留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太行山典型油松林降雨再分配规律

郭波 阳辉 李佳聪 朱春雨 赵宇寒 曹建生 沈彦俊

郭波, 阳辉, 李佳聪, 朱春雨, 赵宇寒, 曹建生, 沈彦俊. 太行山典型油松林降雨再分配规律[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−11 doi: 10.12357/cjea.20230172
引用本文: 郭波, 阳辉, 李佳聪, 朱春雨, 赵宇寒, 曹建生, 沈彦俊. 太行山典型油松林降雨再分配规律[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−11 doi: 10.12357/cjea.20230172
GUO B, YANG H, LI J C, ZHU C Y, ZHAO Y H, CAO J S, SHEN Y J. Rainfall partitioning patterns by Pinus tabulaeformis forest in Taihang Mountains[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20230172
Citation: GUO B, YANG H, LI J C, ZHU C Y, ZHAO Y H, CAO J S, SHEN Y J. Rainfall partitioning patterns by Pinus tabulaeformis forest in Taihang Mountains[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20230172

太行山典型油松林降雨再分配规律

doi: 10.12357/cjea.20230172
基金项目: 河北省自然科学基金创新研究群体项目(D2021503001)、科技基础资源调查专项(2022FY100104)资助
详细信息
    作者简介:

    郭波, 研究方向为生态水文学。E-mail: guobo21@mails.ucas.ac.cn

    通讯作者:

    曹建生, 研究方向为生态系统修复及生态水文研究, E-mail: caojs@sjziam.ac.cn

    沈彦俊, 研究方向为水文学与水资源, E-mail: yjshen@sjziam.ac.cn

  • 中图分类号: S715.2

Rainfall partitioning patterns by Pinus tabulaeformis forest in Taihang Mountains

Funds: The study was supported by the Project for Innovative Research Group of the Natural Science Foundation of Hebei Province (D2021503001) and the Special Investigation Project for Scientific and Technological Basic Resources of China (2022FY100104).
More Information
  • 摘要: 森林降雨再分配过程是水循环的一个重要环节, 对区域产水及水资源的形成过程有重要意义。本研究于2022年7—11月对太行山典型油松林降雨再分配要素进行观测, 阐明油松林降雨再分配的基本规律, 利用修正的Gash模型和Liu模型对林冠截留量进行模拟。结果表明: 研究期间林外降雨量为450.8 mm, 油松林林冠截留量、穿透雨量、树干径流量分别为105.5 mm、338.2 mm、7.1 mm, 分别占总降雨量的23.4%、75.0%、1.6%。基于修正的Gash模型计算得到林冠截留量、穿透雨量、树干径流量分别为105.3 mm、340.7 mm、4.6 mm, 实测值与模拟值的相对误差分别为0.2%、0.8%、34.7%; 修正的Liu模型计算得到林冠截留量为96.0 mm, 实测值与模拟值的相对误差为9.0%; 修正的Gash模型相比于Liu模型模拟结果相对误差更低, 模拟效果更好。修正的Gash模型参数敏感性排序: 林冠平均蒸发速率>平均降雨强度>林冠持水能力>冠层盖度>树干持水能力>树干径流系数。综上, 太行山典型油松林可截留23.4%的降雨, 这对评估区域水资源量具有重要意义, 且修正的Gash模型在太行山油松林有很好的适用性, 可用于预测油松林林冠截留量变化。
  • 图  1  试验期间研究区降雨特征

    Figure  1.  Rainfall event characteristics during the study period in the study area

    图  2  林外降雨量与穿透雨的关系

    Figure  2.  Relationship between rainfall and throughfall

    图  3  林外降雨量与树干径流的关系

    Figure  3.  Relationship between rainfall and stemflow

    图  4  林外降雨量与林冠截留的关系

    Figure  4.  Relationship between rainfall and interception

    图  5  降雨量与净降雨的关系

    Figure  5.  The relationship between rainfall and net rainfall

    图  6  修正的Gash模型及Liu模型截留量模拟效果

    Figure  6.  Interception simulation performance of the revised Gash model and Liu model

    图  7  修正的Gash模型的参数敏感性分析

    Figure  7.  Sensitivity analysis of revised Gash model parameters

    表  1  修正的Gash模型公式中各参数(截留量组成部分)的意义及计算公式

    Table  1.   Meaning and calculation formula of each parameter (interception component) of the revised Gash model formula

    降雨事件
    Rainfall event
    截留量组成部分
    Interception component
    计算公式
    Formula
    林冠未饱和
    For m rainfall events which are insufficient to saturate the canopy
    林冠未饱和时截留
    Evaporation from unsaturated canopy (Ic)
    ${ {I} }_{{\rm{c}}}{=}{c}\times {\displaystyle\sum }_{ {j}{=1} }^{ {m} }{ {P} }_{ \rm{G}{,j} }$
    林冠饱和
    For n rainfall events which are sufficient to saturate the canopy
    降雨期间林冠蒸发
    Evaporation from saturated canopy during rainfall (Is)
    ${ {I} }_{ { {\rm{s} } } }{=}{c}\times \dfrac{ { {\overline{ E _{\rm{c}} } } } }{ { {\overline R} } }{\displaystyle\sum }_{ {j}{=1} }^{ {n} }{ {(}{P} }_{ { {\rm{G} },}{j} }-{ {P} }_{ { {\rm{G} } } }{'}{)}$
    冠层湿润
    Wetting up of canopy (Iw)
    ${I}{_ {\rm{w} } }{=}{n}\times{c}\times{ {P} }_{ { {\rm{G} } } }{'}-{n}\times{ {{c} } }{\times {S} }_{ \text{c} }$
    降雨停止后的蒸发
    Evaporation after after cessation of rainfall (Ia)
    ${ {I} }_{ { {\rm{a} } } }{=}{n}\times {c}{\times {S} }_{ { {\rm{c} } } }$
    从树干蒸发
    Evaporation from trunks (It)
    ${I}_{\mathrm{t} }{=}{q}\times { {S} }_{ { {\rm{t} } } }{+}{ {p} }_{ { {\rm{t} } } }\displaystyle\sum _{ {j}{=1} }^{ {n-q} }{ {P} }_{ { {\rm{G} } }{,j} }$
      m为林冠未饱和的降雨次数; n为使林冠饱和的降雨次数; c为郁闭度; $ {P}_{\mathrm{G},j} $为第j次降雨的林外降雨量, mm; $ \overline{{E}_{\mathrm{c}}} $为单位冠层面积林冠平均蒸发速率, mm∙h−1; $\overline{{R} }$为降雨期间的平均降雨强度, mm∙h−1; $ {P}_{\mathrm{G}}{{'}} $为使林冠达到饱和的降雨量, mm; $ {S}_{\mathrm{c}} $为单位冠层面积林冠持水能力, mm, 该指标通过林冠持水能力和冠层面积得到, 其中林冠持水能力为总降雨量与净降雨量线性方程的截距; ${q}$为树干饱和产生树干径流的降雨次数; $ {S}_{\mathrm{t}} $为树干持水能力, 即树干径流量与总降雨量方程的负截距, mm; $ {p}_{\mathrm{t}} $ 为树干径流系数, 即树干径流量与总降雨量线性方程的斜率。m refers to frequency of rainfall which are insufficient to saturate the canopy; n refers to frequency of rainfall which are sufficient to saturate the canopy; c refers to canopy cover; ${P}_{\mathrm{G,} j}$ refers to rainfall amount outside the forest for the j th rainfall events, mm; $ \overline{{E}_{\mathrm{c}}} $ refers to mean evaporation rate per unit cover area during rainfall, mm∙h−1; $\overline{{R} }$ refers to mean rainfall intensity during rainfall, mm∙h−1; ${P}_{\mathrm{G}}{ {'} }$ refers to the amount of rainfall that saturated the forest canopy, mm; $ {S}_{\mathrm{c}} $ refers to canopy storage capacity per unit cover area, mm, it is estimated using canopy storage capacity and cover area, and canopy storage capacity is the intercept of the linear equation between total rainfall and net rainfall; q refers to frequency of rainfall which is sufficient to saturate the trunks; $ {S}_{\mathrm{t}} $ refers to trunk storage capacity (i.e., negative intercept of the equation between stemflow and total rainfall), mm; $ {p}_{\mathrm{t}} $ refers to percentage of rainfall converted into stemflow, i.e., slope of the linear equation between stemflow and total rainfall.
    下载: 导出CSV

    表  2  修正的Gash模型及Liu模型参数

    Table  2.   Parameters of revised Gash model and Liu model

    参数 Parameter值 Value模型 Model
    冠层盖度 Canopy cover0.70Gash, Liu
    平均降雨强度 Mean rainfall intensity (mm∙h−1)2.71Gash, Liu
    林冠持水能力 Canopy storage capacity (mm)1.54Gash, Liu
    单位冠层面积的林冠持水能力 Canopy storage capacity per unit canopy area (mm)2.20Gash, Liu
    林冠平均蒸发速率 Mean canopy evaporation rate (mm∙h−1)0.41Gash, Liu
    单位冠层面积的林冠平均蒸发速率 Mean evaporation rate per unit canopy area (mm∙h−1)0.58Gash, Liu
    树干径流系数 Stemflow coefficient0.02Gash
    树干持水能力 Trunk storage capacity (mm)0.12Gash, Liu
    林冠达到饱和的降雨量 Rainfall that saturates the forest canopy (mm)2.48Gash
    下载: 导出CSV

    表  3  修正的Gash模型降雨再分配要素模拟结果

    Table  3.   Simulation results of rainfall partitioning of revised Gash model

    降雨类型
    Rainfall type
    截留组成
    Interception component
    实测值
    Observed
    value (mm)
    模拟值
    Simulation
    value (mm)
    相对误差
    Relative error (%)
    林冠未饱和
    For m rainfall events insufficient to saturate the canopy
    林冠未饱和时截留量
    Interception for unsaturated canopy
    12.4
    林冠饱和的降雨场次
    For n rainfall events sufficient to saturate the canopy
    降雨期间林冠蒸发
    Evaporation during rainfall
    57.9
    冠层湿润
    Canopy wetting stage
    3.7
    降雨停止后林冠蒸发
    Evaporation after cessation of rainfall
    29.3
    从树干蒸发
    Evaporation from trunks
    2.1
    林冠截留量 Interception 105.5105.30.2
    穿透雨量 Throughfall338.2340.70.8
    树干径流量 Stemflow7.14.634.7
    下载: 导出CSV

    表  4  不同地区油松林降雨再分配规律

    Table  4.   Rainfall partitioning patterns of Pinus tabulaeformis forests in different regions

    地区
    Region
    树高
    Height
    (m)
    胸径
    Diameter at
    breast height (cm)
    树龄
    Age
    (a)
    样地密度
    Stand density
    (plants∙hm−2)
    林冠截留率
    Interception
    percentage (%)
    穿透雨率
    Throughfall
    percentage (%)
    树干径流率
    Stemflow
    percentage (%)
    文献
    Reference
    山西省吉县
    Ji County, Shanxi Province
    7.57 10.50 16 1300 13.47 84 1.62 [30]
    河北省易县
    Yi County, Hebei Province
    18.9 81.7 3.5 [35]
    北京密云
    Miyun County, Beijing city
    7.1 15.2 850 25.38 71.6 0.52 [36]
    北京密云
    Miyun County, Beijing city
    7.1 16.5 756 31.67 67.65 0.68 [39]
    陕西省宜川县
    Yichuan County, Shaanxi Province
    10 10~11 1800 25.1 73.30 3.3 [40]
    河北承德市
    Chengde City, Hebei Province
    69.7 22.5 [41]
    河北省易县
    Yi County, Hebei Province
    5~6 11.12 50 16.75 82.18 1.07 [29]
    甘肃省定西市
    Dingxi City, Gansu Province
    6.88 11.51 40 467 22.4 76.7 1.1 [42]
    河北省承德市
    Chengde City, Hebei Province
    12.4 29.82 67.08 3.10 [43]
    河北省平山县
    Pingshan County, Hebei Province
    9.4 17.6 30 1700 23.4 75.0 1.6 本研究 This study
    下载: 导出CSV
  • [1] 吴爱民, 李长青, 徐彦泽, 等. 华北平原地下水可持续利用的主要问题及对策建议[J]. 南水北调与水利科技, 2010, 8(6): 110−113, 128

    WU A M, LI C Q, XU Y Z, et al. Key issues influencing sustainable groundwater utilization and its countermeasures in North China Plain[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(6): 110−113, 128
    [2] 杜军凯, 贾仰文, 郝春沣, 等. 太行山区蓝水绿水沿垂直带演变规律及其归因分析[J]. 南水北调与水利科技, 2018, 16(2): 64−73

    DU J K, JIA Y W, HAO C F, et al. Evolution law and attribution analysis of vertical distribution of blue water and green water in Taihang mountain region[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(2): 64−73
    [3] LIU M Z, PEI H W, SHEN Y J. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China[J]. Journal of Hydrology, 2022, 612: 128156 doi: 10.1016/j.jhydrol.2022.128156
    [4] 曹建生, 张万军, 阳辉, 等. 北方土石山区生态修复与水源涵养研究进展与展望[J]. 中国生态农业学报, 2018, 26(10): 1546−1554

    CAO J S, ZHANG W J, YANG H, et al. Practice and prospect of ecological restoration and water conservation for the rocky mountain areas in North China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1546−1554
    [5] LI R N, ZHENG H, O'CONNOR P, et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs[J]. Science Advances, 2021, 7(14): eabf8650 doi: 10.1126/sciadv.abf8650
    [6] LIAN X, ZHAO W L, GENTINE P. Recent global decline in rainfall interception loss due to altered rainfall regimes[J]. Nature Communications, 2022, 13: 7642 doi: 10.1038/s41467-022-35414-y
    [7] CROCKFORD R H, RICHARDSON D P. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate[J]. Hydrological Processes, 2000, 14(16/17): 2903−2920
    [8] MUZYLO A, LLORENS P, VALENTE F, et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370(1/2/3/4): 191−206
    [9] 王根绪, 夏军, 李小雁, 等. 陆地植被生态水文过程前沿进展: 从植物叶片到流域[J]. 科学通报, 2021, 66(28): 3667−3683

    WANG G X, XIA J, LI X Y, et al. Critical advances in understanding ecohydrological processes of terrestrial vegetation: from leaf to watershed scale[J]. Chinese Science Bulletin, 2021, 66(28): 3667−3683
    [10] ZHANG Y F, YUAN C, CHEN N, et al. Rainfall partitioning by vegetation in China: a quantitative synthesis[J]. Journal of Hydrology, 2023, 617: 128946 doi: 10.1016/j.jhydrol.2022.128946
    [11] 郭建平. 植物对降水截留的研究进展[J]. 应用气象学报, 2020, 31(6): 641−652 doi: 10.11898/1001-7313.20200601

    GUO J P. Research progress of precipitation interception by plants[J]. Journal of Applied Meteorological Science, 2020, 31(6): 641−652 doi: 10.11898/1001-7313.20200601
    [12] DENG J F, YU Y F, SHAO J, et al. Rainfall interception using the revised Gash analytical model for Pinus sylvestris var. mongolica in a semi-humid region of NE China[J]. Ecological Indicators, 2022, 143: 109399 doi: 10.1016/j.ecolind.2022.109399
    [13] SU L, YANG J, ZHAO X, et al. Effects of fire on interception loss in a coniferous and broadleaved mixed forest[J]. Journal of Hydrology, 2022, 613: 128425 doi: 10.1016/j.jhydrol.2022.128425
    [14] GASH J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 105(443): 43−55 doi: 10.1002/qj.49710544304
    [15] LIU S G. A new model for the prediction of rainfall interception in forest canopies[J]. Ecological Modelling, 1997, 99(2/3): 151−159
    [16] LIU S G. Evaluation of the Liu model for predicting rainfall interception in forests world-wide[J]. Hydrological Processes, 2001, 15(12): 2341−2360 doi: 10.1002/hyp.264
    [17] CARLYLE-MOSES D E, PARK A D, CAMERON J L. Modelling rainfall interception loss in forest restoration trials in Panama[J]. Ecohydrology, 2010, 3(3): 272−283 doi: 10.1002/eco.105
    [18] GASH J H C, LLOYD C R, LACHAUD G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170(1/2/3/4): 79−86
    [19] SHI Z J, WANG Y H, XU L H, et al. Fraction of incident rainfall within the canopy of a pure stand of Pinus armandii with revised Gash model in the Liupan Mountains of China[J]. Journal of Hydrology, 2010, 385(1/2/3/4): 44−50
    [20] YANG J J, HE Z B, FENG J M, et al. Rainfall interception measurements and modeling in a semiarid evergreen spruce (Picea crassifolia) forest[J]. Agricultural and Forest Meteorology, 2023, 328: 109257 doi: 10.1016/j.agrformet.2022.109257
    [21] TU L H, XIONG W, WANG Y H, et al. Integrated effects of rainfall regime and canopy structure on interception loss: A comparative modelling analysis for an artificial larch forest[J]. Ecohydrology, 2021, 14(4): e2283
    [22] 王晓燕, 鲁绍伟, 杨新兵, 等. 北京密云油松人工林林冠截留模拟[J]. 西北农林科技大学学报(自然科学版), 2012, 40(2): 85−91

    WANG X Y, LU S W, YANG X B, et al. Canopy interception simulation of pine plantation in Miyun of Beijing[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(2): 85−91
    [23] SADEGHI S M M, VAN STAN J T, PYPKER T G, et al. Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven)[J]. Agricultural and Forest Meteorology, 2017, 240/241: 10−17 doi: 10.1016/j.agrformet.2017.03.017
    [24] CARLYLE-MOSES D E, PRICE A G. Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico[J]. Hydrological Processes, 2007, 21(19): 2572−2580 doi: 10.1002/hyp.6790
    [25] 武秀荣, 金铭, 赵维俊, 等. 运用Gash修正模型对祁连山北麓中段青海云杉林降水截留的模拟[J]. 水土保持学报, 2020, 34(5): 216−222

    WU X R, JIN M, ZHAO W J, et al. Application of modified Gash model to simulate rainfall interception of Picea crassi folia forest in the middle of the northern slope of Qilian Mountain[J]. Journal of Soil and Water Conservation, 2020, 34(5): 216−222
    [26] PANAHANDEH T, ATTAROD P, SADEGHI S M M, et al. The performance of the reformulated Gash rainfall interception model in the Hyrcanian temperate forests of northern Iran[J]. Journal of Hydrology, 2022, 612: 128092 doi: 10.1016/j.jhydrol.2022.128092
    [27] FRANCIS J R, WUDDIVIRA M N, FARRICK K K. Exotic tropical pine forest impacts on rainfall interception: canopy, understory, and litter[J]. Journal of Hydrology, 2022, 609: 127765 doi: 10.1016/j.jhydrol.2022.127765
    [28] YUE K, DE FRENNE P, FORNARA D A, et al. Global patterns and drivers of rainfall partitioning by trees and shrubs[J]. Global Change Biology, 2021, 27(14): 3350−3357 doi: 10.1111/gcb.15644
    [29] 胡珊珊, 于静洁, 胡垄, 等. 华北石质山区油松林对降水再分配过程的影响[J]. 生态学报, 2010, 30(7): 1751−1757

    HU S S, YU J J, HU L, et al. Impacts of Chinese pine (Pinus tabulaeformis) plantations on rainfall redistribution processes: a case study for the mountainous area of North China[J]. Acta Ecologica Sinica, 2010, 30(7): 1751−1757
    [30] 次仁曲西. 晋西黄土区人工油松林降雨再分配及林内降雨空间异质性研究[D]. 北京: 北京林业大学, 2014

    CIRENQUXI. Study on rainfall redistribution and spatial hterogeneity of rainfall in artificial Pinus tabulaeformis forest in loess region of western Shanxi Province[D]. Beijing: Beijing Forestry University, 2014
    [31] 黄团冲, 贺康宁, 王先棒. 青海大通白桦林冠层降雨再分配与冠层结构关系研究[J]. 西北林学院学报, 2018, 33(3): 1−6, 20

    HUANG T C, HE K N, WANG X B. Relationship between rainfall redistribution and canop structure of Betula platyphylla canopy in Datong, Qinghai[J]. Journal of Northwest Forestry University, 2018, 33(3): 1−6, 20
    [32] EXLER J L, MOORE R D. Quantifying throughfall, stemflow and interception loss in five vegetation communities in a maritime raised bog[J]. Agricultural and Forest Meteorology, 2022, 327: 109202 doi: 10.1016/j.agrformet.2022.109202
    [33] MA C K, LI X D, LUO Y, et al. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China[J]. Journal of Hydrology, 2019, 577: 123849 doi: 10.1016/j.jhydrol.2019.06.021
    [34] 刘效东, 龙凤玲, 陈修治, 等. 基于修正的Gash模型对南亚热带季风常绿阔叶林林冠截留的模拟[J]. 生态学杂志, 2016, 35(11): 3118−3125

    LIU X D, LONG F L, CHEN X Z, et al. An assessment of the revised Gash interception model in a monsoon evergreen broadleaved forest in lower subtropical China[J]. Chinese Journal of Ecology, 2016, 35(11): 3118−3125
    [35] 钱金平, 王仁德, 白洁, 等. 太行山区不同人工林林冠截留降水的比较研究[J]. 水土保持通报, 2012, 32(4): 164−167

    QIAN J P, WANG R D, BAI J, et al. Canopy rainfall interception of different planted forests in Taihang Mountainous region[J]. Bulletin of Soil and Water Conservation, 2012, 32(4): 164−167
    [36] 陈丽华, 杨新兵, 鲁绍伟, 等. 华北土石山区油松人工林耗水分配规律[J]. 北京林业大学学报, 2008, 30(S2): 182−187

    CHEN L H, YANG X B, LU S W, et al. Distribution of water consumption of Pinus tabulaeformis plantation in rocky mountain areas in Northern China[J]. Journal of Beijing Forestry University, 2008, 30(S2): 182−187
    [37] 柴汝杉, 蔡体久, 满秀玲, 等. 基于修正的Gash模型模拟小兴安岭原始红松林降雨截留过程[J]. 生态学报, 2013, 33(4): 1276−1284 doi: 10.5846/stxb201209241347

    CHAI R S, CAI T J, MAN X L, et al. Simulation of rainfall interception process of primary Korean pine forest in Xiaoxing’an Mountains by using the modified Gash model[J]. Acta Ecologica Sinica, 2013, 33(4): 1276−1284 doi: 10.5846/stxb201209241347
    [38] 张继辉, 郑路, 陈琳, 等. 降雨特征对南亚热带马尾松人工林降水分配格局的影响[J]. 水土保持学报, 2021, 35(1): 174−180

    ZHANG J H, ZHENG L, CHEN L, et al. Effects of rainfall characteristics on rainfall partitioning in plantation of Pinus massoniana in south subtropical[J]. Journal of Soil and Water Conservation, 2021, 35(1): 174−180
    [39] 肖洋, 陈丽华, 余新晓, 等. 北京密云水库油松人工林对降水分配的影响[J]. 水土保持学报, 2007, 21(3): 154−157

    XIAO Y, CHEN L H, YU X X, et al. Influence on precipitation distribution of Pinus tabuleaefomis forest in Miyun Reservoir[J]. Journal of Soil and Water Conservation, 2007, 21(3): 154−157
    [40] 赵鸿雁, 吴钦孝, 刘国彬. 黄土高原人工油松林水文生态效应[J]. 生态学报, 2003, 23(2): 376−379

    ZHAO H Y, WU Q X, LIU G B. Studies on hydro-ecological effects of artificial Chinese pine stand in Loess Plateau[J]. Acta Ecologica Sinica, 2003, 23(2): 376−379
    [41] 董世仁, 郭景唐, 满荣洲. 华北油松人工林的透流、干流和树冠截留[J]. 北京林业大学学报, 1987, 9(1): 58−68

    DONG S R, GUO J T, MAN R Z. Throughfall, stemflow and canopy interception in a Pinus tabulaeformis plantation of North China[J]. Journal of Beijing Forestry University, 1987, 9(1): 58−68
    [42] 方书敏, 赵传燕, 荐圣淇, 等. 陇中黄土高原油松人工林林冠截留特征及模拟[J]. 应用生态学报, 2013, 24(6): 1509−1516

    FANG S M, ZHAO C Y, JIAN S Q, et al. Canopy interception of Pinus tabulaeformis plantation on Longzhong Loess Plateau, Northwest China: characteristics and simulation[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1509−1516
    [43] LIANG W J. Simulation of Gash model to rainfall interception of Pinus tabulaeformis[J]. Forest Systems, 2014, 23(2): 300 doi: 10.5424/fs/2014232-03410
    [44] FAN J L, OESTERGAARD K T, GUYOT A, et al. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia[J]. Journal of Hydrology, 2014, 515: 156−165 doi: 10.1016/j.jhydrol.2014.04.066
    [45] LLORENS P, DOMINGO F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe[J]. Journal of Hydrology, 2007, 335(1–2): 37–54.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  39
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 录用日期:  2023-06-02
  • 修回日期:  2023-06-30
  • 网络出版日期:  2023-08-15

目录

    /

    返回文章
    返回