6.  Impact mechanism of oxygen nanobubbles on agricultural non-point source pollution control

    表  1  氧纳米气泡性质检测方法及特点

    Table  1.   Characteristics of different methods for detecting the properties of oxygen nanobubble

    检测方法
    Test method
    特点
    Characteristic
    文献
    Literature
    动态光散射技术
    Dynamic light scattering
    用于测量体相氧纳米气泡尺寸和粒径分布, 但由于测的是平均值, 所以数据重复性较差
    It is used to measure the size and particle size distribution of bulk oxygen nanobubbles, but the data repeatability is poor due to its measurement of the average value
    [31]
    纳米颗粒追踪技术
    Nanoparticle tracking analysis
    改善了动态光散射技术的缺陷, 对体相氧纳米气泡的粒径分布进行更精准的分析, 但无法给出化学信息, 因此往往需要设计对照试验来提高准确性
    It improves the defect of dynamic light scattering technology and makes more accurate analysis on the particle size distribution of bulk oxygen nanobubbles, but the chemical information is not available, which needs contrast tests to improve the accuracy
    [32]
    共振质量测量法
    Resonant mass measurement
    用于测量体相纳米气泡的质量, 同时可以区分纳米颗粒与体相纳米气泡
    It is used to measure the mass of bulk nanobubbles and distinguish between nanoparticles and bulk nanobubbles
    [33]
    原子力显微镜
    Atomic force microscope
    可以定量观察高度、样貌分布与界面氧纳米气泡在扰动下的变化, 但无法提供气泡化学信息
    It can quantitatively observe nanobubbles’ height, appearance distribution, and the changes of interface oxygen nanobubbles under disturbance, but can not provide bubble’s chemical information
    [34]
    光学显微镜
    Optical microscope
    种类丰富, 下属的荧光显微镜常被用于观测界面氧纳米气泡
    It has a wide variety of types, of which fluorescence microscope is often used to observe interface oxygen nanobubbles
    [35]
    电子显微镜
    Electron microscope
    相比光学显微镜分辨率更高, 但对真空度等要求较高, 成像难度大, 体相氧纳米气泡与界面氧纳米气泡的检测均可应用
    Compared to optical microscope, it has higher resolution, but higher requirements for vacuum degree, which increases the imaging difficulty. It can be applied in the detection of both bulk oxygen nanobubbles and interface oxygen nanobubbles
    [36]
    电化学方法
    Electrochemical method
    追踪气泡形态变化较灵敏, 将电化学信号与经典成核理论相结合, 可计算电极表面氧纳米气泡的成核临界尺寸、接触角等, 但群体气泡不好观察
    It is sensitive in tracking changes in bubble morphology. Combining the electrochemical signal with the classical nucleation theory can calculate the nucleation critical size and contact angle of oxygen nanobubbles on the electrode surface, but it doesn’t suit for the observation of group bubbles
    [37]
    同步辐射X射线
    Synchrotron radiation X-ray
    可获取单个界面氧纳米气泡的化学组成信息与内部气体密度
    It can obtain the chemical composition information and internal gas density of single interface oxygen nanobubble
    [38]
    下载: 导出CSV
  • [1] PARKER J L, CLAESSON P M, ATTARD P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry, 1994, 98(34): 8468−8480 doi: 10.1021/j100085a029
    [2] 王宗旭, 李紫欣, 白璐, 等. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466−3477 doi: 10.11949/0438-1157.20210062

    WANG Z X, LI Z X, BAI L, et al. Formation and stability of nanobubble at solid/liquid interface[J]. CIESC Journal, 2021, 72(7): 3466−3477 doi: 10.11949/0438-1157.20210062
    [3] CHEN C S, LI J, ZHANG X R. The existence and stability of bulk nanobubbles: a long-standing dispute on the experimentally observed mesoscopic inhomogeneities in aqueous solutions[J]. Communications in Theoretical Physics, 2020, 72(3): 037601 doi: 10.1088/1572-9494/ab6183
    [4] XIAO W T, XU G R, LI G B. Effect of nanobubble application on performance and structural characteristics of microbial aggregates[J]. Science of the Total Environment, 2021, 765: 142725 doi: 10.1016/j.scitotenv.2020.142725
    [5] USHIKUBO F Y, FURUKAWA T, NAKAGAWA R, et al. Evidence of the existence and the stability of nano-bubbles in water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361(1/2/3): 31−37
    [6] ETCHEPARE R, OLIVEIRA H, NICKNIG M, et al. Nanobubbles: generation using a multiphase pump, properties and features in flotation[J]. Minerals Engineering, 2017, 112: 19−26 doi: 10.1016/j.mineng.2017.06.020
    [7] TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40−51 doi: 10.1016/j.cis.2017.06.011
    [8] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. The Journal of Physical Chemistry B, 2007, 111(6): 1343−1347 doi: 10.1021/jp0669254
    [9] PAN X Y, WANG H, OUYANG Z, et al. Scientometric analysis on rice research under drought, waterlogging or abrupt drought-flood alternation stress[J]. Agriculture, 2022, 12(9): 1509 doi: 10.3390/agriculture12091509
    [10] 荣英男, 郭俊超, 李建, 等. 国际转化医学研究热点与前沿文献计量分析[J]. 基础医学与临床, 2018, 38(6): 868−873 RONG Y N, GUO J C, LI J, et al. Bibliometric analysis of hotspots and frontiers in international translational medicine research[J]. Basic & Clinical Medicine, 2018, 38(6): 868−873
    [11] 张甫, 刘媛, 王睿, 等. 2009—2018年我国污水处理研究现状及发展趋势分析−基于环境科学领域中文核心期刊的文献计量分析[J]. 安全与环境学报, 2019, 19(4): 1329−1340 doi: 10.13637/j.issn.1009-6094.2019.04.032

    ZHANG F, LIU Y, WANG R, et al. Current situation and development trend of sewage treating technology research from 2009 to 2018 — Bibliometric analysis based on the field of environmental science from Chinese core periodicals[J]. Journal of Safety and Environment, 2019, 19(4): 1329−1340 doi: 10.13637/j.issn.1009-6094.2019.04.032
    [12] LIU S, OSHITA S, KAWABATA S, et al. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination[J]. Langmuir, 2016, 32(43): 11295–11302
    [13] MO C R, WANG J, FANG Z, et al. Formation and stability of ultrasonic generated bulk nanobubbles[J]. Chinese Physics B, 2018, 27(11): 381–385
    [14] 惠飞, 李宾, 何品刚, 等. 电化学控制产生纳米氧气气泡及其对电化学聚合吡咯形貌的影响[J]. 化学学报, 2009, 67(6): 488−492

    HUI F, LI B, HE P G, et al. Electrochemically controlled formation and growth of oxygen nanobubbles and their effect on morphology of polypyrrole[J]. Acta Chimica Sinica, 2009, 67(6): 488−492
    [15] PAN G, YANG B. Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles[J]. Chemphyschem, 2012, 13(8): 2205−2212
    [16] WANG L, MIAO X J, ALI J, et al. Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment[J]. ACS Omega, 2018, 3(9): 10624−10630
    [17] ZHANG H G, CHEN J, HAN M L, et al. Anoxia remediation and internal loading modulation in eutrophic lakes using geoengineering method based on oxygen nanobubbles[J]. Science of the Total Environment, 2020, 714(C): 136766
    [18] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175−1180 doi: 10.1016/j.chemosphere.2011.05.054
    [19] NIRMALKAR N, PACEK A W, BARIGOU M. Interpreting the interfacial and colloidal stability of bulk nanobubbles[J]. Soft Matter, 2018, 14(47): 9643−9656 doi: 10.1039/C8SM01949E
    [20] YASUI K, TUZIUTI T, KANEMATSU W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation[J]. Ultrasonics Sonochemistry, 2018, 48: 259−266 doi: 10.1016/j.ultsonch.2018.05.038
    [21] PYRGIOTAKIS G, VEDANTAM P, CIRENZA C, et al. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)[J]. Scientific Reports, 2016, 6: 21073 doi: 10.1038/srep21073
    [22] LIU S, OSHITA S, KAWABATA S, et al. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination[J]. Langmuir, 2016, 32(43): 11295−11302 doi: 10.1021/acs.langmuir.6b01621
    [23] LIU S, OSHITA S, MAKINO Y, et al. Oxidative capacity of nanobubbles and its effect on seed germination[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1347−1353
    [24] GARCIA-SEGURA S, CENTELLAS F, BRILLAS E. Unprecedented electrochemiluminescence of luminol on a boron-doped diamond thin-film anode. enhancement by electrogenerated superoxide radical anion[J]. The Journal of Physical Chemistry C, 2012, 116(29): 15500−15504 doi: 10.1021/jp305493g
    [25] EDZWALD J K. Fundamentals of dissolved air flotation[J]. Journal of the New England Water Works Association, 2007, 121(2): 89−112
    [26] BOWONDER B, KUMAR R. Studies in bubble formation - Ⅳ: bubble formation at porous discs[J]. Chemical Engineering Science, 1970, 25(1): 25−32 doi: 10.1016/0009-2509(70)85018-7
    [27] KARPITSCHKA S, DIETRICH E, SEDDON J R T, et al. Nonintrusive optical visualization of surface nanobubbles[J]. Physical Review Letters, 2012, 109(6): 066102 doi: 10.1103/PhysRevLett.109.066102
    [28] FERREIRA D, BOAVENTURA M, BÁRCIA P, et al. Two-stage vacuum pressure swing adsorption using AgLiLSX zeolite for producing 99.5+% oxygen from air[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 722−736
    [29] DING Z Y, HAN Z Y, FU Q, et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production[J]. Adsorption, 2018, 24(5): 499−516 doi: 10.1007/s10450-018-9956-z
    [30] KOSHORIDZE S I, LEVIN Y K. The influence of line tension on the formation of surface nanobubbles[J]. Russian Physics Journal, 2020, 63(7): 1277−1281 doi: 10.1007/s11182-020-02148-7
    [31] DASARY S S R, SENAPATI D, SINGH A K, et al. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle[J]. ACS Applied Materials & Interfaces, 2010, 2(12): 3455−3460
    [32] 原恺薇, 王兴亚. 纳米气泡制备和检测方法研究进展[J]. 净水技术, 2021, 40(2): 53−66 doi: 10.15890/j.cnki.jsjs.2021.02.006

    YUAN K W, WANG X Y. Research progress on the preparation and determination of nanobubbles[J]. Water Purification Technology, 2021, 40(2): 53−66 doi: 10.15890/j.cnki.jsjs.2021.02.006
    [33] ALHESHIBRI M, CRAIG V S J. Generation of nanoparticles upon mixing ethanol and water; nanobubbles or not?[J]. Journal of Colloid and Interface Science, 2019, 542: 136−143 doi: 10.1016/j.jcis.2019.01.134
    [34] 刘小虹, 颜肖慈, 罗明道, 等. 原子力显微镜及其应用[J]. 自然杂志, 2002, 24(1): 36−40 doi: 10.3969/j.issn.0253-9608.2002.01.007

    LIU X H, YAN X C, LUO M D, et al. Atomic force microscope and its application[J]. Chinese Journal of Nature, 2002, 24(1): 36−40 doi: 10.3969/j.issn.0253-9608.2002.01.007
    [35] XU W L, KONG J S, YEH Y T E, et al. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics[J]. Nature Materials, 2008, 7(12): 992−996 doi: 10.1038/nmat2319
    [36] 贾志宏, 丁立鹏, 陈厚文. 高分辨扫描透射电子显微镜原理及其应用[J]. 物理, 2015, 44(7): 446−452 doi: 10.7693/wl20150704

    JIA Z H, DING L P, CHEN H W. The principle and applications of high-resolution scanning electron microscopy[J]. Physics, 2015, 44(7): 446−452 doi: 10.7693/wl20150704
    [37] GERMAN S R, EDWARDS M A, REN H, et al. Critical nuclei size, rate, and activation energy of H2 gas nucleation[J]. Journal of the American Chemical Society, 2018, 140(11): 4047−4053 doi: 10.1021/jacs.7b13457
    [38] ZHOU L M, WANG X Y, SHIN H J, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society, 2020, 142(12): 5583−5593 doi: 10.1021/jacs.9b11303
    [39] KIKUCHI K, IOKA A, OKU T, et al. Concentration determination of oxygen nanobubbles in electrolyzed water[J]. Journal of Colloid and Interface Science, 2009, 329(2): 306−309 doi: 10.1016/j.jcis.2008.10.009
    [40] BAILLY C, EL-MAAROUF-BOUTEAU H, CORBINEAU F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology[J]. Comptes Rendus Biologies, 2008, 331(10): 806−814 doi: 10.1016/j.crvi.2008.07.022
    [41] AHMED A K A, SHI X N, HUA L K, et al. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth[J]. Journal of Agricultural and Food Chemistry, 2018, 66(20): 5117−5124 doi: 10.1021/acs.jafc.8b00333
    [42] 蒋程瑶, 赵淑梅, 程燕飞, 等. 微/纳米气泡水中的氧环境对叶菜种子发芽的影响[J]. 北方园艺, 2013(2): 28−30

    JIANG C Y, ZHAO S M, CHENG Y F, et al. Effect of oxygen condition in micro/nano-bubble water on leafy vegetables seed germination[J]. Northern Horticulture, 2013(2): 28−30
    [43] BARAM S, EVANS J F, BEREZKIN A, et al. Irrigation with treated wastewater containing nanobubbles to aerate soils and reduce nitrous oxide emissions[J]. Journal of Cleaner Production, 2021, 280: 124509 doi: 10.1016/j.jclepro.2020.124509
    [44] 蔡九茂, 翟国亮, 吕谋超, 等. 微纳米气泡在农业灌溉领域的应用展望[J]. 灌溉排水学报, 2016, 35(S1): 102−107 doi: 10.13522/j.cnki.ggps.2016.z1.026

    CAI J M, ZHAI G L, LYU M C, et al. Application and prospect of micro-nano bubble in agriculture irrigation areas[J]. Journal of Irrigation and Drainage, 2016, 35(S1): 102−107 doi: 10.13522/j.cnki.ggps.2016.z1.026
    [45] 王帘里, 翟国亮. 通气对土壤肥力质量影响的研究进展[J]. 中国农学通报, 2016, 32(5): 90−95 doi: 10.11924/j.issn.1000-6850.casb15090083

    WANG L L, ZHAI G L. Research progress of aeration impact on soil fertility quality[J]. Chinese Agricultural Science Bulletin, 2016, 32(5): 90−95 doi: 10.11924/j.issn.1000-6850.casb15090083
    [46] DREW M C. Soil aeration and plant root metabolism[J]. Soil Science, 1992, 154(4): 259−268 doi: 10.1097/00010694-199210000-00002
    [47] DREW M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223−250 doi: 10.1146/annurev.arplant.48.1.223
    [48] OUYANG Z, TIAN J C, YAN X F, et al. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms[J]. Agricultural Water Management, 2021, 245: 106579 doi: 10.1016/j.agwat.2020.106579
    [49] CAO Y F, ZHANG C S, RONG H W, et al. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR)[J]. Water Research, 2017, 108: 86−94 doi: 10.1016/j.watres.2016.10.063
    [50] ZHOU Y P, BASTIDA F, LIU Y Z, et al. Impacts and mechanisms of nanobubbles level in drip irrigation system on soil fertility, water use efficiency and crop production: the perspective of soil microbial community[J]. Journal of Cleaner Production, 2022, 333: 130050 doi: 10.1016/j.jclepro.2021.130050
    [51] 吕家珑, 张一平, 王旭东, 等. 农田生态对土壤肥力的保护效应[J]. 生态学报, 2001, 21(4): 613−616 doi: 10.3321/j.issn:1000-0933.2001.04.017

    LYU J L, ZHANG Y P, WANG X D, et al. Protective effect of agri-land ecosystem for soil fertility[J]. Acta Ecologica Sinica, 2001, 21(4): 613−616 doi: 10.3321/j.issn:1000-0933.2001.04.017
    [52] 张露, 吴龙龙, 黄晶, 等. 增氧处理对稻田土壤微生物量碳、氮和酶活性的影响[J]. 中国水稻科学, 2022, 36(4): 410−418 doi: 10.16819/j.1001-7216.2022.211107

    ZHANG L, WU L L, HUANG J, et al. Effect of aeration treatment on soil microbial biomass carbon, nitrogen and enzyme activities in paddy field[J]. Chinese Journal of Rice Science, 2022, 36(4): 410−418 doi: 10.16819/j.1001-7216.2022.211107
    [53] LIU G M, ZHANG X C, WANG X P, et al. Soil enzymes as indicators of saline soil fertility under various soil amendments[J]. Agriculture, Ecosystems & Environment, 2017, 237: 274−279
    [54] WANG Y, WANG S, SUN J J, et al. Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production[J]. Science of the Total Environment, 2021, 800: 149627 doi: 10.1016/j.scitotenv.2021.149627
    [55] DU Y D, ZHANG Q, CUI B J, et al. Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate[J]. Agricultural Water Management, 2020, 235: 106152 doi: 10.1016/j.agwat.2020.106152
    [56] 杨晓东, 陈鲁海, 张立娟, 等. 微纳气泡技术及在农业种植与养殖方面的应用[J]. 净水技术, 2021, 40(2): 118−126 doi: 10.15890/j.cnki.jsjs.2021.02.014

    YANG X D, CHEN L H, ZHANG L J, et al. Application of micro-nano bubbles in agricultural planting and aquaculture[J]. Water Purification Technology, 2021, 40(2): 118−126 doi: 10.15890/j.cnki.jsjs.2021.02.014
    [57] ZHOU Y P, ZHOU B, XU F P, et al. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation[J]. Agricultural Water Management, 2019, 223: 105713 doi: 10.1016/j.agwat.2019.105713
    [58] 朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉下气候因子和土壤参数对土壤呼吸的影响[J]. 农业机械学报, 2016, 47(12): 223−232 doi: 10.6041/j.issn.1000-1298.2016.12.027

    ZHU Y, CAI H J, SONG L B, et al. Effects of climatic factors and soil parameters on soil respiration under oxygation conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 223−232 doi: 10.6041/j.issn.1000-1298.2016.12.027
    [59] HAQUE S K M, EBERBACH P L, WESTON L A, et al. Variable impact of rice (Oryza sativa) on soil metal reduction and availability of pore water Fe2+ and Mn2+ throughout the growth period[J]. Chemistry and Ecology, 2016, 32(2): 182−200 doi: 10.1080/02757540.2015.1122000
    [60] BOURAZANIS G, ROUSSOS P A, ARGYROKASTRITIS I, et al. Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece[J]. Agricultural Water Management, 2016, 163: 1−8 doi: 10.1016/j.agwat.2015.08.023
    [61] LI H Z, HU L M, XIA Z R. Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles[J]. Materials, 2013, 6(9): 3676−3687 doi: 10.3390/ma6093676
    [62] 王逍遥, 王天泽, 周云鹏, 等. 微纳米气泡水滴灌对设施甜瓜产量、品质及灌溉水利用效率的影响[J]. 灌溉排水学报, 2021, 40(1): 38−46 doi: 10.13522/j.cnki.ggps.2020073

    WANG X Y, WANG T Z, ZHOU Y P, et al. Effects of oxygation with micro-nano air bubbles on yield, fruit quality and irrigation-water use efficiency of muskmelon[J]. Journal of Irrigation and Drainage, 2021, 40(1): 38−46 doi: 10.13522/j.cnki.ggps.2020073
    [63] 李波, 张吉旺, 靳立斌, 等. 施钾量对高产夏玉米产量和钾素利用的影响[J]. 植物营养与肥料学报, 2012, 18(4): 832−838 doi: 10.11674/zwyf.2012.12032

    LI B, ZHANG J W, JIN L B, et al. Effects of K fertilization on yield, K use efficiency of summer maize under high yield conditions[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 832−838 doi: 10.11674/zwyf.2012.12032
    [64] KINRAIDE T B. Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects[J]. Journal of Experimental Botany, 1999, 50(338): 1495−1505 doi: 10.1093/jxb/50.338.1495
    [65] LIU Y X, ZHOU Y P, WANG T Z, et al. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality[J]. Journal of Cleaner Production, 2019, 222: 835−843 doi: 10.1016/j.jclepro.2019.02.208
    [66] 张慧娟, 薛晓莉, 林少航, 等. 微纳米气泡发生技术及其在水培增氧上的应用[J]. 蔬菜, 2019(1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014

    ZHANG H J, XUE X L, LIN S H, et al. Micro-nano bubble generating technology and its application in hydroponics with aeration[J]. Vegetables, 2019(1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014
    [67] 薛晓莉, 杨文华, 张天柱. 营养液微纳米气泡增氧消毒技术[J]. 农业工程技术, 2017, 37(1): 46−50

    XUE X L, YANG W H, ZHANG T Z. Oxygen-increasing and disinfection technology of micro-nano bubbles in nutrient solution[J]. Applied Engineering Technology, 2017, 37(1): 46−50
    [68] RICHARD M H. ADM Capital leads $5m round for Moleaer expecting boom in nanobubble tech for indoor ag. AFN, [2019−06−06]. https://agfundernews.com/adm-capital-invests-5m-in-moleaer.
    [69] MAHASRI G, SASKIA A, APANDI P S, et al. Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for Nile tilapia (Oreochromis niloticus)[J]. IOP Conference Series: Earth and Environmental Science, 2018, 137: 012046 doi: 10.1088/1755-1315/137/1/012046
    [70] 杨文华, 薛晓莉, 刘永好, 等. 浅析微纳米气泡曝气技术在水产养殖方面的应用[J]. 中国水产, 2020(3): 63−67

    YANG W H, XUE X L, LIU Y H, et al. Application of micro-nano bubble aeration technology in aquaculture[J]. Aquarium, 2020(3): 63−67
    [71] 鲍旭腾, 陈庆余, 徐志强, 等. 微纳米气泡技术在渔业水产行业的研究进展及应用综述[J]. 净水技术, 2016(4): 16−22, 51 doi: 10.3969/j.issn.1009-0177.2016.04.003

    BAO X T, CHEN Q Y, XU Z Q, et al. Overview of research advances and application of micro-nano bubbles technology in fishery and aquaculture sector[J]. Water Purification Technology, 2016(4): 16−22, 51 doi: 10.3969/j.issn.1009-0177.2016.04.003
    [72] EBINA K, SHI K, HIRAO M, et al. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice[J]. PLoS One, 2013, 8(6): e65339 doi: 10.1371/journal.pone.0065339
    [73] 高莲花. 纳米气泡对疏水颗粒分散性影响的研究[D]. 上海: 上海师范大学, 2012

    GAO L H. Study on the influence of nanobubbles on the dispersion of hydrophobic particles[D]. Shanghai: Shanghai Normal University, 2012
    [74] WANG L, MIAO X J, ALI J, et al. Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment[J]. ACS Omega, 2018, 3(9): 10624−10630 doi: 10.1021/acsomega.8b00784
    [75] 薛晓莉, 张慧娟, 杨文华, 等. 微纳米气泡技术及其在农业领域的应用[J]. 农村科技, 2017(8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033

    XUE X L, ZHANG H J, YANG W H, et al. Micro-nano bubble technology and its application in agriculture[J]. Rural Science & Technology, 2017(8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033
    [76] FAO. FAOSTAT Emission Shares[DB/OL]. FAO. 2019. https://www.fao.org/faostat/zh/#data/EM
    [77] 张露, 陈书融, 吴龙龙, 等. 减施氮肥和增氧灌溉对水稻氮代谢关键酶活性及氮素利用的影响[J]. 农业工程学报, 2022, 38(9): 81−90 doi: 10.11975/j.issn.1002-6819.2022.09.009

    ZHANG L, CHEN S R, WU L L, et al. Effects of nitrogen fertilizer reduction and oxygen-enhancing irrigation on the key enzyme activities of nitrogen metabolism and nitrogen utilization in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 81−90 doi: 10.11975/j.issn.1002-6819.2022.09.009
    [78] IQBAL M F, LIU S H, ZHU J W, et al. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy[J]. Journal of Environmental Management, 2021, 279: 111583 doi: 10.1016/j.jenvman.2020.111583
    [79] MINAMIKAWA K, TAKAHASHI M, MAKINO T, et al. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy[J]. Environmental Research Letters, 2015, 10(8): 084012 doi: 10.1088/1748-9326/10/8/084012
    [80] 葛会敏, 陈璐, 于一帆, 等. 稻田甲烷排放与减排的研究进展[J]. 中国农学通报, 2015, 31(3): 160−166 doi: 10.11924/j.issn.1000-6850.2014-1822

    GE H M, CHEN L, YU Y F, et al. Advances in methane emission and emission reduction in rice field[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 160−166 doi: 10.11924/j.issn.1000-6850.2014-1822
    [81] YANG S H, XIAO Y N, SUN X, et al. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China[J]. Atmospheric Environment, 2019, 200: 69−77 doi: 10.1016/j.atmosenv.2018.12.003
    [82] 雷宏军, 王维一, 刘欢, 等. 增氧灌溉培养条件下土壤N2O及CO2排放规律研究[J]. 华北水利水电大学学报(自然科学版), 2020, 41(3): 84−90

    LEI H J, WANG W Y, LIU H, et al. Research on the emission characteristics of N2O and CO2 from incubated soil under the condition of aerated irrigation[J]. Journal of North China University of Water Resources and Electric Power, 2020, 41(3): 84−90
    [83] 刘欢. 曝气滴灌条件下设施菜地土壤N2O排放及影响因子研究[D]. 郑州: 华北水利水电大学, 2019

    LIU H. Study on N2O emission and its influencing factors in greenhouse vegetable soil under the condition of aeration and drip irrigation[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019
    [84] SATPUTE P A, EARTHMAN J C. Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage[J]. Journal of Colloid and Interface Science, 2021, 584: 449−455 doi: 10.1016/j.jcis.2020.09.100
    [85] KYZAS G Z, BOMIS G, KOSHELEVA R I, et al. Nanobubbles effect on heavy metal ions adsorption by activated carbon[J]. Chemical Engineering Journal, 2019, 356: 91−97 doi: 10.1016/j.cej.2018.09.019
    [86] TANG Y, ZHANG M Y, ZHANG J, et al. Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation[J]. Water Research, 2021, 205: 117657 doi: 10.1016/j.watres.2021.117657
    [87] 李莹, 张洲, 杨高明, 等. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657−1666

    LI Y, ZHANG Z, YANG G M, et al. The relationship between the radial oxygen loss and the iron plaque on root surfaces to wetland plants absorb heavy metals[J]. Ecology and Environment Sciences, 2022, 31(8): 1657−1666
    [88] ZHANG H G, LYU T, BI L, et al. Combating hypoxia/anoxia at sediment-water interfaces: a preliminary study of oxygen nanobubble modified clay materials[J]. Science of the Total Environment, 2018, 637/638: 550−560 doi: 10.1016/j.scitotenv.2018.04.284
    [89] JI X N, LIU C B, PAN G. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109888 doi: 10.1016/j.ecoenv.2019.109888
    [90] JI X N, LIU C B, ZHANG M Y, et al. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles[J]. Water Research, 2020, 173: 115563 doi: 10.1016/j.watres.2020.115563
    [91] 林建伟, 朱志良, 赵建夫. 曝气复氧对富营养化水体底泥氮磷释放的影响[J]. 生态环境, 2005, 14(6): 812−815

    LIN J W, ZHU Z L, ZHAO J F. Effect of aeration on release of nitrogen and phosphorus from sediments in eutrophic waterbody[J]. Ecology and Environment, 2005, 14(6): 812−815
    [92] JENKINS K B, MICHELSEN D L, NOVAK J T. Application of oxygen microbubbles for in situ biodegradation of p-xylene-contaminated groundwater in a soil column[J]. Biotechnology Progress, 1993, 9(4): 394−400 doi: 10.1021/bp00022a006
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  48
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 录用日期:  2023-05-29
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-11-10

目录

    /

    返回文章
    返回