留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绿洲农田玉米和牧草种植对地表节肢动物群落结构的影响

王永珍 冯怡琳 赵文智 杨荣 刘继亮

王永珍, 冯怡琳, 赵文智, 杨荣, 刘继亮. 绿洲农田玉米和牧草种植对地表节肢动物群落结构的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1721−1732 doi: 10.12357/cjea.20230176
引用本文: 王永珍, 冯怡琳, 赵文智, 杨荣, 刘继亮. 绿洲农田玉米和牧草种植对地表节肢动物群落结构的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1721−1732 doi: 10.12357/cjea.20230176
WANG Y Z, FENG Y L, ZHAO W Z, YANG R, LIU J L. Effects of maize and forage planting on the community structure of ground-dwelling arthropods in oasis farmland[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1721−1732 doi: 10.12357/cjea.20230176
Citation: WANG Y Z, FENG Y L, ZHAO W Z, YANG R, LIU J L. Effects of maize and forage planting on the community structure of ground-dwelling arthropods in oasis farmland[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1721−1732 doi: 10.12357/cjea.20230176

绿洲农田玉米和牧草种植对地表节肢动物群落结构的影响

doi: 10.12357/cjea.20230176
基金项目: 中国科学院战略性先导科技专项 A (XDA23060302, XDA23060304)和国家自然科学基金项目( 41771290) 资助
详细信息
    作者简介:

    王永珍, 主要研究方向为干旱区土壤动物多样性及其功能研究。E-mail: 18734244283@163.com

    刘继亮, 主要研究方向为干旱区土壤动物生态地理学研究。E-mail: liujl707@lzb.ac.cn

    通讯作者:

    刘继亮, 主要研究方向为干旱区土壤动物生态地理学研究。E-mail: liujl707@lzb.ac.cn

  • 中图分类号: Q958

Effects of maize and forage planting on the community structure of ground-dwelling arthropods in oasis farmland

Funds: This study was supported by the Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences A (XDA23060302, XDA23060304) and the National Natural Science Foundation of China (41771290).
More Information
  • 摘要: 绿洲农田集约化经营强烈影响土壤动物多样性及其功能, 地表节肢动物是绿洲农田生态系统重要的大型土壤动物类群, 其群落组成及功能性状对农田植物覆盖变化的响应十分敏感。本文以河西走廊中部的张掖绿洲为研究区, 利用陷阱法系统调查了玉米和牧草(箭筈豌豆和紫花苜蓿)种植小区生长季和非生长季地表节肢动物种类组成及数量变化, 确定农田作物和牧草覆盖变化对土壤动物群落结构的影响规律。结果表明: 1)玉米、箭筈豌豆和紫花苜蓿3种农田地表节肢动物群落组成明显不同并存在季节变异, 生长季紫花苜蓿田地表节肢动物群落组成与玉米田及豌豆田之间差异较大, 非生长季3种农田地表节肢动物群落组成差异变小; 2)生长季紫花苜蓿田地表节肢动物活动密度、物种丰富度、多样性和均匀度指数均显著高于玉米田和箭筈豌豆田, 非生长季紫花苜蓿和箭筈豌豆田地表节肢动物物种丰富度和多样性指数显著高于玉米田; 3)生长季紫花苜蓿田捕食性地表节肢动物活动密度显著高于箭筈豌豆田和玉米田, 紫花苜蓿田植食性节肢动物在生长季和非生长季也都显著高于箭筈豌豆田和玉米田, 玉米田和箭筈豌豆田的捕食性和植食性地表节肢动物活动密度的比值在生长季和非生长季都高于紫花苜蓿田; 4)蝗科、蓟马科、叶蝉科和蚜科等植食性地表节肢动物在紫花苜蓿田的活动密度显著高于箭筈豌豆田和玉米田, 平腹蛛科、狼蛛科和步甲科等捕食性地表节肢动物在紫花苜蓿田的活动密度也显著高于箭筈豌豆田和玉米田。总之, 干旱区多年生牧草种植会通过增加植食性地表节肢动物的种类和数量提升绿洲农田地表节肢动物群落中有益种群的数量及多样性, 进而提升农田害虫的生物防治功能。
  • 图  1  研究区中国科学院临泽内陆河流域研究站地理位置

    Figure  1.  Location of the study areas of Linze Inland River Basin Research Station, Chinese Academy of Sciences

    图  2  农田土壤动物采样区试验布设图

    Figure  2.  Experimental layout diagram of sampling areas for farmland soil animal

    图  3  玉米田、箭筈豌豆田和紫花苜蓿田生长季(A)和非生长季(B)地表节肢动物群落的NMDS排序图

    MF、VF和AF分别表示玉米田、箭筈豌豆田和紫花苜蓿田。

    Figure  3.  Non-metric multidimensional scaling plots of ground-dwelling arthropods of maize field, vetch field and alfalfa field during growing season (A) and non-growing season (B)

    MF, VF and AF represent maize field, vetch field and alfalfa field, respectively.

    图  4  玉米田、箭筈豌豆田和紫花苜蓿田生长季和非生长季地表节肢动物群落特征比较

    MF、VF 和 AF 分别表示玉米田、箭筈豌豆田和紫花苜蓿田; GS和NGS分别表示生长季和非生长季; *表示农田生长季和非生长季存在显著差异(P<0.05); 不同小写字母表示同一时期不同农田间存在显著性差异(P<0.05). MF, VF and AF represent maize field, vetch field and alfalfa field, respectively. GS and NGS represent growing season and non-growing season, respectively. * indicates significant differences between growing and non-growing seasons (P<0.05). Different lowercase letters indicate significant differences among different farmland types in the seam period (P<0.05).

    Figure  4.  Comparison of ground-dwelling arthropods community characteristics of maize field, vetch field and alfalfa field during growing season and non-growing season

    图  5  玉米田、箭筈豌豆田和紫花苜蓿田生长季和非生长季捕食性(A)、植食性(B)和其他食性(C)地表节肢动物活动密度

    MF、VF 和 AF 分别表示玉米田、箭筈豌豆田和紫花苜蓿田; GS和NGS分别表示生长季和非生长季; *表示农田生长季和非生长季存在显著差异(P<0.05); 不同小写字母表示同一时期不同农田间存在显著差异(P<0.05). MF, VF and AF represent maize field, vetch field and alfalfa field, respectively. GS and NGS represent growing season and non-growing season, respectively. * indicates significant differences between growing and non-growing seasons (P<0.05). Different lowercase letters indicate significant differences among different farmland types in the same period (P<0.05).

    Figure  5.  Activity densities of predatory (A), phytophagous (B) and other arthropods (C) in maize field, vetch field and alfalfa field during growing season and non-growing season

    图  6  玉米田、箭筈豌豆田和紫花苜蓿田生长季和非生长季捕食性与植食性地表节肢动物活动密度的比值(P/P)

    MF、VF 和 AF 分别表示玉米田、箭筈豌豆田和紫花苜蓿田; GS和NGS分别表示生长季和非生长季; 不同小写字母表示同一时期不同农田间存在显著差异(P<0.05)。MF, VF and AF represent maize field, vetch field and alfalfa field, respectively. GS and NGS represent growing season and non-growing season, respectively. Different lowercase letters indicate significant differences among different farmland types in the same period (P<0.05).

    Figure  6.  Ratios of activity density of predatory and phytophagous arthropods (P/P) of maize field, vetch field and alfalfa field in growing season and non-growing season

    表  1  农田类型、采样时间及二者交互作用对地表节肢动物群落结构、营养结构及主要种群活动密度影响二因素方差分析

    Table  1.   The results of two-way ANOVAS of impacts of farmland type, sampling period and their interaction on community structure, trophic structure and activity densities of dominant families of ground-dwelling arthropods

     采样时间 Sampling period (SP)农田类型 Farmland type (FT)SP×FT
      F P F P F P
    群落结构 Community structure
    活动密度 Activity density 0.136 0.713 9.095 <0.001 1.223 0.301
    物种丰富度 Species richness 84.426 <0.001 17.855 <0.001 4.377 0.016
    多样性指数 Diversity index 0.454 0.503 19.705 <0.001 14.125 <0.001
    均匀度指数 Evenness index 81.926 <0.001 4.348 0.017 11.039 <0.001
    营养结构 Trophic structure
    捕食性节肢动物 Predatory arthropods 15.845 <0.001 8.152 0.001 11.217 <0.001
    植食性节肢动物 Phytophagous arthropods 0.895 0.348 58.724 <0.001 6.928 0.002
    其他食性节肢动物 Other arthropods 0.865 0.356 0.861 0.427 1.528 0.225
    捕食性/植食性比值 Ratio of predatory and phytophagous 0.048 0.827 10.662 <0.001 3.891 0.025
    主要类群活动密度 Activity density of dominant family
    平腹蛛科 Gnaphosidae 21.475 <0.001 7.653 0.001 13.803 <0.001
    狼蛛科 Lycosidae 6.498 0.013 20.397 <0.001 7.587 0.001
    蟹蛛科 Thomisidae 19.827 <0.001 1.149 0.323 2.178 0.121
    虎甲科 Cicindelidae 12.451 0.001 6.322 0.003 6.322 0.003
    步甲科 Carabidae 23.482 <0.001 10.967 <0.001 0.728 0.487
    隐翅虫科 Staphylinidae 7.316 0.009 12.766 <0.001 0.690 0.505
    蚁形甲科 Anthicidae 0.111 0.740 0.614 0.544 0.388 0.680
    蠼螋科 Labiduridae 58.356 <0.001 12.077 <0.001 7.383 0.001
    蝗科 Acrididae 1.646 0.204 15.022 <0.001 3.524 0.035
    蓟马科 Thripidae 22.223 <0.001 9.272 <0.001 7.035 0.002
    叶蝉科 Cicadellidae 0.613 0.436 30.289 <0.001 1.542 0.222
    蚜科 Aphididae 14.296 <0.001 43.010 <0.001 19.129 <0.001
    隐食甲科 Cryptophagidae 1.166 0.284 8.402 0.001 0.270 0.764
    拟球甲科 Corylophidae 6.119 0.016 6.046 0.004 6.578 0.002
    蚁科 Formicidae 2.470 0.121 0.428 0.654 7.965 0.001
    下载: 导出CSV

    表  2  生长季和非生长季玉米田、箭筈豌豆田和紫花苜蓿田主要地表节肢动物类群活动密度比较

    Table  2.   Comparison of the activity densities of key ground-dwelling arthropods in maize field, vetch field and alfalfa field during growing season and non-growing season

    科 Family生长季 Growing season非生长季 Non-growing season
    玉米
    Maize field
    箭筈豌豆
    Vetch field
    紫花苜蓿
    Alfalfa field
    玉米
    Maize field
    箭筈豌豆
    Vetch field
    紫花苜蓿
    Alfalfa field
    平腹蛛科 Gnaphosidae0.78±0.09b0.69±0.16b2.08±0.18a0.17±0.11b0.92±0.31a0.33±0.19ab
    狼蛛科 Lycosidae1.06±0.22c2.75±0.75b7.36±0.64a2.08±0.57a1.67±0.68a3.42±0.81a
    蟹蛛科 Thomisidae0.08±0.04a0.08±0.06a0.25±0.09a1.58±0.43a1.00±0.33a0.67±0.31a
    虎甲科 Cicindelidae0.00±0.00b1.28±0.44a0.33±0.12b0.00±0.000.00±0.000.00±0.00
    步甲科 Carabidae0.14±0.05c1.00±0.15b1.94±0.32a1.42±0.38b3.33±0.77ab4.25±0.79a
    隐翅虫科 Staphylinidae0.33±0.07b0.14±0.05b0.97±0.18a0.00±0.00a0.00±0.00a0.50±0.29a
    蚁形甲科 Anthicidae1.25±0.36a0.81±0.31a1.06±0.27a1.25±0.71a1.00±0.54a0.50±0.29a
    蠼螋科 Labiduridae1.61±0.47a0.39±0.11b0.31±0.08b5.58±1.03a6.17±0.72a1.58±0.51b
    蝗科 Acrididae0.08±0.04b0.11±0.05b1.89±0.46a0.00±0.00b1.42±0.47a1.67±0.41a
    蓟马科 Thripidae0.28±0.11b0.31±0.13b1.50±0.38a0.00±0.00a0.00±0.00a0.08±0.08a
    叶蝉科 Cicadellidae1.00±0.16b0.50±0.15b6.75±1.13a0.67±0.22b1.25±0.35b4.92±1.33a
    蚜科 Aphididae0.19±0.10b0.31±0.08b5.17±0.70a0.67±0.28ab0.17±0.11b1.42±0.47a
    隐食甲科 Cryptophagidae0.14±0.05b0.36±0.12b0.97±0.23a0.08±0.08a0.25±0.13a0.67±0.31a
    拟球甲科 Corylophidae0.03±0.03b0.11±0.05b0.61±0.24a0.08±0.08b9.50±3.68a0.33±0.33b
    蚁科 Formicidae16.94±3.75ab20.31±1.74a10.42±1.61b14.17±2.65a6.08±1.54b17.25±3.57a
      同行不同小写字母表示同一时期不同农田类型间存在显著性差异(P<0.05)。Different lowercase letters in the same row indicate significant differences among different farmland types in the same period (P<0.05).
    下载: 导出CSV
  • [1] 严昌荣, 刘恩科, 舒帆, 等. 我国地膜覆盖和残留污染特点与防控技术[J]. 农业资源与环境学报, 2014(2): 95−102

    YAN C R, LIU E K, SHU F, et al. Review of agricultural plastic mulching and its residual pollution and prevention measures in China[J]. Journal of Agricultural Resources and Environment, 2014(2): 95−102
    [2] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415

    LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415
    [3] 赵文智, 杨荣, 刘冰, 等. 中国绿洲化及其研究进展[J]. 中国沙漠, 2016, 36(1): 1−5

    ZHAO W Z, YANG R, LIU B, et al. Oasification of northwestern China: a review[J]. Journal of Desert Research, 2016, 36(1): 1−5
    [4] 姚佳璇, 俄胜哲, 袁金华, 等. 施肥对灌漠土作物产量、土壤肥力与重金属含量的影响[J]. 中国生态农业学报(中英文), 2020, 28(6): 813−825

    YAO J X, E S Z, YUAN J H, et al. Effects of different organic matters on crop yields, soil quality and heavy metal content in irrigated desert soil[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 813−825
    [5] KNAPP M, ŘEZÁČ M. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape[J]. PLoS One, 2015, 10(4): e0123052 doi: 10.1371/journal.pone.0123052
    [6] GEISEN S, WALL D H, VAN DER PUTTEN W H. Challenges and opportunities for soil biodiversity in the anthropocene[J]. Current Biology, 2019, 29(19): 1036−1044 doi: 10.1016/j.cub.2019.08.007
    [7] MARSDEN C, MARTIN-CHAVE A, CORTET J, et al. How agroforestry systems influence soil fauna and their functions - a review[J]. Plant and Soil, 2020, 453(1): 29−44
    [8] BEAUMELLE L, THOUVENOT L, HINES J, et al. Soil fauna diversity and chemical stressors: a review of knowledge gaps and roadmap for future research[J]. Ecography, 2021, 44(6): 845−859 doi: 10.1111/ecog.05627
    [9] 朱猛蒙, 李东宁, 张蓉, 等. 不同种植年限苜蓿草地昆虫种群及群落的发生规律[J]. 宁夏农林科技, 2014, 55(01): 48−53

    ZHU M M, LI D N, ZHANG R, et al. Dynamics of insect population and community on grassland of alfalfa in different evolution stages[J]. Journal of Ningxia Agriculture and Forestry, 2014, 55(01): 48−53
    [10] 杨金虎, 李立军, 张艳丽, 等. 科尔沁沙地燕麦间作箭筈豌豆与施肥对饲草养分累积、产量及水分利用的影响[J/OL]. 西北农业学报, [2023-10-18]. http://kns.cnki.net/kcms/detail/61.1220.s.20230626.2009.004.html

    YANG J H, LI L J, ZHANG Y L, et al. Effects of Oat intercropping with common vetch and fertilization on forage nutrient accumulation, yield and water utilization in Horqin Sandy Land[J/OL]. Acta Agriculturae Boreali-occidentalis Sinica, [2023-10-18]. http://kns.cnki.net/kcms/detail/61.1220.s.20230626.2009.004.html
    [11] HATT S, BOERAEVE F, ARTRU S, et al. Spatial diversification of agroecosystems to enhance biological control and other regulating services: an agroecological perspective[J]. Science of the Total Environment, 2018, 621: 600−611 doi: 10.1016/j.scitotenv.2017.11.296
    [12] YANG G W, WAGG C, VERESOGLOU S D, et al. How soil biota drive ecosystem stability[J]. Trends in Plant Science, 2018, 23(12): 1057−1067 doi: 10.1016/j.tplants.2018.09.007
    [13] 张卫信, 申智锋, 邵元虎, 等. 土壤生物与可持续农业研究进展[J]. 生态学报, 2020, 40(10): 3183−3206

    ZHANG W X, SHEN Z F, SHAO Y H, et al. Soil biota and sustainable agriculture: a review[J]. Acta Ecologica Sinica, 2020, 40(10): 3183−3206
    [14] 孙新, 李琪, 姚海凤, 等. 土壤动物与土壤健康[J]. 土壤学报, 2021, 58(5): 1073−1083

    SUN X, LI Q, YAO H F, et al. Soil fauna and soil health[J]. Acta Pedologica Sinica, 2021, 58(5): 1073−1083
    [15] LETOURNEAU D K, ARMBRECHT I, RIVERA B S, et al. Does plant diversity benefit agroecosystems? A synthetic review[J]. Ecological Applications, 2011, 21(1): 9−21 doi: 10.1890/09-2026.1
    [16] BROOKER R W, BENNETT A E, CONG W F, et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology[J]. New Phytologist, 2015, 206(1): 107−117 doi: 10.1111/nph.13132
    [17] 戴漂漂, 张旭珠, 肖晨子, 等. 农业景观害虫控制生境管理及植物配置方法[J]. 中国生态农业学报, 2015, 23(1): 9−19 doi: 10.13930/j.cnki.cjea.140898

    DAI P P, ZHANG X Z, XIAO C Z, et al. Habitat management and plant configuration for biological pest control in agricultural landscapes[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1): 9−19 doi: 10.13930/j.cnki.cjea.140898
    [18] 刘冰, 陆宴辉. 农田节肢动物食物网结构与天敌控害功能[J]. 植物保护学报, 2022, 49(1): 97−109

    LIU B, LU Y H. Arthropod food web structure and the biocontrol services of natural enemies in agro-ecosystems[J]. Journal of Plant Protection, 2022, 49(1): 97−109
    [19] 刘继亮, 李锋瑞. 干旱区绿洲扩张方式对土壤生物优势类群及功能的影响[J]. 生物多样性, 2018, 26(10): 1116−1126 doi: 10.17520/biods.2018130

    LIU J L, LI F R. Effects of oasis expansion regimes on ecosystem function and dominant functional groups of soil biota in arid regions[J]. Biodiversity Science, 2018, 26(10): 1116−1126 doi: 10.17520/biods.2018130
    [20] 王雪峰, 苏永中, 杨荣. 黑河中游绿洲不同开垦年限农田土壤线虫群落特征[J]. 应用生态学报, 2010, 21(8): 2125−2131

    WANG X F, SU Y Z, YANG R. Characteristics of soil nematode community along an age sequence of sandy desert soil cultivation in a marginal oasis of middle reaches of Heihe River[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 2125−2131
    [21] LIU J L, REN W, ZHAO W Z, et al. Cropping systems alter the biodiversity of ground- and soil-dwelling herbivorous and predatory arthropods in a desert agroecosystem: implications for pest biocontrol[J]. Agriculture, Ecosystems & Environment, 2018, 266: 109−121
    [22] LI F R, LIU J L, REN W, et al. Land-use change alters patterns of soil biodiversity in arid lands of northwestern China[J]. Plant and Soil, 2018, 428(1): 371−388
    [23] WENDA-PIESIK A, PIESIK D. Diversity of species and the occurrence and development of a specialized pest population — A review article[J]. Agriculture, 2020, 11(1): 16 doi: 10.3390/agriculture11010016
    [24] 陈明, 周昭旭, 罗进仓. 间作苜蓿棉田节肢动物群落生态位及时间格局[J]. 草业学报, 2008, 175(4): 132−140

    CHEN M, ZHOU Z X, LUO J C. Niche and temporal pattern of arthropod community in cotton-alfalfa intercrop fields[J]. Acta Prataculturae Sinica, 2008, 175(4): 132−140
    [25] 刘文惠, 胡懿君, 胡文超, 等. 苜蓿邻作麦田地表步甲和蜘蛛种群动态及其对苜蓿刈割的响应[J]. 应用生态学报, 2014, 25(09): 2677−2682

    LIU W H, HU Y J, HU W C, et al. Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing[J]. Chinese Journal of Applied Ecology, 2014, 25(09): 2677−2682
    [26] 赵紫华, 高峰, 贺达汉, 等. 多尺度空间下害虫生态调控理论与应用[J]. 中国科学(生命科学), 2015, 45(8): 755−767 doi: 10.1360/N052014-00314

    ZHAO Z H, GAO F, HE D H, et al. Ecologically based pest management at multiple spatial scales[J]. Scientia Sinica (Vitae), 2015, 45(8): 755−767 doi: 10.1360/N052014-00314
    [27] 胡文超, 刘军和, 贺达汉. 苜蓿田地表蜘蛛边缘效应及苜蓿刈割后的溢出效应[J]. 植物保护学报, 2018, 45(4): 773−781

    HU W C, LIU J H, HE D H. Edge effect of ground-dwelling spiders and spillover effect after alfalfa mowing in alfalfa fields of Yinchuan area[J]. Journal of Plant Protection, 2018, 45(4): 773−781
    [28] 郑乐怡, 归鸿. 昆虫分类[M]. 南京: 南京师范大学出版社, 1999

    ZHENG L Y, GUI H. Insect Classification[M]. Nanjing: Nanjing Normal University Press, 1999
    [29] SONG D X, ZHU M S, CHEN J. The Spiders of China[M]. Shijiazhuang: Hebei Science and Technology Publishing House, 1999
    [30] 任国栋, 于有志. 中国荒漠半荒漠的拟步甲科昆虫[M]. 保定: 河北大学出版社, 1999

    REN G D, YU Y Z. Darkling Beetles from Deserts and Semideserts of China (Coleoptera: Tenebrionidae)[M]. Baoding: Hebei University Press, 1999
    [31] 梁宏斌, 虞佩玉. 中国捕食粘虫的步甲种类检索[J]. 昆虫天敌, 2000, 22(4): 160−167

    LIANG H B, YU P Y. Species of ground beetles (Coleoptera: Carabidae) predating oriental armyworm (Lepidoptera: Notuidae) in China[J]. Natural Enemies of Insects, 2000, 22(4): 160−167
    [32] CLARKE K R. Non-parametric multivariate analyses of changes in community structure[J]. Australian Journal of Ecology, 1993, 18(1): 117−143 doi: 10.1111/j.1442-9993.1993.tb00438.x
    [33] RAND T A, TYLIANAKIS J M, TSCHARNTKE T. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats[J]. Ecology Letters, 2006, 9(5): 603−614 doi: 10.1111/j.1461-0248.2006.00911.x
    [34] 黄吉, 可胜杰, 柴正群, 等. 非作物植被对玉米地节肢动物群落的影响[J]. 环境昆虫学报, 2015, 37(4): 857−864

    HUANG J, KE S J, CHAI Z Q, et al. The effects of non-crop vegetation on arthropod community in maize fields[J]. Journal of Environmental Entomology, 2015, 37(4): 857−864
    [35] 张旭珠, 韩印, 宇振荣, 等. 半自然农田边界与相邻农田步甲和蜘蛛的时空分布[J]. 应用生态学报, 2017, 28(06): 1879−1888

    ZHANG X Z, HAN Y, YU Z R, et al. Spatio-temporal distribution of carabids and spiders between semi-natural field margin and the adjacent crop fields in agricultural landscape[J]. Chinese Journal of Applied Ecology, 2017, 28(06): 1879−1888
    [36] LICHTENBERG E M, KENNEDY C M, KREMEN C, et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes[J]. Global Change Biology, 2017, 23(11): 4946−4957 doi: 10.1111/gcb.13714
    [37] TAMBURINI G, BOMMARCO R, WANGER T C, et al. Agricultural diversification promotes multiple ecosystem services without compromising yield[J]. Science Advances, 2020, 6(45): eaba1715 doi: 10.1126/sciadv.aba1715
    [38] PORTILLO D G, ARROYO B, MORALES M B. The adequacy of alfalfa crops as an agri-environmental scheme: a review of agronomic benefits and effects on biodiversity[J]. Journal for Nature Conservation, 2022, 69: 126253 doi: 10.1016/j.jnc.2022.126253
    [39] 张艳荣, 胡文超, 吕苗苗, 等. 苜蓿田及不同邻作地地表步甲群落多样性及其扩散动态[J]. 草业学报, 2017, 26(2): 153−160

    ZHANG Y R, HU W C, LYU M M, et al. Diversity and diffusion dynamics of the ground-dwelling carabid beetle community in alfalfa fields and boundary edges of their adjacent crops[J]. Acta Prataculturae Sinica, 2017, 26(2): 153−160
    [40] GABRIBELA I C, DELSERONE L M, JULIA N D C, et al. Does cover crop management affect arthropods in the subsequent corn and soybean crops in the United States? A systematic review[J]. Annals of the Entomological Society of America, 2021, 114(2): 151−162 doi: 10.1093/aesa/saaa049
    [41] JING J Y, CONG W F, BEZEMER T M. Legacies at work: plant-soil-microbiome interactions underpinning agricultural sustainability[J]. Trends in Plant Science, 2022, 27(8): 781−792 doi: 10.1016/j.tplants.2022.05.007
    [42] DEL-VAL E, RAMÍREZ E, ASTIER M. Comparison of arthropod communities between high and low input maize farms in Mexico[J]. CABI Agriculture and Bioscience, 2021, 2(1): 40 doi: 10.1186/s43170-021-00060-9
    [43] THORBEK P, BILDE T. Reduced numbers of generalist arthropod predators after crop management[J]. Journal of Applied Ecology, 2004, 41(3): 526−538 doi: 10.1111/j.0021-8901.2004.00913.x
    [44] DUAN M C, HU W H, LIU Y H, et al. The influence of landscape alterations on changes in ground beetle (Carabidae) and spider (Araneae) functional groups between 1995 and 2013 in an urban fringe of China[J]. Science of the Total Environment, 2019, 689: 516−525 doi: 10.1016/j.scitotenv.2019.06.198
    [45] 陈斌, 鲁延芳, 占玉芳, 等. 荒漠绿洲过渡带土壤水分空间分布特征及对植被的影响[J]. 西北林学院学报, 2023, 38(2): 25−32

    CHEN B, LU Y F, ZHAN Y F, et al. Spatial distribution characteristics of soil moisture and its influence on vegetation in desert-oasis ecotone[J]. Journal of Northwest Forestry University, 2023, 38(2): 25−32
    [46] RIVERS A, VOORTMAN C, BARBERCHECK M. Cover crops support arthropod predator activity with variable effects on crop damage during transition to organic management[J]. Biological Control, 2020, 151: 104377 doi: 10.1016/j.biocontrol.2020.104377
    [47] RIVERS A N, MULLEN C A, BARBERCHECK M E. Cover crop species and management influence predatory arthropods and predation in an organically managed, reduced-tillage cropping system[J]. Environmental Entomology, 2018, 47(2): 340−355 doi: 10.1093/ee/nvx149
  • 20230176-1.pdf
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  48
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 录用日期:  2023-08-29
  • 修回日期:  2023-08-21
  • 网络出版日期:  2023-08-23
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回