Effects of maize and forage planting on the community structure of ground-dwelling arthropods in oasis farmland
-
摘要: 绿洲农田集约化经营强烈影响土壤动物多样性及其功能, 地表节肢动物是绿洲农田生态系统重要的大型土壤动物类群, 其群落组成及功能性状对农田植物覆盖变化的响应十分敏感。本文以河西走廊中部的张掖绿洲为研究区, 利用陷阱法系统调查了玉米和牧草(箭筈豌豆和紫花苜蓿)种植小区生长季和非生长季地表节肢动物种类组成及数量变化, 确定农田作物和牧草覆盖变化对土壤动物群落结构的影响规律。结果表明: 1)玉米、箭筈豌豆和紫花苜蓿3种农田地表节肢动物群落组成明显不同并存在季节变异, 生长季紫花苜蓿田地表节肢动物群落组成与玉米田及豌豆田之间差异较大, 非生长季3种农田地表节肢动物群落组成差异变小; 2)生长季紫花苜蓿田地表节肢动物活动密度、物种丰富度、多样性和均匀度指数均显著高于玉米田和箭筈豌豆田, 非生长季紫花苜蓿和箭筈豌豆田地表节肢动物物种丰富度和多样性指数显著高于玉米田; 3)生长季紫花苜蓿田捕食性地表节肢动物活动密度显著高于箭筈豌豆田和玉米田, 紫花苜蓿田植食性节肢动物在生长季和非生长季也都显著高于箭筈豌豆田和玉米田, 玉米田和箭筈豌豆田的捕食性和植食性地表节肢动物活动密度的比值在生长季和非生长季都高于紫花苜蓿田; 4)蝗科、蓟马科、叶蝉科和蚜科等植食性地表节肢动物在紫花苜蓿田的活动密度显著高于箭筈豌豆田和玉米田, 平腹蛛科、狼蛛科和步甲科等捕食性地表节肢动物在紫花苜蓿田的活动密度也显著高于箭筈豌豆田和玉米田。总之, 干旱区多年生牧草种植会通过增加植食性地表节肢动物的种类和数量提升绿洲农田地表节肢动物群落中有益种群的数量及多样性, 进而提升农田害虫的生物防治功能。Abstract: Intensive management of oasis farmland has pronounced negative effects on the diversity and function of soil-dwelling animals. Ground-dwelling arthropods comprise an important group of soil macrofauna that inhabit oasis agroecosystems. Their community composition and functional traits are particularly sensitive to changes in farmland plant coverage. In this study, we systematically investigated the changes in the species composition and quantity of ground-dwelling arthropods during the growing and non-growing seasons of maize field and froages (vetch and alfalfa) fields in the Zhangye Oasis of the Hexi Corridor, China, using a trap method. We also determined the influence of farmland crops and changes in grazing cover on arthropod community structure. We detected significant differences in the community composition of ground-dwelling arthropods in the maize, vetch, and alfalfa fields, as well as seasonal variation. The community composition in alfalfa field was significantly different from that in both maize and vetch fields during the growing season, although comparatively little difference among fields was detected in the non-growing season. During the growing season, the activity density and species richness, diversity, and evenness indices of ground-dwelling arthropods in the alfalfa field were significantly higher than those of arthropods inhabiting the maize and vetch fields. During the non-growing season, the species richness and diversity indices of ground-dwelling arthropods in the alfalfa and vetch fields were significantly higher than those in the maize fields. Furthermore, during the growing season, the activity density of predatory ground-dwelling arthropods in the alfalfa field was significantly higher than that in the vetch and maize fields. Similarly, during both the growing and non-growing seasons, the activity density of phytophagous arthropods in the alfalfa field was significantly higher than in the vetch and maize fields. However, in both seasons, the activity density ratio of predatory phytophagous arthropods in the maize and vetch fields was significantly higher than that in alfalfa field. In addition, we found that in the alfalfa field, the activity densities of herbivorous ground-dwelling arthropods (including those in the families Acridoidea, Thripidae, Cicadellidae, and Aphididae) were significantly higher than those in the vetch and maize fields. Similarly, in the alfalfa field, the activity densities of predatory ground-dwelling arthropods (including those in the families Gnaphosidae, Lycosidae, and Carabidae) were significantly higher than those in the other two fields. Collectively, the findings of this study reveal that the planting of perennial herbage in arid areas can contribute to increased number and diversity of beneficial populations among surface-dwelling arthropods inhabiting oasis farmlands, notably by promoting increases in the diversity and population size of herbivorous arthropod species. This in turn contributes the enhanced biological control of farmland pests.
-
Key words:
- Oasis farmland /
- Maize /
- Forage /
- Ground-dwelling arthropods /
- Community structure /
- Trophic structure
-
图 3 玉米田、箭筈豌豆田和紫花苜蓿田生长季(A)和非生长季(B)地表节肢动物群落的NMDS排序图
MF、VF和AF分别表示玉米田、箭筈豌豆田和紫花苜蓿田。
Figure 3. Non-metric multidimensional scaling plots of ground-dwelling arthropods of maize field, vetch field and alfalfa field during growing season (A) and non-growing season (B)
MF, VF and AF represent maize field, vetch field and alfalfa field, respectively.
图 4 玉米田、箭筈豌豆田和紫花苜蓿田生长季和非生长季地表节肢动物群落特征比较
MF、VF 和 AF 分别表示玉米田、箭筈豌豆田和紫花苜蓿田; GS和NGS分别表示生长季和非生长季; *表示农田生长季和非生长季存在显著差异(P<0.05); 不同小写字母表示同一时期不同农田间存在显著性差异(P<0.05). MF, VF and AF represent maize field, vetch field and alfalfa field, respectively. GS and NGS represent growing season and non-growing season, respectively. * indicates significant differences between growing and non-growing seasons (P<0.05). Different lowercase letters indicate significant differences among different farmland types in the seam period (P<0.05).
Figure 4. Comparison of ground-dwelling arthropods community characteristics of maize field, vetch field and alfalfa field during growing season and non-growing season
图 5 玉米田、箭筈豌豆田和紫花苜蓿田生长季和非生长季捕食性(A)、植食性(B)和其他食性(C)地表节肢动物活动密度
MF、VF 和 AF 分别表示玉米田、箭筈豌豆田和紫花苜蓿田; GS和NGS分别表示生长季和非生长季; *表示农田生长季和非生长季存在显著差异(P<0.05); 不同小写字母表示同一时期不同农田间存在显著差异(P<0.05). MF, VF and AF represent maize field, vetch field and alfalfa field, respectively. GS and NGS represent growing season and non-growing season, respectively. * indicates significant differences between growing and non-growing seasons (P<0.05). Different lowercase letters indicate significant differences among different farmland types in the same period (P<0.05).
Figure 5. Activity densities of predatory (A), phytophagous (B) and other arthropods (C) in maize field, vetch field and alfalfa field during growing season and non-growing season
图 6 玉米田、箭筈豌豆田和紫花苜蓿田生长季和非生长季捕食性与植食性地表节肢动物活动密度的比值(P/P)
MF、VF 和 AF 分别表示玉米田、箭筈豌豆田和紫花苜蓿田; GS和NGS分别表示生长季和非生长季; 不同小写字母表示同一时期不同农田间存在显著差异(P<0.05)。MF, VF and AF represent maize field, vetch field and alfalfa field, respectively. GS and NGS represent growing season and non-growing season, respectively. Different lowercase letters indicate significant differences among different farmland types in the same period (P<0.05).
Figure 6. Ratios of activity density of predatory and phytophagous arthropods (P/P) of maize field, vetch field and alfalfa field in growing season and non-growing season
表 1 农田类型、采样时间及二者交互作用对地表节肢动物群落结构、营养结构及主要种群活动密度影响二因素方差分析
Table 1. The results of two-way ANOVAS of impacts of farmland type, sampling period and their interaction on community structure, trophic structure and activity densities of dominant families of ground-dwelling arthropods
采样时间 Sampling period (SP) 农田类型 Farmland type (FT) SP×FT F P F P F P 群落结构 Community structure 活动密度 Activity density 0.136 0.713 9.095 <0.001 1.223 0.301 物种丰富度 Species richness 84.426 <0.001 17.855 <0.001 4.377 0.016 多样性指数 Diversity index 0.454 0.503 19.705 <0.001 14.125 <0.001 均匀度指数 Evenness index 81.926 <0.001 4.348 0.017 11.039 <0.001 营养结构 Trophic structure 捕食性节肢动物 Predatory arthropods 15.845 <0.001 8.152 0.001 11.217 <0.001 植食性节肢动物 Phytophagous arthropods 0.895 0.348 58.724 <0.001 6.928 0.002 其他食性节肢动物 Other arthropods 0.865 0.356 0.861 0.427 1.528 0.225 捕食性/植食性比值 Ratio of predatory and phytophagous 0.048 0.827 10.662 <0.001 3.891 0.025 主要类群活动密度 Activity density of dominant family 平腹蛛科 Gnaphosidae 21.475 <0.001 7.653 0.001 13.803 <0.001 狼蛛科 Lycosidae 6.498 0.013 20.397 <0.001 7.587 0.001 蟹蛛科 Thomisidae 19.827 <0.001 1.149 0.323 2.178 0.121 虎甲科 Cicindelidae 12.451 0.001 6.322 0.003 6.322 0.003 步甲科 Carabidae 23.482 <0.001 10.967 <0.001 0.728 0.487 隐翅虫科 Staphylinidae 7.316 0.009 12.766 <0.001 0.690 0.505 蚁形甲科 Anthicidae 0.111 0.740 0.614 0.544 0.388 0.680 蠼螋科 Labiduridae 58.356 <0.001 12.077 <0.001 7.383 0.001 蝗科 Acrididae 1.646 0.204 15.022 <0.001 3.524 0.035 蓟马科 Thripidae 22.223 <0.001 9.272 <0.001 7.035 0.002 叶蝉科 Cicadellidae 0.613 0.436 30.289 <0.001 1.542 0.222 蚜科 Aphididae 14.296 <0.001 43.010 <0.001 19.129 <0.001 隐食甲科 Cryptophagidae 1.166 0.284 8.402 0.001 0.270 0.764 拟球甲科 Corylophidae 6.119 0.016 6.046 0.004 6.578 0.002 蚁科 Formicidae 2.470 0.121 0.428 0.654 7.965 0.001 表 2 生长季和非生长季玉米田、箭筈豌豆田和紫花苜蓿田主要地表节肢动物类群活动密度比较
Table 2. Comparison of the activity densities of key ground-dwelling arthropods in maize field, vetch field and alfalfa field during growing season and non-growing season
科 Family 生长季 Growing season 非生长季 Non-growing season 玉米
Maize field箭筈豌豆
Vetch field紫花苜蓿
Alfalfa field玉米
Maize field箭筈豌豆
Vetch field紫花苜蓿
Alfalfa field平腹蛛科 Gnaphosidae 0.78±0.09b 0.69±0.16b 2.08±0.18a 0.17±0.11b 0.92±0.31a 0.33±0.19ab 狼蛛科 Lycosidae 1.06±0.22c 2.75±0.75b 7.36±0.64a 2.08±0.57a 1.67±0.68a 3.42±0.81a 蟹蛛科 Thomisidae 0.08±0.04a 0.08±0.06a 0.25±0.09a 1.58±0.43a 1.00±0.33a 0.67±0.31a 虎甲科 Cicindelidae 0.00±0.00b 1.28±0.44a 0.33±0.12b 0.00±0.00 0.00±0.00 0.00±0.00 步甲科 Carabidae 0.14±0.05c 1.00±0.15b 1.94±0.32a 1.42±0.38b 3.33±0.77ab 4.25±0.79a 隐翅虫科 Staphylinidae 0.33±0.07b 0.14±0.05b 0.97±0.18a 0.00±0.00a 0.00±0.00a 0.50±0.29a 蚁形甲科 Anthicidae 1.25±0.36a 0.81±0.31a 1.06±0.27a 1.25±0.71a 1.00±0.54a 0.50±0.29a 蠼螋科 Labiduridae 1.61±0.47a 0.39±0.11b 0.31±0.08b 5.58±1.03a 6.17±0.72a 1.58±0.51b 蝗科 Acrididae 0.08±0.04b 0.11±0.05b 1.89±0.46a 0.00±0.00b 1.42±0.47a 1.67±0.41a 蓟马科 Thripidae 0.28±0.11b 0.31±0.13b 1.50±0.38a 0.00±0.00a 0.00±0.00a 0.08±0.08a 叶蝉科 Cicadellidae 1.00±0.16b 0.50±0.15b 6.75±1.13a 0.67±0.22b 1.25±0.35b 4.92±1.33a 蚜科 Aphididae 0.19±0.10b 0.31±0.08b 5.17±0.70a 0.67±0.28ab 0.17±0.11b 1.42±0.47a 隐食甲科 Cryptophagidae 0.14±0.05b 0.36±0.12b 0.97±0.23a 0.08±0.08a 0.25±0.13a 0.67±0.31a 拟球甲科 Corylophidae 0.03±0.03b 0.11±0.05b 0.61±0.24a 0.08±0.08b 9.50±3.68a 0.33±0.33b 蚁科 Formicidae 16.94±3.75ab 20.31±1.74a 10.42±1.61b 14.17±2.65a 6.08±1.54b 17.25±3.57a 同行不同小写字母表示同一时期不同农田类型间存在显著性差异(P<0.05)。Different lowercase letters in the same row indicate significant differences among different farmland types in the same period (P<0.05). -
[1] 严昌荣, 刘恩科, 舒帆, 等. 我国地膜覆盖和残留污染特点与防控技术[J]. 农业资源与环境学报, 2014(2): 95−102YAN C R, LIU E K, SHU F, et al. Review of agricultural plastic mulching and its residual pollution and prevention measures in China[J]. Journal of Agricultural Resources and Environment, 2014(2): 95−102 [2] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415 [3] 赵文智, 杨荣, 刘冰, 等. 中国绿洲化及其研究进展[J]. 中国沙漠, 2016, 36(1): 1−5ZHAO W Z, YANG R, LIU B, et al. Oasification of northwestern China: a review[J]. Journal of Desert Research, 2016, 36(1): 1−5 [4] 姚佳璇, 俄胜哲, 袁金华, 等. 施肥对灌漠土作物产量、土壤肥力与重金属含量的影响[J]. 中国生态农业学报(中英文), 2020, 28(6): 813−825YAO J X, E S Z, YUAN J H, et al. Effects of different organic matters on crop yields, soil quality and heavy metal content in irrigated desert soil[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 813−825 [5] KNAPP M, ŘEZÁČ M. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape[J]. PLoS One, 2015, 10(4): e0123052 doi: 10.1371/journal.pone.0123052 [6] GEISEN S, WALL D H, VAN DER PUTTEN W H. Challenges and opportunities for soil biodiversity in the anthropocene[J]. Current Biology, 2019, 29(19): 1036−1044 doi: 10.1016/j.cub.2019.08.007 [7] MARSDEN C, MARTIN-CHAVE A, CORTET J, et al. How agroforestry systems influence soil fauna and their functions - a review[J]. Plant and Soil, 2020, 453(1): 29−44 [8] BEAUMELLE L, THOUVENOT L, HINES J, et al. Soil fauna diversity and chemical stressors: a review of knowledge gaps and roadmap for future research[J]. Ecography, 2021, 44(6): 845−859 doi: 10.1111/ecog.05627 [9] 朱猛蒙, 李东宁, 张蓉, 等. 不同种植年限苜蓿草地昆虫种群及群落的发生规律[J]. 宁夏农林科技, 2014, 55(01): 48−53ZHU M M, LI D N, ZHANG R, et al. Dynamics of insect population and community on grassland of alfalfa in different evolution stages[J]. Journal of Ningxia Agriculture and Forestry, 2014, 55(01): 48−53 [10] 杨金虎, 李立军, 张艳丽, 等. 科尔沁沙地燕麦间作箭筈豌豆与施肥对饲草养分累积、产量及水分利用的影响[J/OL]. 西北农业学报, [2023-10-18]. http://kns.cnki.net/kcms/detail/61.1220.s.20230626.2009.004.htmlYANG J H, LI L J, ZHANG Y L, et al. Effects of Oat intercropping with common vetch and fertilization on forage nutrient accumulation, yield and water utilization in Horqin Sandy Land[J/OL]. Acta Agriculturae Boreali-occidentalis Sinica, [2023-10-18]. http://kns.cnki.net/kcms/detail/61.1220.s.20230626.2009.004.html [11] HATT S, BOERAEVE F, ARTRU S, et al. Spatial diversification of agroecosystems to enhance biological control and other regulating services: an agroecological perspective[J]. Science of the Total Environment, 2018, 621: 600−611 doi: 10.1016/j.scitotenv.2017.11.296 [12] YANG G W, WAGG C, VERESOGLOU S D, et al. How soil biota drive ecosystem stability[J]. Trends in Plant Science, 2018, 23(12): 1057−1067 doi: 10.1016/j.tplants.2018.09.007 [13] 张卫信, 申智锋, 邵元虎, 等. 土壤生物与可持续农业研究进展[J]. 生态学报, 2020, 40(10): 3183−3206ZHANG W X, SHEN Z F, SHAO Y H, et al. Soil biota and sustainable agriculture: a review[J]. Acta Ecologica Sinica, 2020, 40(10): 3183−3206 [14] 孙新, 李琪, 姚海凤, 等. 土壤动物与土壤健康[J]. 土壤学报, 2021, 58(5): 1073−1083SUN X, LI Q, YAO H F, et al. Soil fauna and soil health[J]. Acta Pedologica Sinica, 2021, 58(5): 1073−1083 [15] LETOURNEAU D K, ARMBRECHT I, RIVERA B S, et al. Does plant diversity benefit agroecosystems? A synthetic review[J]. Ecological Applications, 2011, 21(1): 9−21 doi: 10.1890/09-2026.1 [16] BROOKER R W, BENNETT A E, CONG W F, et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology[J]. New Phytologist, 2015, 206(1): 107−117 doi: 10.1111/nph.13132 [17] 戴漂漂, 张旭珠, 肖晨子, 等. 农业景观害虫控制生境管理及植物配置方法[J]. 中国生态农业学报, 2015, 23(1): 9−19 doi: 10.13930/j.cnki.cjea.140898DAI P P, ZHANG X Z, XIAO C Z, et al. Habitat management and plant configuration for biological pest control in agricultural landscapes[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1): 9−19 doi: 10.13930/j.cnki.cjea.140898 [18] 刘冰, 陆宴辉. 农田节肢动物食物网结构与天敌控害功能[J]. 植物保护学报, 2022, 49(1): 97−109LIU B, LU Y H. Arthropod food web structure and the biocontrol services of natural enemies in agro-ecosystems[J]. Journal of Plant Protection, 2022, 49(1): 97−109 [19] 刘继亮, 李锋瑞. 干旱区绿洲扩张方式对土壤生物优势类群及功能的影响[J]. 生物多样性, 2018, 26(10): 1116−1126 doi: 10.17520/biods.2018130LIU J L, LI F R. Effects of oasis expansion regimes on ecosystem function and dominant functional groups of soil biota in arid regions[J]. Biodiversity Science, 2018, 26(10): 1116−1126 doi: 10.17520/biods.2018130 [20] 王雪峰, 苏永中, 杨荣. 黑河中游绿洲不同开垦年限农田土壤线虫群落特征[J]. 应用生态学报, 2010, 21(8): 2125−2131WANG X F, SU Y Z, YANG R. Characteristics of soil nematode community along an age sequence of sandy desert soil cultivation in a marginal oasis of middle reaches of Heihe River[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 2125−2131 [21] LIU J L, REN W, ZHAO W Z, et al. Cropping systems alter the biodiversity of ground- and soil-dwelling herbivorous and predatory arthropods in a desert agroecosystem: implications for pest biocontrol[J]. Agriculture, Ecosystems & Environment, 2018, 266: 109−121 [22] LI F R, LIU J L, REN W, et al. Land-use change alters patterns of soil biodiversity in arid lands of northwestern China[J]. Plant and Soil, 2018, 428(1): 371−388 [23] WENDA-PIESIK A, PIESIK D. Diversity of species and the occurrence and development of a specialized pest population — A review article[J]. Agriculture, 2020, 11(1): 16 doi: 10.3390/agriculture11010016 [24] 陈明, 周昭旭, 罗进仓. 间作苜蓿棉田节肢动物群落生态位及时间格局[J]. 草业学报, 2008, 175(4): 132−140CHEN M, ZHOU Z X, LUO J C. Niche and temporal pattern of arthropod community in cotton-alfalfa intercrop fields[J]. Acta Prataculturae Sinica, 2008, 175(4): 132−140 [25] 刘文惠, 胡懿君, 胡文超, 等. 苜蓿邻作麦田地表步甲和蜘蛛种群动态及其对苜蓿刈割的响应[J]. 应用生态学报, 2014, 25(09): 2677−2682LIU W H, HU Y J, HU W C, et al. Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing[J]. Chinese Journal of Applied Ecology, 2014, 25(09): 2677−2682 [26] 赵紫华, 高峰, 贺达汉, 等. 多尺度空间下害虫生态调控理论与应用[J]. 中国科学(生命科学), 2015, 45(8): 755−767 doi: 10.1360/N052014-00314ZHAO Z H, GAO F, HE D H, et al. Ecologically based pest management at multiple spatial scales[J]. Scientia Sinica (Vitae), 2015, 45(8): 755−767 doi: 10.1360/N052014-00314 [27] 胡文超, 刘军和, 贺达汉. 苜蓿田地表蜘蛛边缘效应及苜蓿刈割后的溢出效应[J]. 植物保护学报, 2018, 45(4): 773−781HU W C, LIU J H, HE D H. Edge effect of ground-dwelling spiders and spillover effect after alfalfa mowing in alfalfa fields of Yinchuan area[J]. Journal of Plant Protection, 2018, 45(4): 773−781 [28] 郑乐怡, 归鸿. 昆虫分类[M]. 南京: 南京师范大学出版社, 1999ZHENG L Y, GUI H. Insect Classification[M]. Nanjing: Nanjing Normal University Press, 1999 [29] SONG D X, ZHU M S, CHEN J. The Spiders of China[M]. Shijiazhuang: Hebei Science and Technology Publishing House, 1999 [30] 任国栋, 于有志. 中国荒漠半荒漠的拟步甲科昆虫[M]. 保定: 河北大学出版社, 1999REN G D, YU Y Z. Darkling Beetles from Deserts and Semideserts of China (Coleoptera: Tenebrionidae)[M]. Baoding: Hebei University Press, 1999 [31] 梁宏斌, 虞佩玉. 中国捕食粘虫的步甲种类检索[J]. 昆虫天敌, 2000, 22(4): 160−167LIANG H B, YU P Y. Species of ground beetles (Coleoptera: Carabidae) predating oriental armyworm (Lepidoptera: Notuidae) in China[J]. Natural Enemies of Insects, 2000, 22(4): 160−167 [32] CLARKE K R. Non-parametric multivariate analyses of changes in community structure[J]. Australian Journal of Ecology, 1993, 18(1): 117−143 doi: 10.1111/j.1442-9993.1993.tb00438.x [33] RAND T A, TYLIANAKIS J M, TSCHARNTKE T. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats[J]. Ecology Letters, 2006, 9(5): 603−614 doi: 10.1111/j.1461-0248.2006.00911.x [34] 黄吉, 可胜杰, 柴正群, 等. 非作物植被对玉米地节肢动物群落的影响[J]. 环境昆虫学报, 2015, 37(4): 857−864HUANG J, KE S J, CHAI Z Q, et al. The effects of non-crop vegetation on arthropod community in maize fields[J]. Journal of Environmental Entomology, 2015, 37(4): 857−864 [35] 张旭珠, 韩印, 宇振荣, 等. 半自然农田边界与相邻农田步甲和蜘蛛的时空分布[J]. 应用生态学报, 2017, 28(06): 1879−1888ZHANG X Z, HAN Y, YU Z R, et al. Spatio-temporal distribution of carabids and spiders between semi-natural field margin and the adjacent crop fields in agricultural landscape[J]. Chinese Journal of Applied Ecology, 2017, 28(06): 1879−1888 [36] LICHTENBERG E M, KENNEDY C M, KREMEN C, et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes[J]. Global Change Biology, 2017, 23(11): 4946−4957 doi: 10.1111/gcb.13714 [37] TAMBURINI G, BOMMARCO R, WANGER T C, et al. Agricultural diversification promotes multiple ecosystem services without compromising yield[J]. Science Advances, 2020, 6(45): eaba1715 doi: 10.1126/sciadv.aba1715 [38] PORTILLO D G, ARROYO B, MORALES M B. The adequacy of alfalfa crops as an agri-environmental scheme: a review of agronomic benefits and effects on biodiversity[J]. Journal for Nature Conservation, 2022, 69: 126253 doi: 10.1016/j.jnc.2022.126253 [39] 张艳荣, 胡文超, 吕苗苗, 等. 苜蓿田及不同邻作地地表步甲群落多样性及其扩散动态[J]. 草业学报, 2017, 26(2): 153−160ZHANG Y R, HU W C, LYU M M, et al. Diversity and diffusion dynamics of the ground-dwelling carabid beetle community in alfalfa fields and boundary edges of their adjacent crops[J]. Acta Prataculturae Sinica, 2017, 26(2): 153−160 [40] GABRIBELA I C, DELSERONE L M, JULIA N D C, et al. Does cover crop management affect arthropods in the subsequent corn and soybean crops in the United States? A systematic review[J]. Annals of the Entomological Society of America, 2021, 114(2): 151−162 doi: 10.1093/aesa/saaa049 [41] JING J Y, CONG W F, BEZEMER T M. Legacies at work: plant-soil-microbiome interactions underpinning agricultural sustainability[J]. Trends in Plant Science, 2022, 27(8): 781−792 doi: 10.1016/j.tplants.2022.05.007 [42] DEL-VAL E, RAMÍREZ E, ASTIER M. Comparison of arthropod communities between high and low input maize farms in Mexico[J]. CABI Agriculture and Bioscience, 2021, 2(1): 40 doi: 10.1186/s43170-021-00060-9 [43] THORBEK P, BILDE T. Reduced numbers of generalist arthropod predators after crop management[J]. Journal of Applied Ecology, 2004, 41(3): 526−538 doi: 10.1111/j.0021-8901.2004.00913.x [44] DUAN M C, HU W H, LIU Y H, et al. The influence of landscape alterations on changes in ground beetle (Carabidae) and spider (Araneae) functional groups between 1995 and 2013 in an urban fringe of China[J]. Science of the Total Environment, 2019, 689: 516−525 doi: 10.1016/j.scitotenv.2019.06.198 [45] 陈斌, 鲁延芳, 占玉芳, 等. 荒漠绿洲过渡带土壤水分空间分布特征及对植被的影响[J]. 西北林学院学报, 2023, 38(2): 25−32CHEN B, LU Y F, ZHAN Y F, et al. Spatial distribution characteristics of soil moisture and its influence on vegetation in desert-oasis ecotone[J]. Journal of Northwest Forestry University, 2023, 38(2): 25−32 [46] RIVERS A, VOORTMAN C, BARBERCHECK M. Cover crops support arthropod predator activity with variable effects on crop damage during transition to organic management[J]. Biological Control, 2020, 151: 104377 doi: 10.1016/j.biocontrol.2020.104377 [47] RIVERS A N, MULLEN C A, BARBERCHECK M E. Cover crop species and management influence predatory arthropods and predation in an organically managed, reduced-tillage cropping system[J]. Environmental Entomology, 2018, 47(2): 340−355 doi: 10.1093/ee/nvx149 -
20230176-1.pdf
-