Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress
-
摘要: 由于长期使用地下含氯微咸水补灌, 氯盐胁迫已经成为限制宁夏西瓜产量和品质的主要因素之一, 而施用氮肥可在一定程度上缓解盐胁迫引起的生长抑制作用, 因此, 探索氮素对西瓜氯盐胁迫的调控机制, 对氯盐胁迫下合理施用氮肥和西瓜氯毒害调控具有重要意义。本研究以‘金城5号’西瓜品种为供试作物, 采用土培试验, 探索氯盐胁迫[160 mg (Cl−1)∙kg−1(烘干土)]下不同施氮水平[0 g∙kg−1(烘干土)、0.10 g∙kg−1(烘干土)、0.15 g∙kg−1(烘干土)、0.20 g∙kg−1(烘干土)、0.25 g∙kg−1(烘干土)]对西瓜幼苗阴阳离子平衡、有机渗透调节物质、抗氧化酶活性、氧化损伤和氮素吸收利用的影响, 以期为揭示氮素对作物氯盐胁迫的调控机理提供理论依据。结果表明, 施用氮肥使西瓜根、茎、叶中的Cl−和Na+均显著减少, 而NO3−和K+均显著增加, 因此, 整株Cl−/NO3−值和Na+/K+值分别比不施氮降低46.0%~69.5%和31.0%~54.3%; 叶片中可溶性糖和脯氨酸含量、超氧化物歧化酶和过氧化氢酶活性均在0.15 g∙kg−1氮水平时达最大值, 分别比不施氮提高75.6%、70.1%、55.8%和54.8%, 而丙二醛含量则比不施氮降低59.3%; 同时, 施氮0.15 g∙kg−1时, 西瓜的氮累积量增加157.7%, 硝酸还原酶活性提高62.4%, 氮吸收效率和氮素利用效率分别达26.25%和97.10%, 西瓜植株鲜重和干物质累积量亦显著提高96.9%和29.0%。对施氮量与西瓜各生长生理指标的聚类分析和相关分析表明, 施氮处理对氯盐胁迫的缓解效果表现为0.15 g∙kg−1>0.20 g∙kg−1>0.10 g∙kg−1>0.25 g∙kg−1, 生物量和干物质累积与氮吸收利用效率及氮累积呈显著正相关, 而氮累积量与抗氧化酶活性、渗透调节物质含量间均具有显著的正相关性, 与Na+/K+值、Cl−/ NO3−值和丙二醛含量呈负相关。综合各指标与施氮量之间的曲线拟合结果, 氯盐浓度为160 mg (Cl−1)∙kg−1(烘干土)时西瓜生长和生理活性适宜施氮量为0.14~0.18 g∙kg−1。可见, 氯盐胁迫下适量施氮可通过调节Na+/K+值和Cl−/NO3−值来维持植株体内离子稳态, 并提高渗透调节物质含量和抗氧化酶活性, 从而降低细胞膜氧化损伤, 增强西瓜植株的生理抗性, 达到对氯盐胁迫的调控作用。Abstract: Chloride stress is one of the main factors limiting the yield and quality of watermelon in Ningxia due to long-term irrigation with underground chlorinated brackish water. Nitrogen could alleviate the chlorine toxicity of crops. Therefore, it is crucial to explore the regulatory mechanism of nitrogen on the chloride stress by applying nitrogen fertilizer rationally and controlling chlorosis of watermelon under chloride stress. In this study, a soil culture experiment was conducted to determine the effects of different nitrogen application rates [0, 0.10, 0.15, 0.20, 0.25 g∙kg−1 (oven-dry soil)] on anion-cation balance, organic osmotic regulators, antioxidant enzyme activity, oxidative damage, and nitrogen uptake and utilization in watermelon seedlings under chloride stress of 160 mg(Cl−1)∙kg−1 (oven-dry soil). The test crop was the ‘Jincheng No. 5’ variety of watermelon. The results showed that nitrogen application considerably reduced Cl− and Na+ contents in the roots, stems, and leaves of watermelon while significantly increased NO3− and K+ contents at P<0.05; thus the ratios of Cl−/NO3− and Na+/K+ of the whole plant decreased by 46.0%−69.5% and 31.0%−54.3% compared with that of 0 g∙kg−1 nitrogen rate, respectively. Moreover, the contents of soluble sugar and proline, the activities of superoxide dismutase (SOD) and catalase (CAT) in leaves all reached the maximum levels at 0.15 g∙kg−1 N, which statistically increased by 75.6%, 70.1%, 55.8%, and 54.8% at P<0.05 compared with those at 0 g∙kg−1 N, respectively; while the content of malondialdehyde (MDA) significantly decreased by 59.3%. Moreover, when nitrogen was applied at 0.15 g∙kg−1, the nitrogen accumulation of watermelon increased by 157.7%, activity of nitrate reductase (NR) increased by 62.4%, and nitrogen uptake efficiency and nitrogen use efficiency were 26.25% and 97.10%, respectively. Thus, the fresh and dry weights of the plant increased by 96.9% and 29.0% at P<0.05, respectively. Cluster and correlation analyses of nitrogen application rate and physiological growth indexes of watermelon showed that the mitigation effect of nitrogen application on watermelon chloride stress was 0.15 g∙kg−1 > 0.20 g∙kg−1 > 0.10 g∙kg−1 > 0.25 g∙kg−1. There was significant positive correlation between biomass and dry matter accumulation with nitrogen uptake, utilization efficiency, and nitrogen accumulation; while there were also significant positive correlations between nitrogen accumulation and antioxidant enzyme activity and osmo-modulator content, and negative correlations with Na+/K+ ratio, Cl−/NO3− ratio, and MDA content. Based on the curve fitting results of each index, the nitrogen application rate of 0.14−0.18 g∙kg−1 was available for the growth and physiological activity of watermelon when the chloride concentration was 160 mg(Cl−1)∙kg−1(oven-dry soil). This indicates that appropriate nitrogen application under chloride salt stress can maintain ion homeostasis in plants by adjusting the Na+/K+ and Cl−/NO3− ratios, as well as improve the content of osmoregulatory substances and antioxidant enzyme activities, thereby reducing cell membrane oxidative damage, enhancing the physiological resistance of watermelon plants, and achieving a regulatory effect on chloride stress.
-
图 5 氯胁迫下不同氮水平处理西瓜幼苗相关指标聚类分析热图和相关分析图
FW: 生物量; DM: 干物质; Pro: 脯氨酸含量; ss: 可溶性糖含量; SOD: 超氧化物歧化酶活性; CAT: 过氧化氢酶活性; MDA: 丙二醛含量; N Accum: 氮累积; N Abs: 氮吸收效率; NUE: 氮利用率; NR: 硝酸还原酶活性。Na/K(L): leaf Na+/K+ ratio; Na/K(S): stem Na+/K+ ratio; Na/K(R): root Na+/K+ ratio; Cl/N(L): leaf Cl−/NO3− ratio; Cl/N(S): stem Cl−/NO3− ratio; Cl/N(R): root Cl−/NO3− ratio; FW: frest weight; DM: dry matter; Pro: proline content; ss: soluble sugar content; SOD: superoxide dismutase activity; CAT: catalase activity; MDA: malondialdehyde content; N Accum: N accumulation; N Abs: N absorption efficiency; NUE: N utilization ratio; NR: nitrate reductase activity.
Figure 5. Heat map and correlation analysis diagram among relative indexes of watermelon seedlings of different N rates under chlorine stress
表 1 供试土壤化学性质
Table 1. Soil basic physical and chemical properties
指标
Index
pH有机质
Organic matter
(g∙kg−1)全氮
Total nitrogen
(g∙kg−1)全磷
Total phosphorus
(g∙kg−1)矿质态氮
Mineral nitrogen
(mg∙kg−1)速效磷
Available phosphorus
(mg∙kg−1)速效钾
Available potassium
(mg∙kg−1)氯离子
Chloridion
(g∙kg−1)数值 Value 8.03 7.14 0.96 0.87 31.56 6.95 114.88 0.06 表 2 氯胁迫下不同施氮水平对西瓜幼苗离子含量的影响
Table 2. Ions contents of watermelon seedlings affected by N rate under chlorine stress
项目
Item氮水平 N rate (g∙kg−1) 0 0.10 0.15 0.20 0.25 K+含量
K+ content
(g∙kg−1)叶 Leaf 7.08±0.81c 8.10±0.82bc 9.44±0.94ab 10.44±0.47a 7.43±0.47bc 茎 Stem 6.43±0.47b 8.77±0.94ab 9.10±0.82ab 10.44±1.70a 8.77±1.25ab 根 Root 2.09±0.82b 2.75±0.47ab 3.76±0.72ab 4.43±0.72a 2.42±0.47b 整株 Plant 5.20±0.31c 6.54±0.61bc 7.32±1.14ab 8.43±0.55a 6.32±0.16bc Na+含量
Na+ content
(g∙kg−1)叶 Leaf 0.32±0.03a 0.21±0.03b 0.17±0.02b 0.17±0.02b 0.19±0.02b 茎 Stem 0.44±0.05a 0.40±0.03ab 0.38±0.03b 0.39±0.03ab 0.43±0.01ab 根 Root 0.70±0.03a 0.58±0.03abc 0.46±0.04c 0.52±0.03bc 0.61±0.05ab 整株 Plant 0.49±0.01a 0.40±0.01b 0.33±0.01c 0.36±0.02bc 0.41±0.03b Na+/K+ 叶 Leaf 0.05a 0.03b 0.02b 0.02b 0.03b 茎 Stem 0.07a 0.05ab 0.04b 0.04b 0.05ab 根 Root 0.34a 0.21ab 0.12b 0.12b 0.25ab 整株 Plant 0.09a 0.06bc 0.05c 0.04c 0.06b NO3−含量
NO3− content
(mg∙kg−1)叶 Leaf 230.4±30.9b 239.6±14.4b 287.0±16.2ab 314.5±17.3a 305.4±19.6ab 茎 Stem 273.2±10.0b 355.8±8.7b 415.4±6.2b 754.9±10.6a 377.2±12.5b 根 Root 152.4±26.2b 337.5±42.0a 366.5±14.2a 430.7±42.6a 267.1±26.1ab 整株 Plant 218.7±17.7c 311.0±25.2bc 356.3±6.9b 500.1±69.8a 316.6±4.4b Cl−含量
Cl− content
(mg∙kg−1)叶 Leaf 8878.6±397.6a 6418.6±389.3ab 4921.4±432.5b 6209.1±587.9b 6284.3±438.0ab 茎 Stem 12 866.7±599.4a 11 011.0±635.9ab 9950.2±809.1b 10 071.0±488.2b 11 553.5±231.4ab 根 Root 7882.3±266.8a 5324.2±274.6b 4004.9±234.4b 4355.2±377.3b 5089.2±272.8b 整株 Plant 9875.9±183.7a 7584.6±457.4b 6292.2±853.3b 6878.4±781.6b 7642.3±283.4b Cl−/NO3− 叶 Leaf 38.53±5.95a 26.79±5.61ab 17.15±1.32b 19.74±4.55ab 20.58±3.48ab 茎 Stem 47.09±3.21a 30.95±1.65a 23.95±2.46ab 13.34±3.03b 30.63±1.42a 根 Root 51.71±6.12a 15.78±1.16b 10.93±1.04b 10.11±1.40b 19.05±1.24b 整株 Plant 45.16±3.93a 24.39±3.51b 17.66±2.22bc 13.76±3.65c 24.14±0.71bc 不同小写字母表示施氮水平间在P<0.05水平差异显著。Different lowercase letters mean significant differences among different nitrogen rates at P<0.05 level. 表 3 氯胁迫下不同施氮水平对西瓜幼苗氮吸收利用的影响
Table 3. Effects of different N rates on N uptake and utilization of watermelon seedlings under chlorine stress
氮水平
N rate (g∙kg−1)氮吸收累积量
N absorption accumulation (g∙plant−1)氮吸收效率
N absorption efficiency
(%)氮利用率
N utilization ratio
(%)硝酸还原酶活性
Nitrate reductase activity
(μg∙g−1)叶
Leaf茎
Stem根
Root整株
Whole plant0 4.23±0.15d 4.87±0.21b 1.27±0.15c 10.38±0.24d 11.00±0.78b — 12.26±1.40c 0.10 8.64±1.51c 6.63±1.50ab 1.76±0.18b 17.03±2.27c 16.04±1.31ab 66.50±17.35ab 16.27±1.82bc 0.15 15.25±1.16a 9.21±1.04a 2.28±0.06a 26.75±0.88a 26.25±2.54a 97.10±7.86a 19.91±1.43ab 0.20 13.70±1.58ab 8.76±0.56a 2.26±0.19a 24.72±2.24ab 26.71±2.23a 71.73±6.72ab 21.91±1.38a 0.25 11.00±1.50bc 7.01±1.12ab 2.27±0.07a 20.27±2.60bc 24.10±3.94ab 39.56±6.01b 15.69±0.76bc 不同小写字母表示施氮水平间在P<0.05水平差异显著。Different lowercase letters mean significant differences among different nitrogen rates at P<0.05 level. -
[1] 马瑞, 王西娜, 田里, 等. 施氯量对压砂西瓜生长、产量及品质的影响[J]. 东北农业大学学报, 2022, 53(9): 58−66MA R, WANG X N, TIAN L, et al. Effects of chlorine application on growth, yield and quality of watermelon planting in gravel-sand-mulched field[J]. Journal of Northeast Agricultural University, 2022, 53(9): 58−66 [2] SHAO A, SUN Z C, FAN S G, et al. Moderately low nitrogen application mitigate the negative effects of salt stress on annual ryegrass seedlings[J]. PeerJ, 2020, 8: e10427 doi: 10.7717/peerj.10427 [3] WANG H, ZHANG M S, GUO R, et al. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2012, 12: 194 doi: 10.1186/1471-2229-12-194 [4] BORZOUEI A, ESKANDARI A, KAFI M, et al. Wheat yield, some physiological traits and nitrogen use efficiency response to nitrogen fertilization under salinity stress[J]. Indian Journal of Plant Physiology, 2014, 19(1): 21−27 doi: 10.1007/s40502-014-0064-0 [5] VANACKER H, SANDALIO L, JIMÉNEZ A, et al. Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition[J]. Journal of Experimental Botany, 2006, 57(8): 1735−1745 doi: 10.1093/jxb/erl012 [6] 隋利, 易家宁, 王康才, 等. 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响[J]. 生态学杂志, 2018, 37(11): 3277−3283SUI L, YI J N, WANG K C, et al. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.) Britt under salt stress[J]. Chinese Journal of Ecology, 2018, 37(11): 3277−3283 [7] 贾向阳, 种培芳, 陆文涛, 等. 叶施NO对NaCl胁迫下红砂幼苗叶片和根系中氮代谢酶及营养物质的影响[J]. 西北植物学报, 2020, 40(10): 1722−1731JIA X Y, CHONG P F, LU W T, et al. Effect of foliar-spraying nitric oxide on the nitrogen metabolism enzyme activities and nutrients in leaves and roots of Reaumuria soongorica seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1722−1731 [8] 张艳艳, 刘俊, 刘友良. 一氧化氮缓解盐胁迫对玉米生长的抑制作用[J]. 植物生理与分子生物学学报, 2004, 30(4): 455−459ZHANG Y Y, LIU J, LIU Y L. Nitric oxide alleviates growth inhibition of maize seedlings under NaCl stress[J]. Acta Photophysiologica Sinica, 2004, 30(4): 455−459 [9] 田甜, 王海江, 王金刚, 等. 盐胁迫下施加氮素对饲用油菜有机渗透调节物质积累的影响[J]. 草业学报, 2021, 30(10): 125−136TIAN T, WANG H J, WANG J G, et al. Effects of nitrogen application on accumulation of organic osmotic regulating substances in forage rapeseed (Brassica napus) under salt stress[J]. Acta Prataculturae Sinica, 2021, 30(10): 125−136 [10] 马瑞. 微咸水灌溉下氯在土壤中的累积及西瓜氯吸收特性与耐氯临界值研究[D]. 银川: 宁夏大学, 2022MA R. Chlorine accumulation in soil under brackish water irrigation and its effect on watermeion chlorine absorption and chlorine tolerance threshold[D]. Yinchuan: Ningxia University, 2022 [11] 高博文, 孙德玺, 刘君璞, 等. 盐胁迫对西瓜幼苗生理生化特性的影响[J]. 中国瓜菜, 2022, 35(8): 35−41GAO B W, SUN D X, LIU J P, et al. Salt stress affects physiological and biochemical characteristics of water-melon seedlings[J]. China Cucurbits and Vegetables, 2022, 35(8): 35−41 [12] TAVAKKOLI E, RENGASAMY P, MCDONALD G K. High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress[J]. Journal of Experimental Botany, 2010, 61(15): 4449−4459 doi: 10.1093/jxb/erq251 [13] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006 [14] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000 [15] 梁继华, 李伏生, 唐梅, 等. 分根区交替灌溉对盆栽甜玉米水分及氮素利用的影响[J]. 农业工程学报, 2006, 22(10): 68−72 doi: 10.3321/j.issn:1002-6819.2006.10.014LIANG J H, LI F S, TANG M, et al. Effects of alternate partial root-zone irrigation on water and nitrogen utilization of pot-grown sweet corn[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(10): 68−72 doi: 10.3321/j.issn:1002-6819.2006.10.014 [16] 赵振杰, 张海龙, 王明晶, 等. 植物耐盐性相关细胞内pH和离子稳态的调控机制[J]. 植物生理学报, 2020, 56(3): 337−344ZHAO Z J, ZHANG H L, WANG M J, et al. Salt stress-related regulation mechanism of intracellular pH and ion homeostasis in plants[J]. Plant Physiology Journal, 2020, 56(3): 337−344 [17] KHANNA R R, JAHAN B, IQBAL N, et al. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat[J]. Journal of Biotechnology, 2021, 325: 73−82 doi: 10.1016/j.jbiotec.2020.11.015 [18] BYUN M O, KWON H B, PARK S C. Recent advances in genetic engineering of potato crops for drought and saline stress tolerance[M]//JENKS M A, HASEGAWA P M, JAIN S M. Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Dordrecht: Springer, 2007: 713–737 [19] ABASS A M, CHENG Q, NAHEEDA B, et al. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation[J]. BMC Plant Biology, 2019, 19(1): 479 doi: 10.1186/s12870-019-2085-3 [20] 刘梅, 郑青松, 刘兆普, 等. 盐胁迫下氮素形态对油菜和水稻幼苗离子运输和分布的影响[J]. 植物营养与肥料学报, 2015, 21(1): 181−189 doi: 10.11674/zwyf.2015.0120LIU M, ZHENG Q S, LIU Z P, et al. Effects of nitrogen forms on transport and accumulation of ions in canola (Brassic napus L.) and rice (Oryza sativa L.) under saline stress[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 181−189 doi: 10.11674/zwyf.2015.0120 [21] 杨柳, 李絮花, 胡斌, 等. 轻度盐胁迫下施氮量对小麦苗期的生理响应[J]. 中国土壤与肥料, 2020(3): 16−22YANG L, LI X H, HU B, et al. Physiological response of nitrogen fertilization to wheat seedling under mild salt stress[J]. Soil and Fertilizer Sciences in China, 2020(3): 16−22 [22] 孙立荣, 郝福顺, 吕建洲, 等. 外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响[J]. 生态学报, 2008, 28(11): 5714−5722 doi: 10.3321/j.issn:1000-0933.2008.11.058SUN L R, HAO F S, LYU J Z, et al. Effects of exogenous nitric oxide on growth and physiological characteristics of ryegrass seedlings under salt stress[J]. Acta Ecologica Sinica, 2008, 28(11): 5714−5722 doi: 10.3321/j.issn:1000-0933.2008.11.058 [23] CHEN W P, HOU Z N, WU L S, et al. Effects of salinity and nitrogen on cotton growth in arid environment[J]. Plant and Soil, 2010, 326(1): 61−73 [24] DUAN P, DING F, WANG F, et al. Priming of seeds with nitric oxide donor sodium nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 244−250 [25] 苏兰茜, 白亭玉, 赵顺松, 等. 基于盐胁迫条件下施用氮钾肥对面包果养分吸收及渗透物质积累的影响[J]. 热带作物学报, 2021, 42(8): 2275−2282 doi: 10.3969/j.issn.1000-2561.2021.08.021SU L X, BAI T Y, ZHAO S S, et al. Effect of application of nitrogen and potassium fertilizers on nutrient absorption and osmotic accumulation of breadfruit [Artocarpus altilis (Parkinson) Fosberg] under salt stress[J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2275−2282 doi: 10.3969/j.issn.1000-2561.2021.08.021 [26] CHOUDHARY A, KUMAR A, KAUR N. ROS and oxidative burst: roots in plant development[J]. Plant Diversity, 2020, 42(1): 33−43 doi: 10.1016/j.pld.2019.10.002 [27] LI J P, LIU J, ZHU T T, et al. The role of melatonin in salt stress responses[J]. International Journal of Molecular Sciences, 2019, 20(7): 1735 doi: 10.3390/ijms20071735 [28] DOGAN M, TIPIRDAMAZ R, DEMIR Y. Effective salt criteria in callus-cultured tomato genotypes[J]. Zeitschrift Für Naturforschung C, 2010, 65(9/10): 613−618 [29] 孙晓梵, 张一龙, 李培英, 等. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69−78 doi: 10.11686/cyxb2021179SUN X F, ZHANG Y L, LI P Y, et al. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress[J]. Acta Prataculturae Sinica, 2022, 31(6): 69−78 doi: 10.11686/cyxb2021179 [30] 郭文琦, 陈兵林, 刘瑞显, 等. 施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响[J]. 应用生态学报, 2010, 21(1): 53−60GUO W Q, CHEN B L, LIU R X, et al. Effects of nitrogen application rate on cotton leaf antioxidant enzyme activities and endogenous hormone contents under short-term waterlogging at flowering and boll-forming stage[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 53−60 [31] SIKDER R K, WANG X R, ZHANG H H, et al. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum[J]. Plants, 2020, 9(4): 450 doi: 10.3390/plants9040450 [32] CHEN L, LIU L T, LU B, et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.)[J]. PLoS One, 2020, 15(1): e0228241 doi: 10.1371/journal.pone.0228241 [33] NEMAT ALLA M M, HASSAN N M. Nitrogen alleviates NaCl toxicity in maize seedlings by regulating photosynthetic activity and ROS homeostasis[J]. Acta Physiologiae Plantarum, 2020, 42(6): 1−10 [34] CHOURASIA K N, MORE S J, KUMAR A, et al. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review[J]. Planta, 2022, 255(3): 1−25 [35] 樊怀福, 郭世荣, 李娟, 等. 外源一氧化氮对盐胁迫下黄瓜幼苗生长和渗透调节物质含量的影响[J]. 生态学杂志, 2007, 26(12): 2045−2050FAN H F, GUO S R, LI J, et al. Effects of exogenous nitric oxide on Cucumis sativus seedlings growth and osmoatic adjustment substances contents under NaCl stress[J]. Chinese Journal of Ecology, 2007, 26(12): 2045−2050 [36] 尹丽, 刘永安, 谢财永, 等. 干旱胁迫与施氮对麻疯树幼苗渗透调节物质积累的影响[J]. 应用生态学报, 2012, 23(3): 632−638YIN L, LIU Y A, XIE C Y, et al. Effects of drought stress and nitrogen fertilization rate on the accumulation of osmolytes in Jatropha curcas seedlings[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 632−638 [37] FU J M, HUANG B R. Effects of foliar application of nutrients on heat tolerance of creeping bentgrass[J]. Journal of Plant Nutrition, 2003, 26(1): 81−96 doi: 10.1081/PLN-120016498 [38] ZAMBONI A, ASTOLFI S, ZUCHI S, et al. Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line[J]. Journal of Integrative Plant Biology, 2014, 56(11): 1080−1094 doi: 10.1111/jipb.12214 [39] SINGH M, SINGH V P, PRASAD S M. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation[J]. Plant Physiology and Biochemistry, 2016, 109: 72−83 doi: 10.1016/j.plaphy.2016.08.021 [40] LAUCHLI A, LUTTGE U. Salinity: Environment-Plants-Molecules[M]: Boston: Boston Kluwer Academic Publishers, 2002 [41] DLUZNIEWSKA P, GESSLER A, DIETRICH H, et al. Nitrogen uptake and metabolism in Populus × canescens as affected by salinity[J]. New Phytologist, 2007, 173(2): 279−293 doi: 10.1111/j.1469-8137.2006.01908.x [42] CHARDON F, BARTHÉLÉMY J, DANIEL-VEDELE F, et al. Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply[J]. Journal of Experimental Botany, 2010, 61(9): 2293−2302 doi: 10.1093/jxb/erq059 [43] 张智猛, 戴良香, 慈敦伟, 等. 生育后期干旱胁迫与施氮量对花生产量及氮素吸收利用的影响[J]. 中国油料作物学报, 2019, 41(4): 614−621 doi: 10.7505/j.issn.1007-9084.2019.04.016ZHANG Z M, DAI L X, CI D W, et al. Drought effects at late growth stage and nitrogen application rate on yield and N utilization of peanut[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 614−621 doi: 10.7505/j.issn.1007-9084.2019.04.016 [44] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911 [45] PARIDA A K, DAS A B, MITTRA B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J]. Trees, 2004, 18(2): 167−174 doi: 10.1007/s00468-003-0293-8 [46] 代建龙, 卢合全, 李振怀, 等. 盐胁迫下施肥对棉花生长及氮素利用的影响[J]. 应用生态学报, 2013, 24(12): 3453−3458DAI J L, LU H Q, LI Z H, et al. Effects of fertilization on cotton growth and nitrogen use efficiency under salinity stress[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3453−3458 [47] 武荣, 李援农. 不同氮肥条件下盐分处理对小麦生长的影响分析[J]. 节水灌溉, 2013(5): 8−10, 14 doi: 10.3969/j.issn.1007-4929.2013.05.003WU R, LI Y N. Effect of salinity and nitrogen interaction on the growth of wheat[J]. Water Saving Irrigation, 2013(5): 8−10, 14 doi: 10.3969/j.issn.1007-4929.2013.05.003 [48] 宁建凤, 郑青松, 刘兆普, 等. 外源氮对NaCl胁迫下库拉索芦荟生理特性的影响[J]. 植物营养与肥料学报, 2008, 14(4): 728−733NING J F, ZHENG Q S, LIU Z P, et al. Effects of supplemental nitrogen on physiological characteristics of Aloe vera seedlings under NaCl stress[J]. Plant Nutrition and Fertilizer Science, 2008, 14(4): 728−733 -