-
摘要: 森林降雨再分配过程是水循环的一个重要环节, 对区域产水及水资源的形成过程有重要意义。本研究于2022年7—11月对太行山典型油松林降雨再分配要素进行观测, 阐明油松林降雨再分配的基本规律, 利用修正的Gash模型和Liu模型对林冠截留量进行模拟。结果表明: 研究期间林外降雨量为450.8 mm, 油松林林冠截留量、穿透雨量、树干径流量分别为105.5 mm、338.2 mm、7.1 mm, 分别占总降雨量的23.4%、75.0%、1.6%。基于修正的Gash模型计算得到林冠截留量、穿透雨量、树干径流量分别为105.3 mm、340.7 mm、4.6 mm, 实测值与模拟值的相对误差分别为0.2%、0.8%、34.7%; 修正的Liu模型计算得到林冠截留量为96.0 mm, 实测值与模拟值的相对误差为9.0%; 修正的Gash模型相比于Liu模型模拟结果相对误差更低, 模拟效果更好。修正的Gash模型参数敏感性排序: 林冠平均蒸发速率>平均降雨强度>林冠持水能力>冠层盖度>树干持水能力>树干径流系数。综上, 太行山典型油松林可截留23.4%的降雨, 这对评估区域水资源量具有重要意义, 且修正的Gash模型在太行山油松林有很好的适用性, 可用于预测油松林林冠截留量变化。Abstract: The Taihang Mountain Region is the ecological barrier and water source of North China Plain. In recent decades, with the implementation of Taihang Mountains Greening Project and other projects, the vegetation coverage in Taihang Mountain Region is recovering continuously, but the runoff in the mountains is rapidly declining. The mechanism of how the vegetation restoration affects the water yield is not clear. The process of rainfall partitioning is an important part of hydrological cycle. It is of great significance for the formation process of regional water yield and water resources. Pinus tabulaeformis is the main afforestation tree species in Taihang Mountain Region, and it affects regional water resources. The rainfall partitioning of P. tabulaeformis forest in Taihang Mountain Region remains poorly understood. It is required to assess the applicability of the revised Gash model and revised Liu model. In this study, the rainfall partitioning in P. tabulaeformis forest is examined from July to November of 2022. The canopy interception was simulated by revised Gash model and revised Liu model. The results showed that 1) the rainfall amount was 450.8 mm during the study period, the average rainfall duration was 10.4 h, and the average rainfall intensity was 2.7 mm∙h−1. Furthermore, we found that the rainfall during the study period was mainly light rain. The canopy interception, throughfall and stemflow of P. tabulaeformis forest were 105.5, 338.2 and 7.1 mm, respectively, accounting for 23.4%, 75.0% and 1.6% of the rainfall amount. 2) Throughfall and stemflow began to occur when the rainfall amount reached 1.7 and 5.5 mm, respectively. Significant linear relationships were found between the rainfall amount and throughfall amount. However, the relationship between rainfall amount and interception followed a power function. The throughfall percentage increased quickly with increasing rainfall amount, but when rainfall amount reached 11 mm, the throughfall percentage increased slowly. The interception percentage firstly decreased and then stabilized with increasing rainfall amount. 3) Based on the revised Gash model, the canopy interception, throughfall, and stemflow were calculated to be 105.3 mm, 340.7 mm, and 4.6 mm, respectively. The relative errors between the measured and simulated values were 0.2%, 0.8%, and 34.7%. According to the revised Gash model simulation results, we found that the interception amount was dominated by canopy evaporation during rainfall, accounting for 55.0% of the interception simulation, followed by evaporation after cessation of rainfal, accounting for 27.8% of the interception simulation. The revised Liu model calculated the interception as 96.0 mm, with a relative error of 9.0% between the measured and simulated values. The revised Gash model had lower relative errors in the simulation than the Liu model. 4) Sensitivity of the revised Gash model parameters were mean evapotranspiration rate > mean rainfall intensity > canopy storage capacity > canopy cover > trunk storage capacity > stemflow coefficient. These results indicate that typical P. tabulaeformis forests in the Taihang Mountains can intercept 23.4% of rainfall, with 75.0% throughfall and 1.6% stemflow. The revised Gash model can be used to predict canopy interception in P. tabulaeformis forests and provides a theoretical basis for water resource assessment and water conservation capacity improvement in mountainous areas.
-
表 1 修正的Gash模型公式中各参数(截留量组成部分)的意义及计算公式
Table 1. Meaning and calculation formula of each parameter (interception component) of the revised Gash model formula
降雨事件
Rainfall event截留量组成部分
Interception component计算公式
Formula林冠未饱和
For m rainfall events which are insufficient to saturate the canopy林冠未饱和时截留
Evaporation from unsaturated canopy (Ic)${ {I} }_{{\rm{c}}}{=}{c}\times {\displaystyle\sum }_{ {j}{=1} }^{ {m} }{ {P} }_{ \rm{G}{,j} }$ 林冠饱和
For n rainfall events which are sufficient to saturate the canopy降雨期间林冠蒸发
Evaporation from saturated canopy during rainfall (Is)${ {I} }_{ { {\rm{s} } } }{=}{c}\times \dfrac{ { {\overline{ E _{\rm{c}} } } } }{ { {\overline R} } }{\displaystyle\sum }_{ {j}{=1} }^{ {n} }{ {(}{P} }_{ { {\rm{G} },}{j} }-{ {P} }_{ { {\rm{G} } } }{'}{)}$ 冠层湿润
Wetting up of canopy (Iw)${I}{_ {\rm{w} } }{=}{n}\times{c}\times{ {P} }_{ { {\rm{G} } } }{'}-{n}\times{ {{c} } }{\times {S} }_{ \text{c} }$ 降雨停止后的蒸发
Evaporation after after cessation of rainfall (Ia)${ {I} }_{ { {\rm{a} } } }{=}{n}\times {c}{\times {S} }_{ { {\rm{c} } } }$ 从树干蒸发
Evaporation from trunks (It)${I}_{\mathrm{t} }{=}{q}\times { {S} }_{ { {\rm{t} } } }{+}{ {p} }_{ { {\rm{t} } } }\displaystyle\sum _{ {j}{=1} }^{ {n-q} }{ {P} }_{ { {\rm{G} } }{,j} }$ m为林冠未饱和的降雨次数; n为使林冠饱和的降雨次数; c为郁闭度; $ {P}_{\mathrm{G},j} $为第j次降雨的林外降雨量, mm; $ \overline{{E}_{\mathrm{c}}} $为单位冠层面积林冠平均蒸发速率, mm∙h−1; $\overline{{R} }$为降雨期间的平均降雨强度, mm∙h−1; $ {P}_{\mathrm{G}}{{'}} $为使林冠达到饱和的降雨量, mm; $ {S}_{\mathrm{c}} $为单位冠层面积林冠持水能力, mm, 该指标通过林冠持水能力和冠层面积得到, 其中林冠持水能力为总降雨量与净降雨量线性方程的截距; ${q}$为树干饱和产生树干径流的降雨次数; $ {S}_{\mathrm{t}} $为树干持水能力, 即树干径流量与总降雨量方程的负截距, mm; $ {p}_{\mathrm{t}} $ 为树干径流系数, 即树干径流量与总降雨量线性方程的斜率。m refers to frequency of rainfall which are insufficient to saturate the canopy; n refers to frequency of rainfall which are sufficient to saturate the canopy; c refers to canopy cover; ${P}_{\mathrm{G,} j}$ refers to rainfall amount outside the forest for the j th rainfall events, mm; $ \overline{{E}_{\mathrm{c}}} $ refers to mean evaporation rate per unit cover area during rainfall, mm∙h−1; $\overline{{R} }$ refers to mean rainfall intensity during rainfall, mm∙h−1; ${P}_{\mathrm{G}}{ {'} }$ refers to the amount of rainfall that saturated the forest canopy, mm; $ {S}_{\mathrm{c}} $ refers to canopy storage capacity per unit cover area, mm, it is estimated using canopy storage capacity and cover area, and canopy storage capacity is the intercept of the linear equation between total rainfall and net rainfall; q refers to frequency of rainfall which is sufficient to saturate the trunks; $ {S}_{\mathrm{t}} $ refers to trunk storage capacity (i.e., negative intercept of the equation between stemflow and total rainfall), mm; $ {p}_{\mathrm{t}} $ refers to percentage of rainfall converted into stemflow, i.e., slope of the linear equation between stemflow and total rainfall. 表 2 修正的Gash模型及Liu模型参数
Table 2. Parameters of revised Gash model and Liu model
参数 Parameter 值 Value 模型 Model 冠层盖度 Canopy cover 0.70 Gash, Liu 平均降雨强度 Mean rainfall intensity (mm∙h−1) 2.71 Gash, Liu 林冠持水能力 Canopy storage capacity (mm) 1.54 Gash, Liu 单位冠层面积的林冠持水能力 Canopy storage capacity per unit canopy area (mm) 2.20 Gash, Liu 林冠平均蒸发速率 Mean canopy evaporation rate (mm∙h−1) 0.41 Gash, Liu 单位冠层面积的林冠平均蒸发速率 Mean evaporation rate per unit canopy area (mm∙h−1) 0.58 Gash, Liu 树干径流系数 Stemflow coefficient 0.02 Gash 树干持水能力 Trunk storage capacity (mm) 0.12 Gash, Liu 林冠达到饱和的降雨量 Rainfall that saturates the forest canopy (mm) 2.48 Gash 表 3 修正的Gash模型降雨再分配要素模拟结果
Table 3. Simulation results of rainfall partitioning of revised Gash model
降雨类型
Rainfall type截留组成
Interception component实测值
Observed
value (mm)模拟值
Simulation
value (mm)相对误差
Relative error (%)林冠未饱和
For m rainfall events insufficient to saturate the canopy林冠未饱和时截留量
Interception for unsaturated canopy12.4 林冠饱和的降雨场次
For n rainfall events sufficient to saturate the canopy降雨期间林冠蒸发
Evaporation during rainfall57.9 冠层湿润
Canopy wetting stage3.7 降雨停止后林冠蒸发
Evaporation after cessation of rainfall29.3 从树干蒸发
Evaporation from trunks2.1 林冠截留量 Interception 105.5 105.3 0.2 穿透雨量 Throughfall 338.2 340.7 0.8 树干径流量 Stemflow 7.1 4.6 34.7 表 4 不同地区油松林降雨再分配规律
Table 4. Rainfall partitioning patterns of Pinus tabulaeformis forests in different regions
地区
Region树高
Height
(m)胸径
Diameter at
breast height (cm)树龄
Age
(a)样地密度
Stand density
(plants∙hm−2)林冠截留率
Interception
percentage (%)穿透雨率
Throughfall
percentage (%)树干径流率
Stemflow
percentage (%)文献
Reference山西省吉县
Ji County, Shanxi Province7.57 10.50 16 1300 13.47 84 1.62 [30] 河北省易县
Yi County, Hebei Province18.9 81.7 3.5 [35] 北京密云
Miyun County, Beijing city7.1 15.2 850 25.38 71.6 0.52 [36] 北京密云
Miyun County, Beijing city7.1 16.5 756 31.67 67.65 0.68 [39] 陕西省宜川县
Yichuan County, Shaanxi Province10 10~11 1800 25.1 73.30 3.3 [40] 河北承德市
Chengde City, Hebei Province69.7 22.5 [41] 河北省易县
Yi County, Hebei Province5~6 11.12 50 16.75 82.18 1.07 [29] 甘肃省定西市
Dingxi City, Gansu Province6.88 11.51 40 467 22.4 76.7 1.1 [42] 河北省承德市
Chengde City, Hebei Province12.4 29.82 67.08 3.10 [43] 河北省平山县
Pingshan County, Hebei Province9.4 17.6 30 1700 23.4 75.0 1.6 本研究 This study -
[1] 吴爱民, 李长青, 徐彦泽, 等. 华北平原地下水可持续利用的主要问题及对策建议[J]. 南水北调与水利科技, 2010, 8(6): 110−113, 128WU A M, LI C Q, XU Y Z, et al. Key issues influencing sustainable groundwater utilization and its countermeasures in North China Plain[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(6): 110−113, 128 [2] 杜军凯, 贾仰文, 郝春沣, 等. 太行山区蓝水绿水沿垂直带演变规律及其归因分析[J]. 南水北调与水利科技, 2018, 16(2): 64−73DU J K, JIA Y W, HAO C F, et al. Evolution law and attribution analysis of vertical distribution of blue water and green water in Taihang mountain region[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(2): 64−73 [3] LIU M Z, PEI H W, SHEN Y J. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China[J]. Journal of Hydrology, 2022, 612: 128156 doi: 10.1016/j.jhydrol.2022.128156 [4] 曹建生, 张万军, 阳辉, 等. 北方土石山区生态修复与水源涵养研究进展与展望[J]. 中国生态农业学报, 2018, 26(10): 1546−1554CAO J S, ZHANG W J, YANG H, et al. Practice and prospect of ecological restoration and water conservation for the rocky mountain areas in North China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1546−1554 [5] LI R N, ZHENG H, O'CONNOR P, et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs[J]. Science Advances, 2021, 7(14): eabf8650 doi: 10.1126/sciadv.abf8650 [6] LIAN X, ZHAO W L, GENTINE P. Recent global decline in rainfall interception loss due to altered rainfall regimes[J]. Nature Communications, 2022, 13: 7642 doi: 10.1038/s41467-022-35414-y [7] CROCKFORD R H, RICHARDSON D P. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate[J]. Hydrological Processes, 2000, 14(16/17): 2903−2920 [8] MUZYLO A, LLORENS P, VALENTE F, et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370(1/2/3/4): 191−206 [9] 王根绪, 夏军, 李小雁, 等. 陆地植被生态水文过程前沿进展: 从植物叶片到流域[J]. 科学通报, 2021, 66(28): 3667−3683WANG G X, XIA J, LI X Y, et al. Critical advances in understanding ecohydrological processes of terrestrial vegetation: from leaf to watershed scale[J]. Chinese Science Bulletin, 2021, 66(28): 3667−3683 [10] ZHANG Y F, YUAN C, CHEN N, et al. Rainfall partitioning by vegetation in China: a quantitative synthesis[J]. Journal of Hydrology, 2023, 617: 128946 doi: 10.1016/j.jhydrol.2022.128946 [11] 郭建平. 植物对降水截留的研究进展[J]. 应用气象学报, 2020, 31(6): 641−652 doi: 10.11898/1001-7313.20200601GUO J P. Research progress of precipitation interception by plants[J]. Journal of Applied Meteorological Science, 2020, 31(6): 641−652 doi: 10.11898/1001-7313.20200601 [12] DENG J F, YU Y F, SHAO J, et al. Rainfall interception using the revised Gash analytical model for Pinus sylvestris var. mongolica in a semi-humid region of NE China[J]. Ecological Indicators, 2022, 143: 109399 doi: 10.1016/j.ecolind.2022.109399 [13] SU L, YANG J, ZHAO X, et al. Effects of fire on interception loss in a coniferous and broadleaved mixed forest[J]. Journal of Hydrology, 2022, 613: 128425 doi: 10.1016/j.jhydrol.2022.128425 [14] GASH J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 105(443): 43−55 doi: 10.1002/qj.49710544304 [15] LIU S G. A new model for the prediction of rainfall interception in forest canopies[J]. Ecological Modelling, 1997, 99(2/3): 151−159 [16] LIU S G. Evaluation of the Liu model for predicting rainfall interception in forests world-wide[J]. Hydrological Processes, 2001, 15(12): 2341−2360 doi: 10.1002/hyp.264 [17] CARLYLE-MOSES D E, PARK A D, CAMERON J L. Modelling rainfall interception loss in forest restoration trials in Panama[J]. Ecohydrology, 2010, 3(3): 272−283 doi: 10.1002/eco.105 [18] GASH J H C, LLOYD C R, LACHAUD G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170(1/2/3/4): 79−86 [19] SHI Z J, WANG Y H, XU L H, et al. Fraction of incident rainfall within the canopy of a pure stand of Pinus armandii with revised Gash model in the Liupan Mountains of China[J]. Journal of Hydrology, 2010, 385(1/2/3/4): 44−50 [20] YANG J J, HE Z B, FENG J M, et al. Rainfall interception measurements and modeling in a semiarid evergreen spruce (Picea crassifolia) forest[J]. Agricultural and Forest Meteorology, 2023, 328: 109257 doi: 10.1016/j.agrformet.2022.109257 [21] TU L H, XIONG W, WANG Y H, et al. Integrated effects of rainfall regime and canopy structure on interception loss: A comparative modelling analysis for an artificial larch forest[J]. Ecohydrology, 2021, 14(4): e2283 [22] 王晓燕, 鲁绍伟, 杨新兵, 等. 北京密云油松人工林林冠截留模拟[J]. 西北农林科技大学学报(自然科学版), 2012, 40(2): 85−91WANG X Y, LU S W, YANG X B, et al. Canopy interception simulation of pine plantation in Miyun of Beijing[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(2): 85−91 [23] SADEGHI S M M, VAN STAN J T, PYPKER T G, et al. Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven)[J]. Agricultural and Forest Meteorology, 2017, 240/241: 10−17 doi: 10.1016/j.agrformet.2017.03.017 [24] CARLYLE-MOSES D E, PRICE A G. Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico[J]. Hydrological Processes, 2007, 21(19): 2572−2580 doi: 10.1002/hyp.6790 [25] 武秀荣, 金铭, 赵维俊, 等. 运用Gash修正模型对祁连山北麓中段青海云杉林降水截留的模拟[J]. 水土保持学报, 2020, 34(5): 216−222WU X R, JIN M, ZHAO W J, et al. Application of modified Gash model to simulate rainfall interception of Picea crassi folia forest in the middle of the northern slope of Qilian Mountain[J]. Journal of Soil and Water Conservation, 2020, 34(5): 216−222 [26] PANAHANDEH T, ATTAROD P, SADEGHI S M M, et al. The performance of the reformulated Gash rainfall interception model in the Hyrcanian temperate forests of northern Iran[J]. Journal of Hydrology, 2022, 612: 128092 doi: 10.1016/j.jhydrol.2022.128092 [27] FRANCIS J R, WUDDIVIRA M N, FARRICK K K. Exotic tropical pine forest impacts on rainfall interception: canopy, understory, and litter[J]. Journal of Hydrology, 2022, 609: 127765 doi: 10.1016/j.jhydrol.2022.127765 [28] YUE K, DE FRENNE P, FORNARA D A, et al. Global patterns and drivers of rainfall partitioning by trees and shrubs[J]. Global Change Biology, 2021, 27(14): 3350−3357 doi: 10.1111/gcb.15644 [29] 胡珊珊, 于静洁, 胡垄, 等. 华北石质山区油松林对降水再分配过程的影响[J]. 生态学报, 2010, 30(7): 1751−1757HU S S, YU J J, HU L, et al. Impacts of Chinese pine (Pinus tabulaeformis) plantations on rainfall redistribution processes: a case study for the mountainous area of North China[J]. Acta Ecologica Sinica, 2010, 30(7): 1751−1757 [30] 次仁曲西. 晋西黄土区人工油松林降雨再分配及林内降雨空间异质性研究[D]. 北京: 北京林业大学, 2014CIRENQUXI. Study on rainfall redistribution and spatial hterogeneity of rainfall in artificial Pinus tabulaeformis forest in loess region of western Shanxi Province[D]. Beijing: Beijing Forestry University, 2014 [31] 黄团冲, 贺康宁, 王先棒. 青海大通白桦林冠层降雨再分配与冠层结构关系研究[J]. 西北林学院学报, 2018, 33(3): 1−6, 20HUANG T C, HE K N, WANG X B. Relationship between rainfall redistribution and canop structure of Betula platyphylla canopy in Datong, Qinghai[J]. Journal of Northwest Forestry University, 2018, 33(3): 1−6, 20 [32] EXLER J L, MOORE R D. Quantifying throughfall, stemflow and interception loss in five vegetation communities in a maritime raised bog[J]. Agricultural and Forest Meteorology, 2022, 327: 109202 doi: 10.1016/j.agrformet.2022.109202 [33] MA C K, LI X D, LUO Y, et al. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China[J]. Journal of Hydrology, 2019, 577: 123849 doi: 10.1016/j.jhydrol.2019.06.021 [34] 刘效东, 龙凤玲, 陈修治, 等. 基于修正的Gash模型对南亚热带季风常绿阔叶林林冠截留的模拟[J]. 生态学杂志, 2016, 35(11): 3118−3125LIU X D, LONG F L, CHEN X Z, et al. An assessment of the revised Gash interception model in a monsoon evergreen broadleaved forest in lower subtropical China[J]. Chinese Journal of Ecology, 2016, 35(11): 3118−3125 [35] 钱金平, 王仁德, 白洁, 等. 太行山区不同人工林林冠截留降水的比较研究[J]. 水土保持通报, 2012, 32(4): 164−167QIAN J P, WANG R D, BAI J, et al. Canopy rainfall interception of different planted forests in Taihang Mountainous region[J]. Bulletin of Soil and Water Conservation, 2012, 32(4): 164−167 [36] 陈丽华, 杨新兵, 鲁绍伟, 等. 华北土石山区油松人工林耗水分配规律[J]. 北京林业大学学报, 2008, 30(S2): 182−187CHEN L H, YANG X B, LU S W, et al. Distribution of water consumption of Pinus tabulaeformis plantation in rocky mountain areas in Northern China[J]. Journal of Beijing Forestry University, 2008, 30(S2): 182−187 [37] 柴汝杉, 蔡体久, 满秀玲, 等. 基于修正的Gash模型模拟小兴安岭原始红松林降雨截留过程[J]. 生态学报, 2013, 33(4): 1276−1284 doi: 10.5846/stxb201209241347CHAI R S, CAI T J, MAN X L, et al. Simulation of rainfall interception process of primary Korean pine forest in Xiaoxing’an Mountains by using the modified Gash model[J]. Acta Ecologica Sinica, 2013, 33(4): 1276−1284 doi: 10.5846/stxb201209241347 [38] 张继辉, 郑路, 陈琳, 等. 降雨特征对南亚热带马尾松人工林降水分配格局的影响[J]. 水土保持学报, 2021, 35(1): 174−180ZHANG J H, ZHENG L, CHEN L, et al. Effects of rainfall characteristics on rainfall partitioning in plantation of Pinus massoniana in south subtropical[J]. Journal of Soil and Water Conservation, 2021, 35(1): 174−180 [39] 肖洋, 陈丽华, 余新晓, 等. 北京密云水库油松人工林对降水分配的影响[J]. 水土保持学报, 2007, 21(3): 154−157XIAO Y, CHEN L H, YU X X, et al. Influence on precipitation distribution of Pinus tabuleaefomis forest in Miyun Reservoir[J]. Journal of Soil and Water Conservation, 2007, 21(3): 154−157 [40] 赵鸿雁, 吴钦孝, 刘国彬. 黄土高原人工油松林水文生态效应[J]. 生态学报, 2003, 23(2): 376−379ZHAO H Y, WU Q X, LIU G B. Studies on hydro-ecological effects of artificial Chinese pine stand in Loess Plateau[J]. Acta Ecologica Sinica, 2003, 23(2): 376−379 [41] 董世仁, 郭景唐, 满荣洲. 华北油松人工林的透流、干流和树冠截留[J]. 北京林业大学学报, 1987, 9(1): 58−68DONG S R, GUO J T, MAN R Z. Throughfall, stemflow and canopy interception in a Pinus tabulaeformis plantation of North China[J]. Journal of Beijing Forestry University, 1987, 9(1): 58−68 [42] 方书敏, 赵传燕, 荐圣淇, 等. 陇中黄土高原油松人工林林冠截留特征及模拟[J]. 应用生态学报, 2013, 24(6): 1509−1516FANG S M, ZHAO C Y, JIAN S Q, et al. Canopy interception of Pinus tabulaeformis plantation on Longzhong Loess Plateau, Northwest China: characteristics and simulation[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1509−1516 [43] LIANG W J. Simulation of Gash model to rainfall interception of Pinus tabulaeformis[J]. Forest Systems, 2014, 23(2): 300 doi: 10.5424/fs/2014232-03410 [44] FAN J L, OESTERGAARD K T, GUYOT A, et al. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia[J]. Journal of Hydrology, 2014, 515: 156−165 doi: 10.1016/j.jhydrol.2014.04.066 [45] LLORENS P, DOMINGO F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe[J]. Journal of Hydrology, 2007, 335(1–2): 37–54. -