-
摘要: 深入了解不同类型土壤传感器的性能表现对于提高区域土壤含水量测定的准确性具有重要意义。本研究针对河北平原农田土壤, 选择了4种典型土壤质地(粉黏土、粉壤土、砂壤土、砂土), 通过室内试验, 分别研究了5个不同容重(1.40 g∙cm−3、1.45 g∙cm−3、1.50 g∙cm−3、1.55 g∙cm−3、1.60 g∙cm−3)下5种常见土壤水分传感器(TDR315H、CS655、5TE、Teros12、Hydra Probe Ⅱ)测定含水量的准确度。研究发现: 1)在本试验条件下, 未经标定的TDR315H、CS655、Teros12、Hydra Probe Ⅱ的测量准确度较高, 测量误差基本不超过0.03 cm3∙cm−3, 其中TDR315H的性能表现最好; 2) 5种类型传感器在粗质土壤中的误差大于细质地土壤, 土壤质地对传感器测量准确度的影响远大于土壤容重; 3)土壤含水量对传感器的测定准确度也会产生显著影响, 随着含水量的变化, 测量误差也随之发生变化, 且可能存在使传感器测量准确度发生显著变化的含水量阈值。总体而言, 在未进行标定的前提下, TDR315H有望直接应用于河北平原农田田间土壤含水量监测。本研究可为土壤含水量监测中的传感器选型提供重要参考。Abstract: Soil moisture is an essential factor for the growth of crops and plants, and the measurement of soil moisture is the basis of research on agriculture, hydrology, environment, and soil and water conservation. Compared with traditional methods of soil moisture measurement, the main measurement methods currently used are different types of soil moisture sensors. Research on soil moisture sensors is mostly based on the comparative study of foreign soil, and research on the adaptability of sensors by foreign manufacturers in domestic soil is limited. The factors considered in previous studies are usually limited to soil temperature, soil salinity, and soil texture types, and few texture types have been considered. Thus more research is required on more factors and soil texture types. An in-depth understanding of the performance of different types of soil sensors is crucial for improving the accuracy of regional soil water content measurements. Therefore, to explore the measurement performance of different types of sensors in typical soils of the Hebei Plain, five types of soil moisture sensors that are widely used worldwide were selected in this study, and the influence of soil texture and bulk density on their measurement accuracy was investigated. Four typical soil textures (silty clay, silt loam, sandy loam, and sand) were selected to study the accuracy of five common soil moisture sensors (TDR315H, CS655, 5TE, Teros12, and Hydra Probe Ⅱ) under five different bulk density conditions (1.40 g·cm−3, 1.45 g·cm−3, 1.50 g·cm−3, 1.55 g·cm−3, and 1.60 g·cm−3). The results showed the following: 1) Under the experimental conditions, the measurement accuracy of uncalibrated TDR315H, CS655, Teros12, and Hydra Probe Ⅱ was high, the measurement error was less than 0.03 cm3·cm−3, and the performance of TDR315H was the best. 2) Generally speaking, the errors of five types of sensors in coarser soil were greater than those in finer soil, and the influence of soil texture on the measurement accuracy of sensors was far greater than that of soil bulk density. 3) The soil moisture content also had a significant impact on the accuracy of the sensor. With a change in soil moisture content, the measurement error also changed, and there may be a threshold of soil moisture content (such as 0.3 cm3∙cm−3 in this study) that made the measurement accuracy of the sensor change significantly. In general, without calibration, TDR315H is expected to be directly applied in field measurements of soil water content in agricultural land in the Hebei Plain. This study provides an important reference for sensor selection in soil moisture monitoring.
-
Key words:
- Soil moisture sensor /
- Measurement accuracy /
- Soil texture /
- Soil bulk density /
- Soil moisture
-
表 1 供试土壤的主要理化性质
Table 1. Physical and chemical properties of the tested soil
土壤编号
Number采样地点
Sampling location土壤质地
Soil texture采样深度
Depth (cm)容重
Soil bulk density (g∙cm−3)有机质
Organic matter (g∙kg−1)pH 含盐量
Salinity (g∙kg−1)1 黄骅
Huanghua粉黏土
Silty clay100~120 1.54 7.334 9.41 2.269 2 新乐
Xinle砂土
Sand0~20 1.35 3.534 9.21 0.449 3 栾城
Luancheng粉壤土
Silt loam160~180 1.61 6.414 9.02 0.465 4 栾城
Luancheng砂壤土
Sandy loam40~80 1.41 5.096 9.02 0.618 土壤质地分类参照美国农业部(USDA)的分类标准[24]。Soil textures were defined according to the United States Department of Agriculture (USDA) classification system[24]. 表 2 试验测试的5种类型传感器的探针数、探针长度、分辨率和测量范围
Table 2. Probes number, probe length, resolution and measurement range of the 5 types of sensors in the experiment
传感器
Sensor探针数
Number of probes探针长度
Probe length
(cm)分辨率
Resolution
(cm3∙cm−3)测量体积
Measuring volume
(cm3)TDR315H (Acclima Inc.) 3 15 0.001 200* Teros12 (Meter Group) 3 5.5 0.001 1000 CS655 (Campbell Scientific Inc.) 2 12 0.0005 3600 Hydra Probe Ⅱ (Stevens Water Monitoring Systems Inc.) 3 5.6 0.001 40.3* 5TE (Decagon Devices) 3 5 0.0008 NA *表示根据官方技术手册中相关数据计算获得的测量体积; NA表示在官方技术手册中未查询到相关数据。* indicates that the measured volume is calculated according to the official technical manual; NA indicates that the relevant data is not provided in the official technical manual. 表 3 5种类型传感器在不同质地类型土壤中的含水量测量准确性[平均绝对误差(MAE)和均方根误差(RMSE)]
Table 3. Mean absolute error (MAE) and root-mean-square error (RMSE) between water contents measured by 5 types of sensors and true values of different types of soil
cm3·cm−3 传感器
Sensor粉黏土
Silty clay粉壤土
Silt loam砂壤土
Sandy loam砂土
Sand综合表现
Overall performance官方技术手册中的准确度
Accuracy in technical manualMAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE TDR315H (Acclima Inc.) 0.012 0.017 0.005 0.007 0.008 0.010 0.011 0.011 0.009 0.013 0.025 Teros12 (Meter Group) 0.018 0.021 0.013 0.017 0.035 0.041 0.012 0.015 0.025 0.032 0.03 CS655 (Campbell Scientific Inc.) 0.018 0.021 0.020 0.024 0.015 0.020 0.049 0.054 0.026 0.029 大部分土壤0.01, 细质地土壤0.03
0.03 in fine textured soil, 0.01 in other soil typesHydra Probe Ⅱ (Stevens Water Monitoring Systems Inc.) 0.020 0.023 0.030 0.032 0.027 0.031 0.027 0.030 0.020 0.026 0.03 5TE (Decagon Devices) 0.064 0.067 0.048 0.054 0.065 0.073 0.102 0.119 0.069 0.081 0.03 -
[1] 杜明成, 张建云, 王振龙, 等. 皖北杨楼流域玉米农田土壤水变化特征及驱动因子研究[J]. 水资源与水工程学报, 2022, 33(1): 206−214DU M C, ZHANG J Y, WANG Z L, et al. Soil moisture content change characteristics and driving factors of maize farmland in the Yanglou Watershed, northern Anhui Province[J]. Journal of Water Resources and Water Engineering, 2022, 33(1): 206−214 [2] 苏志诚, 张立祯, 丁留谦, 等. 四种新型土壤墒情传感器的对比分析[J]. 水文, 2014, 34(4): 55−60SU Z C, ZHANG L Z, DING L Q, et al. Comparative analysis of 4 types of soil moisture sensors[J]. Journal of China Hydrology, 2014, 34(4): 55−60 [3] 邓英春, 许永辉. 土壤水分测量方法研究综述[J]. 水文, 2007, 27(4): 20−24 doi: 10.3969/j.issn.1000-0852.2007.04.005DENG Y C, XU Y H. Introduction to the methods of soil moisture content measuring[J]. Journal of China Hydrology, 2007, 27(4): 20−24 doi: 10.3969/j.issn.1000-0852.2007.04.005 [4] 路璐, 王振龙, 杜富慧, 等. 淮北平原基于水文气象多因子的土壤水分动态预测[J]. 水资源与水工程学报, 2019, 30(4): 237−243LU L, WANG Z L, DU F H, et al. Dynamic prediction of soil moisture based on hydrometeorological multi-factors in Huaibei Plain[J]. Journal of Water Resources and Water Engineering, 2019, 30(4): 237−243 [5] 李泳霖, 王仰仁, 武朝宝, 等. 水分传感器埋设深度及个数对墒情精度的影响[J]. 节水灌溉, 2019(1): 87−91 doi: 10.3969/j.issn.1007-4929.2019.01.018LI Y L, WANG Y R, WU C B, et al. The influence of the depth and amount of soil moisture sensors on the accuracy of soil moisture content[J]. Water Saving Irrigation, 2019(1): 87−91 doi: 10.3969/j.issn.1007-4929.2019.01.018 [6] 吕华芳, 杨汉波, 伍鑫源, 等. “硅藻土-过滤器”型土壤墒情传感器研制及应用[J]. 水利水电技术(中英文), 2022(1): 207−218LYU H F, YANG H B, WU X Y, et al. Development and application of diatomite filter-soil moisture sensor[J]. Water Resources and Hydropower Engineering, 2022(1): 207−218 [7] 邹文安, 徐立萍, 徐加林. 便携式土壤水分采集仪标定的探讨[J]. 水文, 2013, 33(3): 43−46ZOU W A, XU L P, XU J L. Research on portable soil moisture collecting instrument calibration[J]. Journal of China Hydrology, 2013, 33(3): 43−46 [8] 蒋一飞, 李晓鹏, 宣可凡, 等. 宇宙射线中子法在农田土壤水分监测中的适用性[J]. 应用生态学报, 2022, 33(4): 909−914JIANG Y F, LI X P, XUAN K F, et al. Applicability of cosmic-ray neutron sensing for monitoring soil moisture in farmland[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 909−914 [9] 刘成功, 贾小旭, 邵明安. 地球物理方法在土壤水文过程研究中的应用与展望[J]. 土壤, 2022, 54(1): 24−31LIU C G, JIA X X, SHAO M A. Application and prospect of geophysical methods in study of soil hydrological processes[J]. Soils, 2022, 54(1): 24−31 [10] 司建华, 冯起, 张小由, 等. 植物蒸散耗水量测定方法研究进展[J]. 水科学进展, 2005, 16(3): 450−459SI J H, FENG Q, ZHANG X Y, et al. Research progress on surveying and calculation of evapotranspiration of plants and its prospects[J]. Advances in Water Science, 2005, 16(3): 450−459 [11] 韩玉国, 武亨飞, 杨培岭, 等. 番茄种植地土壤水分传感器最佳埋设深度试验[J]. 水土保持通报, 2013, 33(4): 260−263HAN Y G, WU H F, YANG P L, et al. Optimal burial depth of soil moisture sensors for tomato-planting field[J]. Bulletin of Soil and Water Conservation, 2013, 33(4): 260−263 [12] YIN H Y, CAO Y T, MARELLI B, et al. Smart agriculture systems: soil sensors and plant wearables for smart and precision agriculture (adv. mater. 20/2021)[J]. Advanced Materials, 2021, 33(20): 2170156 doi: 10.1002/adma.202170156 [13] 吴勇, 钟永红, 杜森, 等. FDR土壤水分传感器田间性能测试分析[J]. 节水灌溉, 2021(2): 41−46WU Y, ZHONG Y H, DU S, et al. Field performance test and analysis of FDR soil moisture sensor[J]. Water Saving Irrigation, 2021(2): 41−46 [14] 曹美, 徐晓辉, 苏彦莽, 等. 温度对FDR土壤湿度传感器的影响研究[J]. 节水灌溉, 2015(1): 17−19, 23 doi: 10.3969/j.issn.1007-4929.2015.01.005CAO M, XU X H, SU Y M, et al. Research on temperature effect on FDR soil moisture sensor[J]. Water Saving Irrigation, 2015(1): 17−19, 23 doi: 10.3969/j.issn.1007-4929.2015.01.005 [15] 王景才, 夏自强, 杨建青, 等. 土壤水分传感器田间比测实验研究[J]. 水利信息化, 2012(2): 41−45WANG J C, XIA Z Q, YANG J Q, et al. Study on field comparison test of soil moisture sensor[J]. Water Resources Informatization, 2012(2): 41−45 [16] 邢旭光, 赵文刚, 马孝义, 等. 土壤水分特征曲线测定过程中土壤收缩特性研究[J]. 水利学报, 2015, 46(10): 1181−1188XING X G, ZHAO W G, MA X Y, et al. Study on soil shrinkage characteristics during soil water characteristic curve measurement[J]. Journal of Hydraulic Engineering, 2015, 46(10): 1181−1188 [17] FERRAREZI R S, NOGUEIRA T A R, ZEPEDA S G C. Performance of soil moisture sensors in Florida sandy soils[J]. Water, 2020, 12(2): 358 doi: 10.3390/w12020358 [18] WILSON T B, BAKER C, MEYERS T, et al. Site-specific soil properties of the US climate reference network soil moisture[J]. Vadose Zone Journal, 2016, 15 doi: 10.2136/vzj2016.05.0047 [19] 贺蕾. 微型TDR土壤水分传感器影响因素研究及其应用模型建立[D]. 乌鲁木齐: 新疆农业大学, 2016HE L. Study on influencing factors of Micro TDR soil moisture sensor and establishment of its application model[D]. Urumqi: Xinjiang Agricultural University, 2016 [20] FENG G, SUI R X. Evaluation and calibration of soil moisture sensors in undisturbed soils[J]. Transactions of the ASABE, 2020, 63(2): 265−274 doi: 10.13031/trans.13428 [21] SINGH J, LO T, RUDNICK D R, et al. Quantifying and correcting for clay content effects on soil water measurement by reflectometers[J]. Agricultural Water Management, 2019, 216: 390−399 doi: 10.1016/j.agwat.2019.02.024 [22] 王慧军, 张喜英. 华北平原地下水压采区冬小麦种植综合效应探讨[J]. 中国生态农业学报(中英文), 2020, 28(5): 724−733WANG H J, ZHANG X Y. Evaluating the comprehensive effects of planting winter wheat in the groundwater depletion regions in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 724−733 [23] 可艳军, 张雨萌, 郭艳杰, 等. 生物有机肥配合深松对农田土壤肥力和作物产量的影响[J]. 中国农业科技导报, 2023, 25(4): 157−166KE Y J, ZHANG Y M, GUO Y J et al. Effect of bio-organic fertilizer with deep loosening on soil fertility and crop yield of farmland[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 157−166 [24] BRADY N C, WEIL R R. 土壤学与生活[M]. 李保国, 徐建明译. 北京: 科学出版社, 2019BRADY N C, WEIL R R. The Nature and Properties of Soils[M]. LI B G, XU J M, Translation. Beijing: Science Press, 2019 [25] 张国印. 河北平原土壤质量评价指标和方法初探[D]. 北京: 中国农业大学, 2005ZHANG G Y. Preliminary study on evaluation index and method of soil quality in Hebei Plain[D]. Beijing: China Agricultural University, 2005 [26] 张双成, 鲍琳, 马中民, 等. 多源哨兵数据解译农田区土壤湿度算法研究[J]. 测绘科学, 2022, 47(8): 94−104ZHANG S C, BAO L, MA Z M, et al. Research on algorithms for interpreting soil moisture in farmland by multi-source Sentinel data[J]. Science of Surveying and Mapping, 2022, 47(8): 94−104 [27] 郑文刚, 罗晨云竹, 杨凤茹, 等. 灌溉水质对FDR土壤水分传感器的性能影响研究[J]. 节水灌溉, 2022(2): 82−88ZHENG W G, LUO C Y Z, YANG F R, et al. Research on the influence of irrigation water quality on the performance of FDR moisture sensor[J]. Water Saving Irrigation, 2022(2): 82−88 [28] 刘鹏, 姜月华, 杨海, 等. 高盐土壤环境对土壤水分传感器的影响及校正研究[J]. 西北农业学报, 2023, 32(1): 109−116LIU P, JIANG Y H, YANG H, et al. Performance analysis and calibration of soil moisture sensors in heavy saline soil environment[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2023, 32(1): 109−116 [29] 杨海, 姜月华, 王船海, 等. TDR土壤水分传感器测量值偏高现象分析与处理[J]. 水电能源科学, 2019, 37(12): 108−112, 21YANG H, JIANH Y H, WANG C H, et al. Analysis and processing on phenomenon of overestimated measured values using TDR soil moisture sensors[J]. Hydropower Energy Science, 2019, 37(12): 108−112, 21 [30] 唐玉邦, 何志刚, 虞利俊, 等. 土壤水分传感器(FDR)在作物精准灌溉中的标定与应用[J]. 江苏农业科学, 2014, 42(4): 343−344 doi: 10.3969/j.issn.1002-1302.2014.04.126TANG Y B, HE Z G, YU L J, et al. Calibration and application of soil moisture sensor (FDR) in crop precision irrigation[J]. Jiangsu Agricultural Science, 2014, 42(4): 343−344 doi: 10.3969/j.issn.1002-1302.2014.04.126 -