留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花生青枯病及其土壤微生态调控研究进展

方向阳 禹桃兵 杨磊 臧华栋 曾昭海 杨亚东

方向阳, 禹桃兵, 杨磊, 臧华栋, 曾昭海, 杨亚东. 花生青枯病及其土壤微生态调控研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1695−1707 doi: 10.12357/cjea.20230189
引用本文: 方向阳, 禹桃兵, 杨磊, 臧华栋, 曾昭海, 杨亚东. 花生青枯病及其土壤微生态调控研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1695−1707 doi: 10.12357/cjea.20230189
FANG X Y, YU T B, YANG L, ZANG H D, ZENG Z H, YANG Y D. Research progress of bacterial wilt and its soil micro-ecological regulation in peanut[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1695−1707 doi: 10.12357/cjea.20230189
Citation: FANG X Y, YU T B, YANG L, ZANG H D, ZENG Z H, YANG Y D. Research progress of bacterial wilt and its soil micro-ecological regulation in peanut[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1695−1707 doi: 10.12357/cjea.20230189

花生青枯病及其土壤微生态调控研究进展

doi: 10.12357/cjea.20230189
基金项目: 国家重点研发计划课题(2022YFD2300803)和国家自然科学基金项目(31901470, 31671640)资助
详细信息
    作者简介:

    方向阳, 主要从事植物-土壤-微生物相互作用研究。E-mail: xyyyyyy399@163.com

    通讯作者:

    杨亚东, 主要从事植物-土壤-微生物相互作用研究。E-mail: yadong_tracy@cau.edu.cn

  • 中图分类号: S565.2

Research progress of bacterial wilt and its soil micro-ecological regulation in peanut

Funds: This study was supported by the National Key Research and Development Project of China (2022YFD2300803) and the National Natural Science Foundation of China (31901470, 31671640).
More Information
  • 摘要: 由茄科雷尔氏菌(Ralstonia solanacearum)引起的青枯病是世界范围内广泛传播、危害严重且难以防治的毁灭性土传病害之一。花生是我国重要的油料和经济作物, 也是青枯病危害严重的作物之一。近年来, 连续种植导致花生青枯病发生进一步加剧, 严重威胁了花生产业的发展。本文以花生青枯病的危害及其土壤微生态调控为切入点, 梳理了花生青枯病的发生现状、病原菌概况、发生条件与作用机制以及主要危害与防治措施等。首先, 对茄科雷尔氏菌的分类方法和致病机理进行了系统、完整地梳理, 总结了茄科雷尔氏菌的4种主流分类方法, 并绘制了其发病机制图解。其次, 我们重点从土壤微环境、土壤微生物两个方面分析了花生连作和青枯病发病土壤区系特征, 并提出相应的土壤微生态调控对策, 包括调控土壤理化性质、调控土壤养分、施用化学与生物农药、引入生防菌株等。最后, 我们对基于土壤微生态调控的花生青枯病可持续防治进行展望, 旨在为花生青枯病防治及花生产业的高质量发展提供参考。
  • 图  1  花生青枯病发病机制

    Figure  1.  Pathogenesis of peanut bacterial wilt

    图  2  土壤微生态调控防治花生连作障碍和青枯病

    Figure  2.  Control of peanut continuous cropping obstacles and bacterial wilt based on soil micro-ecological regulation

    表  1  茄科雷尔氏菌的分类

    Table  1.   Division of Ralstonia solanacearum

    方法
    Method
    名称
    Name
    分支
    Branch
    依据
    Basis
    1生理小种
    Physiological race
    生理小种1、生理小种2、生理小种3、生理小种4、
    生理小种5
    Physiological race 1, Physiological race 2, Physiological race 3, Physiological race 4, Physiological race 5
    病原菌侵染寄主的范围[18]
    Range of host plants infected by Ralstonia solanacearum[18]
    2生化变种
    Physiological biovar
    生化变种I、生化变种Ⅱ、生化变种Ⅲ、生化变种Ⅳ、生化变种Ⅴ
    Physiological biovar I, Physiological biovar Ⅱ, Physiological biovar Ⅲ, Physiological biovar Ⅳ, Physiological biovar Ⅴ
    病原菌对3种二糖(麦芽糖、乳糖、纤维二糖)的利用能力和对3种己醇(甘露醇、卫矛醇、山梨醇)的氧化产酸能力[20]
    Utilization ability of R. solanacearum to three disaccharides (maltose, lactose, cellobiose) and oxidative acid production ability to three ethanol (mannitol, galactitol, sorbitol)[20]
    3地理种系演化型
    Phylotype of geographical lineage
    亚洲型、美洲型、非洲型、印尼型
    Asiaticum, Americanum, Africanum, Indonesian
    采用地理种系系统方法, 综合病原菌的进化特征、地理起源、分子指纹技术和系统发生学[22]
    Using the method of geographical lineage phylogeny with the evolutionary characteristics, geographical origin, molecular fingerprint technology and phylogenetics of R. solanacearum[22]
    4遗传差异演化型
    Phylotype of genetic differences
    演化型I、演化型Ⅱ、演化型Ⅲ、演化型Ⅳ
    Phylotype I, Phylotype Ⅱ, Phylotype Ⅲ, Phylotype Ⅳ
    依据病原菌的遗传物质结构和功能, 从种、演化型、序列变种和克隆4个水平划分[23]
    According to the genetic material structure and function of R. solanacearum, it is divided into four levels: species, phylotype, sequevar, and clone[23]
    下载: 导出CSV
  • [1] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1995

    Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China[M]. Beijing: Science Press, 1995
    [2] 中华人民共和国国家统计局. 中国统计年鉴[M]. 2021. http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm

    National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook[M]. 2021. http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm
    [3] 廖伯寿. 我国花生生产发展现状与潜力分析[J]. 中国油料作物学报, 2020, 42(2): 161−166

    LIAO B S. Present situation and potential analysis of peanut production in China[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(2): 161−166
    [4] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议[J]. 中国油脂, 2020, 45(11): 116−122 doi: 10.12166/j.zgyz.1003-7969/2020.11.024

    ZHANG L W, WANG L W. Development status, existing problems and policy recommendations of peanut industry in China[J]. China Oils and Fats, 2020, 45(11): 116−122 doi: 10.12166/j.zgyz.1003-7969/2020.11.024
    [5] 王明珠, 陈学南. 低丘红壤区花生持续高产的障碍及对策[J]. 花生学报, 2005, 34(2): 17−22 doi: 10.3969/j.issn.1002-4093.2005.02.004

    WANG M Z, CHEN X N. Obstacle and countermeasure of sustainable high yield for peanut in low-hilly red soil region[J]. Journal of Peanut Science, 2005, 34(2): 17−22 doi: 10.3969/j.issn.1002-4093.2005.02.004
    [6] 廖伯寿, 许泽永, 姜慧芳. 植物细菌性青枯病抗性的分子标记研究与育种潜力[J]. 中国油料作物学报, 2001, 23(3): 66−68 doi: 10.3321/j.issn:1007-9084.2001.03.020

    LIAO B S, XU Z Y, JIANG H F. Molecular markers for resistance to bacterial with in plants and their potential utilization[J]. Chinese Journal of Oil Crop Sciences, 2001, 23(3): 66−68 doi: 10.3321/j.issn:1007-9084.2001.03.020
    [7] 郑良永, 胡剑非, 林昌华, 等. 作物连作障碍的产生及防治[J]. 热带农业科学, 2005, 25(2): 58−62 doi: 10.3969/j.issn.1009-2196.2005.02.014

    ZHENG L Y, HU J F, LIN C H, et al. The production of succession cropping obstacles and its prevention and cure steps[J]. Chinese Journal of Tropical Agriculture, 2005, 25(2): 58−62 doi: 10.3969/j.issn.1009-2196.2005.02.014
    [8] LI C G, LI X M, KONG W D, et al. Effect of monoculture soybean on soil microbial community in the Northeast China[J]. Plant and Soil, 2010, 330(1): 423−433
    [9] 蔡祖聪, 黄新琦. 土壤学不应忽视对作物土传病原微生物的研究[J]. 土壤学报, 2016, 53(2): 305−310

    CAI Z C, HUANG X Q. Soil-borne pathogens should not be ignored by soil science[J]. Acta Pedologica Sinica, 2016, 53(2): 305−310
    [10] 雷永, 王圣玉, 李栋, 等. 花生抗青枯病种质对黄曲霉菌产毒的抗性反应[J]. 中国油料作物学报, 2004, 26(1): 69−71

    LEI Y, WANG S Y, LI D, et al. Evaluation of resistance to aflatoxin production among peanut germplasm with resistance to bacterial wilt[J]. Chinese Journal of Oil Crop Sciences, 2004, 26(1): 69−71
    [11] 林志坚, 陈长江, 周挺, 等. 青枯菌噬菌体RPZH6株系对烟草青枯病的生防效果及全基因组测序分析[J]. 中国农业科技导报, 2022, 24(10): 133−142

    LIN Z J, CHEN C J, ZHOU T, et al. Control effect of Ralstonia phage RPZH6 strain on tobacco bacterial wilt and its complete genome analysis[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 133−142
    [12] HUANG J F, WEI Z, TAN S Y, et al. The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt[J]. Applied Soil Ecology, 2013, 72: 79−84 doi: 10.1016/j.apsoil.2013.05.017
    [13] POUSSIER S, VANDEWALLE P, LUISETTI J. Genetic diversity of African and worldwide strains of Ralstonia solanacearumas determined by PCR-restriction fragment length polymorphism analysis of the hrp gene region[J]. Applied and Environmental Microbiology, 1999, 65(5): 2184−2194 doi: 10.1128/AEM.65.5.2184-2194.1999
    [14] 徐进, 冯洁. 植物青枯菌遗传多样性及致病基因组学研究进展[J]. 中国农业科学, 2013, 46(14): 2902−2909 doi: 10.3864/j.issn.0578-1752.2013.14.006

    XU J, FENG J. Advances in research of genetic diversity and pathogenome of Ralstonia solanacearum species complex[J]. Scientia Agricultura Sinica, 2013, 46(14): 2902−2909 doi: 10.3864/j.issn.0578-1752.2013.14.006
    [15] JIANG G F, WEI Z, XU J, et al. Bacterial wilt in China: history, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8: 1549 doi: 10.3389/fpls.2017.01549
    [16] YABUUCHI E, KOSAKO Y, YANO I, et al. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov[J]. Microbiology and Immunology, 1995, 39(11): 897−904 doi: 10.1111/j.1348-0421.1995.tb03275.x
    [17] ZHANG C, CHEN H, CAI T C, et al. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco[J]. Plant Biotechnology Journal, 2017, 15(1): 39−55 doi: 10.1111/pbi.12589
    [18] 汪炳华, 殷红慧. 烟草青枯病研究进展[J]. 农业网络信息, 2009(1): 126−129

    WANG B H, YIN H H. Research progress of tobacco bacterial wilt[J]. Agriculture Network Information, 2009(1): 126−129
    [19] 潘晓英, 张振臣, 袁清华, 等. 植物抗青枯病的分子机制研究进展[J]. 植物生理学报, 2022, 58(4): 607−621

    PAN X Y, ZHANG Z C, YUAN Q H, et al. Research advances on molecular mechanisms of resistance to bacterial wilt in plants[J]. Plant Physiology Journal, 2022, 58(4): 607−621
    [20] LOWE-POWER T M, KHOKHANI D, ALLEN C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment[J]. Trends in Microbiology, 2018, 26(11): 929−942 doi: 10.1016/j.tim.2018.06.002
    [21] TRAN T M, MACINTYRE A, HAWES M, et al. Escaping underground nets: extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium Ralstonia solanacearum[J]. PLoS Pathogens, 2016, 12(6): e1005686 doi: 10.1371/journal.ppat.1005686
    [22] 宫超, 黎振兴, 麦培婷, 等. 番茄青枯病抗性相关根际微生物的研究进展[J]. 广东农业科学, 2021, 48(9): 51−61

    GONG C, LI Z X, MAI P T, et al. Research progress of rhizosphere microorganisms related to tomato bacterial wilt resistance[J]. Guangdong Agricultural Sciences, 2021, 48(9): 51−61
    [23] PRIOR P, FEGAN M. Recent developments in the phylogeny and classification of Ralstonia solanacearum[J]. Acta Horticulturae, 2005, 695: 127–136
    [24] HUET G. Breeding for resistances to Ralstonia solanacearum[J]. Frontiers in Plant Science, 2014, 5: 715
    [25] SALANOUBAT M, GENIN S, ARTIGUENAVE F, et al. Genome sequence of the plant pathogen Ralstonia solanacearum[J]. Nature, 2002, 415(6871): 497−502 doi: 10.1038/415497a
    [26] MUDGETT M B. New insights to the function of phytopathogenic bacterial typeⅢ effectors in plants[J]. Annual Review of Plant Biology, 2005, 56: 509−531 doi: 10.1146/annurev.arplant.56.032604.144218
    [27] MOUGOUS J D, CUFF M E, RAUNSER S, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus[J]. Science, 2006, 312(5779): 1526−1530 doi: 10.1126/science.1128393
    [28] HIKICHI Y, YOSHIMOCHI T, TSUJIMOTO S, et al. Global regulation of pathogenicity mechanism of Ralstonia solanacearum[J]. Plant Biotechnology, 2007, 24(1): 149−154 doi: 10.5511/plantbiotechnology.24.149
    [29] MORI Y K, ISHIKAWA S, OHNISHI H, et al. Involvement of ralfuranones in the quorum sensing signalling pathway and virulence of Ralstonia solanacearum strain OE1-1[J]. Molecular Plant Pathology, 2018, 19(2): 454−463 doi: 10.1111/mpp.12537
    [30] HIKICHI Y, MORI Y K, ISHIKAWA S, et al. Regulation involved in colonization of intercellular spaces of host plants in Ralstonia solanacearum[J]. Frontiers in Plant Science, 2017, 8: 967 doi: 10.3389/fpls.2017.00967
    [31] DENNY T P. Inactivation of multiple virulence genes reduces the ability of Pseudomonas solanacearumto cause wilt symptoms[J]. Molecular Plant-Microbe Interactions, 1990, 3(5): 293 doi: 10.1094/MPMI-3-293
    [32] 罗焕亮, 王军, 邵志芳, 等. 木麻黄青枯菌的根表吸附及根内增殖与其致病性关系[J]. 林业科学研究, 2002, 15(1): 21−27 doi: 10.3321/j.issn:1001-1498.2002.01.004

    LUO H L, WANG J, SHAO Z F, et al. The relationship between pathogenicity of Pseudomonas solanacearum and its adsorption on the root surfaces and propagation inside the roots of Casuarina clone seedling[J]. Forest Research, 2002, 15(1): 21−27 doi: 10.3321/j.issn:1001-1498.2002.01.004
    [33] SCHOUTEN H J. A possible role in pathogenesis for the swelling of extracellular slime of Erwinia amylovora at increasing water potential[J]. Netherlands Journal of Plant Pathology, 1989, 95(1): 169−174
    [34] 张秀阁, 姜典志, 鲁奇. 花生青枯病的综合防治技术[J]. 农业科技通讯, 2007(10): 92 doi: 10.3969/j.issn.1000-6400.2007.10.056

    ZHANG X G, JIANG D Z, LU Q. Integrated control techniques of peanut bacterial wilt[J]. Bulletin of Agricultural Science and Technology, 2007(10): 92 doi: 10.3969/j.issn.1000-6400.2007.10.056
    [35] 陈利锋, 徐敬友. 农业植物病理学[M]. 3版. 北京: 中国农业出版社, 2007

    CHEN L F, XU J Y. Agricultural Plant Pathology[M]. 3rd ed. Beijing: China Agriculture Press, 2007
    [36] 游春平, 傅莹, 韩静君, 等. 我国花生病害的种类及其防治措施[J]. 江西农业学报, 2010, 22(1): 97−101 doi: 10.3969/j.issn.1001-8581.2010.01.031

    YOU C P, FU Y, HAN J J, et al. Occurrence and management of main peanut diseases in China[J]. Acta Agriculturae Jiangxi, 2010, 22(1): 97−101 doi: 10.3969/j.issn.1001-8581.2010.01.031
    [37] 张冲. 花生抗青枯病的分子生物学基础研究[D]. 福州: 福建农林大学, 2010

    ZHANG C. Study on molecular biological basis of peanut resistance to bacterial wilt[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010
    [38] 孙茜. 花生青枯病拮抗菌的分离鉴定、发酵条件及活性产物的研究[D]. 南京: 南京农业大学, 2012

    SUN Q. Isolation, identification, fermentation conditions and active products of antagonistic bacteria against peanut bacterial wilt[D]. Nanjing: Nanjing Agricultural University, 2012
    [39] 郑亚萍, 王才斌, 黄顺之, 等. 花生连作障碍及其缓解措施研究进展[J]. 中国油料作物学报, 2008, 30(3): 384−388 doi: 10.3321/j.issn:1007-9084.2008.03.023

    ZHENG Y P, WANG C B, HUANG S Z. Research on relieving peanut continuous cropping stress[J]. Chinese Journal of Oil Crop Sciences, 2008, 30(3): 384−388 doi: 10.3321/j.issn:1007-9084.2008.03.023
    [40] 封海胜, 万书波, 左学青, 等. 花生连作土壤及根际主要微生物类群的变化及与产量的相关[J]. 花生学报, 1999, 28(S1): 277−283

    FENG H S, WAN S B, ZUO X Q, et al. Changes in main microorganism groups in bulk and rhizosphere soil and its relationship with yield of continuously cropped peanut[J]. Journal of Peanut Science, 1999, 28(S1): 277−283
    [41] 孙战, 李明, 魏永成, 等. 木麻黄青枯病发生与土壤五种元素含量分析[J]. 分子植物育种, 2023, 21(4): 1313−1321

    SUN Z, LI M, WEI Y C, et al. Analysis of the occurrence of Casuarina spp. bacterial wilt and the contents of five elements in the soil[J]. Molecular Plant Breeding, 2023, 21(4): 1313−1321
    [42] 滕应, 任文杰, 李振高, 等. 花生连作障碍发生机理研究进展[J]. 土壤, 2015, 47(2): 259−265

    TENG Y, REN W J, LI Z G, et al. Advance in mechanism of peanut continuous cropping obstacle[J]. Soils, 2015, 47(2): 259−265
    [43] XIE X G, DAI C C, LI X G, et al. Reduction of soil-borne pathogen Fusarium solani reproduction in soil enriched with phenolic acids by inoculation of endophytic fungus Phomopsis liquidambari[J]. BioControl, 2017, 62(1): 111−123 doi: 10.1007/s10526-016-9773-9
    [44] LIU Y X, LI X, CAI K, et al. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology, 2015, 93: 78−87 doi: 10.1016/j.apsoil.2015.04.009
    [45] 黄玉茜, 韩立思, 韩梅, 等. 花生连作对土壤酶活性的影响[J]. 中国油料作物学报, 2012, 34(1): 96−100

    HUANG Y Q, HAN L S, HAN M, et al. Influence of continuous cropping years on soil enzyme activities of peanuts[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(1): 96−100
    [46] 覃仁柳, 林刚云, 吴银秀, 等. 桑树青枯病与根际土壤肥力及微生物群落结构特征的研究[J]. 中国生物防治学报, 2021, 37(6): 1256−1264

    QIN R L, LIN G Y, WU Y X, et al. Characteristic of soil fertility and microbial community structure in rhizosphere of bacterial wilt infected and non-infected mulberry plants[J]. Chinese Journal of Biological Control, 2021, 37(6): 1256−1264
    [47] 刘婷, 文涛, 赵梦丽, 等. 番茄根际代谢物抵御茄科劳尔氏菌入侵机制研究[J]. 南京农业大学学报, 2020, 43(3): 460−467 doi: 10.7685/jnau.201905051

    LIU T, WEN T, ZHAO M L, et al. The mechanisms of tomato rhizosphere metabolites resistance to Ralstonia solanacearum invasion[J]. Journal of Nanjing Agricultural University, 2020, 43(3): 460−467 doi: 10.7685/jnau.201905051
    [48] 向立刚, 周浩, 汪汉成, 等. 健康与感染青枯病烟株根际土壤与茎秆细菌群落结构与多样性[J]. 微生物学报, 2019, 59(10): 1984−1999

    XIANG L G, ZHOU H, WANG H C, et al. Bacterial community structure and diversity of rhizosphere soil and stem of healthy and bacterial wilt tobacco plants[J]. Acta Microbiologica Sinica, 2019, 59(10): 1984−1999
    [49] 孙秀山, 封海胜, 万书波, 等. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J]. 作物学报, 2001, 27(5): 617−621 doi: 10.3321/j.issn:0496-3490.2001.05.010

    SUN X S, FENG H S, WAN S B, et al. Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions[J]. Acta Agronomica Sinica, 2001, 27(5): 617−621 doi: 10.3321/j.issn:0496-3490.2001.05.010
    [50] 李培栋. 红壤区花生连作障碍的原因及其与茅苍术间作增产的机理研究[D]. 南京: 南京师范大学, 2010

    LI P D. Study on the causes of peanut continuous cropping obstacles in red soil region and the mechanism of increasing yield by intercropping with atractylodes lanceolata[D]. Nanjing: Nanjing Normal University, 2010
    [51] LI P F, LIU J, SALEEM M, et al. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems[J]. Microbiome, 2022, 10(1): 108 doi: 10.1186/s40168-022-01287-y
    [52] MENDES R, KRUIJT M, DE BRUIJN I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033): 1097−1100 doi: 10.1126/science.1203980
    [53] ZHOU J Z, NING D L. Stochastic community assembly: does it matter in microbial ecology?[J]. Microbiology and Molecular Biology Reviews, 2017, 81(4): e00002−e00017
    [54] HU Q L, TAN L, GU S S, et al. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria[J]. NPJ Biofilms and Microbiomes, 2020, 6: 8 doi: 10.1038/s41522-020-0117-2
    [55] 侯金凤, 申民翀, 孙菲菲, 等. 番茄连作青枯病不同发病时期的非根际土壤细菌群落变化特征[J]. 微生物学报, 2022, 62(9): 3464−3477

    HOU J F, SHEN M C, SUN F F, et al. Characteristics of bacterial community in bulk soil at different stages of tomato bacterial wilt under continuous monoculture system[J]. Acta Microbiologica Sinica, 2022, 62(9): 3464−3477
    [56] ROY A, BULUT O, SOME S, et al. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity[J]. RSC Advances, 2019, 9(5): 2673−2702 doi: 10.1039/C8RA08982E
    [57] JIANG G F, ZHANG Y L, GAN G Y, et al. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation[J]. ISME Communications, 2022, 2: 10 doi: 10.1038/s43705-022-00094-8
    [58] 方树民, 顾钢, 纪成灿, 等. 烟草青枯菌致病型及分布的研究[J]. 中国烟草学报, 2002, 8(3): 40−43

    FANG S M, GU G, JI C C, et al. Studies on pathogenic types and distribution of Ralstonia solanacearum in tobacco[J]. Acta Tabacaria Sinica, 2002, 8(3): 40−43
    [59] QIU Y, LV W C, WANG X P, et al. Long-term effects of gravel mulching and straw mulching on soil physicochemical properties and bacterial and fungal community composition in the Loess Plateau of China[J]. European Journal of Soil Biology, 2020, 98: 103188 doi: 10.1016/j.ejsobi.2020.103188
    [60] 徐暄, 侯旭东, 蒋世昌. 保护地辣椒土传病害绿色防控技术研究进展[J]. 安徽农学通报, 2021, 27(23): 121−123

    XU X, HOU X D, JIANG S C. Research progress on green prevention and control technology of soil-borne diseases of pepper in protected field[J]. Anhui Agricultural Science Bulletin, 2021, 27(23): 121−123
    [61] 樊祖清. 不同调控措施对烟草生长及根际土壤微生物区系的影响[D]. 郑州: 郑州大学, 2019

    FAN Z Q. Effects of different regulatory measures on tobacco growth and rhizosphere soil microflora[D]. Zhengzhou: Zhengzhou University, 2019
    [62] GAO L, LIU X M, DU Y M, et al. Effects of tobacco-peanut relay intercropping on soil bacteria community structure[J]. Annals of Microbiology, 2019, 69(13): 1531−1536 doi: 10.1007/s13213-019-01537-9
    [63] 李彩华, 靳学慧. 植物细菌性青枯病的研究进展[J]. 中国科技信息, 2005, 2(23): 97

    LI C H, JIN X H. Research progress of bacterial wilt of plants[J]. China Science and Technology Information, 2005, 2(23): 97
    [64] LI S L, LIU Y Q, WANG J A, et al. Soil acidification aggravates the occurrence of bacterial wilt in South China[J]. Frontiers in Microbiology, 2017, 8: 703 doi: 10.3389/fmicb.2017.00703
    [65] 张淑婷. 铝离子影响烟草青枯病发生的机制研究[D]. 重庆: 西南大学, 2018

    ZHANG S T. Study on the mechanism of aluminum ion affecting tobacco bacterial wilt[D]. Chongqing: Southwest University, 2018
    [66] KUMAR A, ELAD Y, TSECHANSKY L, et al. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection[J]. Journal of the Science of Food and Agriculture, 2018, 98(2): 495−503 doi: 10.1002/jsfa.8486
    [67] 蔡昆争, 高阳, 田纪辉. 生物炭介导植物病害抗性及作用机理[J]. 生态学报, 2020, 40(22): 8364−8375

    CAI K Z, GAO Y, TIAN J H. Effects and mechanisms of biochar-mediated plant disease resistance[J]. Acta Ecologica Sinica, 2020, 40(22): 8364−8375
    [68] 冯慧琳, 付兵, 任天宝, 等. 生物炭对青枯病烟株的根际土壤微生物群落结构调控机制分析[J]. 农业资源与环境学报, 2022, 39(1): 173−181

    FENG H L, FU B, REN T B, et al. Analysis and mechanism of biochar on soil microbial community structure of tobacco bacterial wilt[J]. Journal of Agricultural Resources and Environment, 2022, 39(1): 173−181
    [69] LI C J, AHMED W, LI D F, et al. Biochar suppresses bacterial wilt disease of flue-cured tobacco by improving soil health and functional diversity of rhizosphere microorganisms[J]. Applied Soil Ecology, 2022, 171: 104314 doi: 10.1016/j.apsoil.2021.104314
    [70] GU Y A, HOU Y G, HUANG D P, et al. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption[J]. Plant and Soil, 2017, 415(1): 269−281
    [71] 曹帅, 李金梦, 王蓝琴, 等. 贝莱斯芽孢杆菌B4-7联合水稻秸秆生物炭对烟草青枯病的防治作用[J]. 南方农业学报, 2022, 53(9): 2568−2574 doi: 10.3969/j.issn.2095-1191.2022.09.019

    CAO S, LI J M, WANG L Q, et al. Control effect of Bacillus velezensis B4-7 combined with rice straw biochar on tobacco bacterial wilt[J]. Journal of Southern Agriculture, 2022, 53(9): 2568−2574 doi: 10.3969/j.issn.2095-1191.2022.09.019
    [72] ZHAO J, NI T, LI Y, et al. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J]. PLoS One, 2019, 9(1): e85301
    [73] CHEN S, QI G F, MA G Q, et al. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community[J]. Microbiological Research, 2020, 231: 126373 doi: 10.1016/j.micres.2019.126373
    [74] DUBEY R K, DUBEY P K, CHAURASIA R, et al. Sustainable agronomic practices for enhancing the soil quality and yield of Cicer arietinum L. under diverse agroecosystems[J]. Journal of Environmental Management, 2020, 262: 110284 doi: 10.1016/j.jenvman.2020.110284
    [75] 王晴, 张大琪, 方文生, 等. 土壤熏蒸对土壤氮循环及其功能微生物的影响研究进展[J]. 农药学学报, 2021, 23(6): 1063−1072

    WANG Q, ZHANG D Q, FANG W S, et al. Research progress on the effect of soil fumigation on soil nitrogen cycles and functional microorganisms[J]. Chinese Journal of Pesticide Science, 2021, 23(6): 1063−1072
    [76] 高升升. 高氮投入促进烟草青枯病爆发机理研究[D]. 重庆: 西南大学, 2020

    GAO S S. Study on the mechanism of tobacco bacterial wilt outbreak promoted by high nitrogen input[D]. Chongqing: Southwest University, 2020
    [77] WANG R Q, XIAO Y P, LV F J, et al. Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping[J]. Applied Soil Ecology, 2018, 125: 117−127 doi: 10.1016/j.apsoil.2017.12.014
    [78] KICINSKA A, WIKAR J. The effect of fertilizing soils degraded by the metallurgical industry on the content of elements in Lactuca sativa L.[J]. Scientific Reports, 2021, 11(1): 4072 doi: 10.1038/s41598-021-83600-7
    [79] MĄCIK M, GRYTA A, FRAAC M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms[J]. Advances in Agronomy, 2020, 162: 31−87
    [80] NAKAHARA H, MORI K, MORI T, et al. Induction of spontaneous phenotype conversion in Ralstonia solanacearum by addition of iron compounds in liquid medium[J]. Journal of Microbiological Methods, 2021, 186: 106233 doi: 10.1016/j.mimet.2021.106233
    [81] SUFFERT F, THOMPSON R N. Some reasons why the latent period should not always be considered constant over the course of a plant disease epidemic[J]. Plant Pathology, 2018, 67(9): 1831−1840 doi: 10.1111/ppa.12894
    [82] DANGI S, GAO S D, DUAN Y H. Soil microbial community structure affected by biochar and fertilizer sources[J]. Plant Pathology, 2020, 150: 103452
    [83] DENG X H, ZHANG N, LI Y C, et al. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities[J]. New Phytologist, 2022, 235(4): 1558−1574 doi: 10.1111/nph.18221
    [84] 李得铭. 绿农林®41号微生物复合菌肥对番茄青枯病防控效果的研究[D]. 海口: 海南大学, 2020

    LI D M. Study on the control effect of microbial compound fertilizer LvNonglin® 41 on tomato bacterial wilt[D]. Haikou: Hainan University, 2020
    [85] GUO S, TAO C Y, JOUSSET A, et al. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health[J]. The ISME Journal, 2022, 16(8): 1932−1943 doi: 10.1038/s41396-022-01244-5
    [86] 孔凡玉, 卢平, 许永峰, 等. 20%青枯灵可湿性粉剂防治烟草青枯病药效试验初报[J]. 中国烟草科学, 2004, 25(1): 36−37 doi: 10.3969/j.issn.1007-5119.2004.01.007

    KONG F Y, LU P, XU Y F, et al. Effect of 20% Qingkuling wettable powder on tobacco bacterial wilt disease[J]. Chinese Tobacco Science, 2004, 25(1): 36−37 doi: 10.3969/j.issn.1007-5119.2004.01.007
    [87] 刘斯晗, 郑旭阳, 钟川, 等. 2种嫁接番茄根系分泌活性物质对番茄青枯病及根际微生物的影响[J]. 南方农业学报, 2021, 52(12): 3382−3391 doi: 10.3969/j.issn.2095-1191.2021.12.022

    LIU S H, ZHENG X Y, ZHONG C, et al. Effects of active substances secreted from roots of two grafted tomato plants on tomato bacterial wilt and rhizosphere microorganisms[J]. Journal of Southern Agriculture, 2021, 52(12): 3382−3391 doi: 10.3969/j.issn.2095-1191.2021.12.022
    [88] 贾春燕, 郑洪波, 张茹萍, 等. 防治烟草青枯病的药剂筛选[J]. 山东农业科学, 2010, 42(8): 76−78

    JIA C Y, ZHENG H B, ZHANG R P, et al. Chemical screening for controlling Pseudomonas solanacearum (E. F. Smith) Dowson[J]. Shandong Agricultural Sciences, 2010, 42(8): 76−78
    [89] FAN W W, YUAN G Q, LI Q Q, et al. Antibacterial mechanisms of methyl gallate against Ralstonia solanacearum[J]. Australasian Plant Pathology, 2014, 43(1): 1−7 doi: 10.1007/s13313-013-0234-y
    [90] SANTOS B M, GILREATH J P, MOTIS T N, et al. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato[J]. Crop Protection, 2006, 25(7): 690−695 doi: 10.1016/j.cropro.2005.09.015
    [91] YIN J K, ZHANG Z L, ZHU C, et al. Heritability of tomato rhizobacteria resistant to Ralstonia solanacearum[J]. Microbiome, 2022, 10(1): 227 doi: 10.1186/s40168-022-01413-w
    [92] 张万萍, 赵丽. 大蒜提取物和根系分泌物对3种土传性病原菌的抑菌效果[J]. 中国蔬菜, 2012(01X): 66−71

    ZHANG W P, ZHAO L. Inhibitory effects of garlic extracts and root exudates on three soil-borne pathogens[J]. China Vegetables, 2012(01X): 66−71
    [93] 曾军. Citrofresh防治番茄青枯病的田间药效试验初报[J]. 福建农业科技, 2012(5): 44−45

    ZENG J. Preliminary report on drug efficiency of citrofresh against tomato bacterial wilt in field trials[J]. Fujian Agricultural Science and Technology, 2012(5): 44−45
    [94] 段曦, 孙晨晨, 孙胜楠, 等. 嫁接辣椒根系分泌物对根腐病和青枯病的影响[J]. 园艺学报, 2017, 44(2): 297−306

    DUAN X, SUN C C, SUN S N, et al. Effects of grafted pepper root exudates on root rot and bacterial wilt[J]. Acta Horticulturae Sinica, 2017, 44(2): 297−306
    [95] 谷益安. 土壤细菌群落和根系分泌物影响番茄青枯病发生的生物学机制[D]. 南京: 南京农业大学, 2017

    GU Y A. Biological mechanism of soil bacterial community and root exudates affecting tomato bacterial wilt[D]. Nanjing: Nanjing Agricultural University, 2017
    [96] YANG T J, WEI Z, FRIMAN V P, et al. Resource availability modulates biodiversity-invasion relationships by altering competitive interactions[J]. Environmental Microbiology, 2017, 19(8): 2984−2991 doi: 10.1111/1462-2920.13708
    [97] 张海龙, 武润琴, 李佳佳, 等. 根系分泌物C∶N对刺槐林地土壤理化特征和土壤呼吸的影响[J]. 应用生态学报, 2022, 33(4): 949−956

    ZHANG H L, WU R Q, LI J J, et al. Effects of root exudates C∶N on soil physical and chemical characteristics and soil respiration in Robinia pseudoacacia plantation[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 949−956
    [98] TIAN J H, RAO S, GAO Y, et al. Wheat straw biochar amendment suppresses tomato bacterial wilt caused by Ralstonia solanacearum: Potential effects of rhizosphere organic acids and amino acids[J]. Journal of Integrative Agriculture, 2021, 20(9): 2450−2462 doi: 10.1016/S2095-3119(20)63455-4
    [99] 韦中, 沈宗专, 杨天杰, 等. 从抑病土壤到根际免疫: 概念提出与发展思考[J]. 土壤学报, 2021, 58(4): 814−824

    WEI Z, SHEN Z Z, YANG T J, et al. From suppressive soil to rhizosphere immunity: towards an ecosystem thinking for soil-borne pathogen control[J]. Acta Pedologica Sinica, 2021, 58(4): 814−824
    [100] LIU K, MCLNROY J A, HU C H, et al. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens[J]. Plant Disease, 2018, 102(1): 67−72 doi: 10.1094/PDIS-04-17-0478-RE
    [101] WU Y C, CAI P, JING X X, et al. Soil biofilm formation enhances microbial community diversity and metabolic activity[J]. Environment International, 2019, 132: 105116 doi: 10.1016/j.envint.2019.105116
    [102] 陈本银, 姜慧芳, 廖伯寿, 等. 中国花生青枯病抗性遗传改良研究进展[J]. 中国农学通报, 2007, 23(8): 369−372

    CHEN B Y, JIANG H F, LIAO B S, et al. Progress on groundnut genetic enhancement for bacterial wilt resistance[J]. Chinese Agricultural Science Bulletin, 2007, 23(8): 369−372
    [103] 宋江春, 李拴柱, 王建玉, 等. 我国花生抗青枯病育种研究进展[J]. 中国种业, 2019(9): 19−21

    SONG J C, LI S Z, WANG J Y, et al. Advances in peanut breeding for resistance to bacterial wilt in China[J]. China Seed Industry, 2019(9): 19−21
    [104] 廖伯寿, 李栋, 单志慧, 等. 青枯菌潜伏浸染对花生的影响[J]. 中国油料, 1997(4): 55−58

    LIAO B S, LI D, SHAN Z H, et al. Influence of latent infection of Ralstonia solanacearum on groundnut[J]. Chinese Journal of Oil Crop Sciences, 1997(4): 55−58
    [105] 姜慧芳, 陈本银, 任小平, 等. 利用重组近交系群体检测花生青枯病抗性SSR标记[J]. 中国油料作物学报, 2007, 29(1): 26−30 doi: 10.3321/j.issn:1007-9084.2007.01.005

    JIANG H F, CHEN B Y, REN X P, et al. Identification of SSR markers linked to bacterial wilt resistance of peanut with RILs[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(1): 26−30 doi: 10.3321/j.issn:1007-9084.2007.01.005
    [106] YULIAR, NION Y A, TOYOTA K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum[J]. Microbes and Environments, 2015, 30(1): 1−11 doi: 10.1264/jsme2.ME14144
    [107] STUMBRIENE K, GUDIUKAITE R, SEMASKIENE R, et al. Screening of new bacterial isolates with antifungal activity and application of selected Bacillus sp. cultures for biocontrol of Fusarium graminearum under field conditions[J]. Crop Protection, 2018, 113: 22−28 doi: 10.1016/j.cropro.2018.07.006
    [108] NIU D D, LIU H X, JIANG C H, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways[J]. Molecular Plant-Microbe Interactions, 2011, 24(5): 533−542
    [109] 康耀卫, 何礼远. 青枯菌无毒自发突变株接种花生引起的生化变化[J]. 中国油料, 1994(1): 38−40

    KANG Y W, HE L Y. Physiological study on the peanut inoculated with spontaneous avirulent mutant of Pseudomonas solanacearum[J]. Chinese Journal of Oil Crop Sciences, 1994(1): 38−40
    [110] WANG X F, WEI Z, YANG K M, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12): 1513−1520 doi: 10.1038/s41587-019-0328-3
    [111] OSEI O, ABAIDOO R C, AHIABOR B D K, et al. Bacteria related to Bradyrhizobium yuanmingense from Ghana are effective groundnut micro-symbionts[J]. Applied Soil Ecology, 2018, 127: 41−50 doi: 10.1016/j.apsoil.2018.03.003
    [112] LIU Y Q, WANG Y H, KONG W L, et al. Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels[J]. AMB Express, 2020, 10(1): 1−11 doi: 10.1186/s13568-019-0926-y
    [113] GU Y A, BANERJEE S, DINI-ANDREOTE F, et al. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations[J]. The ISME Journal, 2022, 16(10): 2448−2456 doi: 10.1038/s41396-022-01290-z
    [114] SHEN Z Z, XUE C, PENTON C R, et al. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy[J]. Soil Biology and Biochemistry, 2019, 128: 164−174 doi: 10.1016/j.soilbio.2018.10.016
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  73
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-08-14
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回