Effects of nitrogen application rate and irrigation quota on yield and water and nitrogen utilization of post-spring wheat multiple cropping oilseed rape in Yellow River Irrigation Area
-
摘要: 为探讨小麦后复种油菜对小麦茬残留氮素吸收利用及水氮利用的影响, 以期为麦后土壤残留氮素有效利用和农业面源污染阻控提供理论依据, 通过田间定位试验, 研究了小麦茬施氮量[常规施氮(270 kg∙hm−2)、减施氮肥(202.5 kg∙hm−2)和不施氮(0 kg∙hm−2)]和灌溉定额[常规灌溉(400 mm)、节水20% (320 mm)和节水40% (240 mm)]对复种油菜的产量、氮素吸收量以及0~100 cm土壤含水率和矿质氮动态变化的影响, 并进行了两季作物的氮素平衡分析。结果表明, 小麦茬残留氮素对油菜产量和氮素吸收量有显著影响, 氮肥后效与小麦茬的施氮量呈正比。小麦茬常规施氮270 kg∙hm−2时油菜产量和氮素吸收量最高, 分别为6640 kg∙hm−2和25.7 kg∙hm−2, 较小麦茬减施氮肥与不施氮分别增加11.8%与43.5%和14.8%与58.8%; 小麦茬灌溉定额对油菜产量无显著影响, 但对氮素吸收量有显著影响, 常规施氮处理下常规灌溉处理油菜氮素吸收量较节水处理增加9.6%~10.2%。与油菜播前相比, 油菜收获后施氮处理0~100 cm土层土壤矿质氮降低18.8~96.1 kg·hm−2; 常规施氮处理较减氮和不施氮处理增加了油菜对残留氮素吸收能力。油菜翻压还田并经过冬季的冻融后, 在下一季小麦播前, 0~100 cm土层的土壤矿质氮增加86.1~171.8 kg·hm−2, 增加量与小麦茬的施氮量呈正相关。常规施氮+常规灌溉定额0~100 cm土壤贮水量变化较小, 氮肥后效显著提高了油菜灌溉水利用效率和水分利用效率及降水生产效率, 常规施氮+节水20%处理灌溉水利用效率和降水生产效率最高, 而常规施氮+节水40%处理油菜水分利用效率最高。在本试验条件下, 减氮+节水20%处理的氮肥累积利用率最高, 达89.8%。小麦茬施氮量为270 kg·hm−2, 灌溉定额为320~400 mm显著提高了复种油菜的产量、吸氮量、水分利用效率和灌溉水利用效率及降水生产效率, 并降低了施氮处理土壤矿质氮含量。而油菜翻压还田经过冬季冻融后显著增加了土壤矿质氮含量。Abstract: The effects of successive oilseed rape cropping on the absorption and utilization of residual nitrogen and water, and nitrogen use efficiency in spring wheat stubble was studied to provide a theoretical basis for the effective utilization of residual nitrogen in post-spring wheat soil and for the prevention and control of agricultural non-point source pollution. A field trial was conducted to investigate the effects of nitrogen application (conventional application, 270 kg∙hm−2; reduced application, 202.5 kg∙hm−2; and no application, 0 kg∙hm−2) and irrigation quota (conventional irrigation, 400 mm; 20% water-saving irrigation, 320 mm; and 40% water-saving irrigation, 240 mm) on the yield and nitrogen uptake of succession oilseed rape crops, as well as the dynamic changes involving soil moisture and mineral nitrogen in the 0–100 cm layer. Nitrogen balance analysis was also conducted for both seasons. The results revealed that residual nitrogen in spring wheat stubble had a notable effect on the yield and nitrogen uptake of successive oilseed rape, and the residual effect of nitrogen fertilizer was positively correlated with the nitrogen applied to spring wheat stubble. When the nitrogen fertilizer application rate in spring wheat stubble was 270 kg·hm−2, the yield and nitrogen uptake of succession oilseed rape were the highest, reaching 6640 kg·hm−2 and 25.7 kg·hm−2, respectively, which were 11.8%–43.5% and 14.8%–58.8% higher than those under reduced or no nitrogen application. Irrigation quota had no substantial effect on oilseed rape yield but had a significant effect on nitrogen uptake. Nitrogen uptake of oilseed rape under conventional nitrogen application was increased by 9.6%−10.2% compared with the water-saving treatments. Compared with before planting, mineral nitrogen levels in the 0–100 cm soil layer under nitrogen application treatment after oilseed rape harvesting decreased by 18.8–96.1 kg·hm−2, indicating that succession oilseed rape cropping has an absorption capacity for residual nitrogen. The mineral nitrogen content of soil decreased by 96.1 kg·hm−2 under conventional nitrogen application and conventional irrigation treatment compared with no or reduced nitrogen application. After the succession oilseed rape was crushed and turned over and returned to the field after winter freezing and thawing, the mineral nitrogen in the 0−100 cm soil layer increased by 86.1 to 171.8 kg·hm−2. This increase was positively correlated with the nitrogen application rate in the spring wheat season. Conventional nitrogen application combined with conventional irrigation had a small effect on soil water storage, and the residual effect of nitrogen fertilizer significantly improved irrigation water use efficiency, water use efficiency, and precipitation productivity of oilseed rape. Conventional nitrogen application combined with a 20% water-saving treatment had the highest irrigation water use efficiency and precipitation productivity, whereas conventional nitrogen application combined with a 40% water-saving treatment had the highest oilseed rape water use efficiency. Under these experimental conditions, the cumulative utilization rate of nitrogen fertilizer was the highest at 89.8% with reduced nitrogen combined with a 20% water-saving treatment. Nitrogen application rates of 270 kg·hm−2 and an irrigation quota of 320−400 mm considerably improved the yield, nitrogen uptake, water use efficiency, irrigation water use efficiency, and precipitation productivity of succession oilseed rape crops and reduced soil mineral nitrogen content under nitrogen application treatment. Turning over and returning the succession of oilseed rape to the field significantly increased soil mineral nitrogen content after winter freezing and thawing.
-
图 2 春小麦茬不同施氮量和灌溉定额处理下油菜的产量
*和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。* and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota. Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05).
Figure 2. Yield of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat
图 3 春小麦茬不同施氮量和灌溉定额处理下油菜的氮素吸收量
*和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。* and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota. Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05).
Figure 3. Nitrogen uptake of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat
图 4 春小麦茬不同施氮量和灌溉定额处理下油菜的0~100 cm土层土壤水分分布(a、b、c分别为油菜播前、油菜收获和下一季春小麦播前)
Figure 4. Soil water distribution in 0−100 cm soil layer of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat (a, b and c are before oilseed rape sowing, oilseed rape harvest and before the next spring wheat sowing, respectively)
图 5 春小麦茬不同施氮量和灌溉定额处理下油菜的0~100 cm土层土壤矿质氮分布(a、b、c分别为油菜播前、油菜收获和下一季春小麦播前)
Figure 5. Soil mineral nitrogen distribution in 0−100 cm soil layer of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat (a, b and c are before oilseed rape sowing, oilseed rape harvest and before the next spring wheat sowing, respectively)
表 1 供试土壤0~100 cm基本理化性状
Table 1. Basic physical and chemical properties in 0−100 cm layer of the tested soil
土层
Soil layer
(cm)容重
Bulk density
(g·cm−3)有机质
Organic matter
(g·kg−1)全氮
Total nitrogen
(g·kg−1)矿质态氮
Mineral nitrogen
(mg·kg−1)全磷
Total phosphorus
(g·kg−1)速效磷
Available phosphorus
(mg·kg−1)速效钾
Available potassium
(mg·kg−1)pH 0~20 1.18 16.30 0.59 32.01 0.57 24.69 143.01 7.83 20~40 1.21 14.82 0.41 27.57 0.43 22.70 135.25 7.50 40~60 1.19 13.08 0.42 23.56 0.38 15.84 126.90 7.32 60~80 1.23 13.62 0.34 21.79 0.30 16.31 122.72 7.31 80~100 1.23 11.60 0.22 17.22 0.26 7.89 128.69 7.31 表 2 不同处理小麦季试验施氮量和灌溉定额
Table 2. Nitrogen application levels and irrigation regimes of different treatments for spring wheat
处理
Treatment施氮水平
Nitrogen
level灌溉定额
Irrigation
regime施氮量
Nitrogen
application rate
(kg·hm−2)灌溉定额
Irrigation quota
(mm)NCWC NC WC 270 400 NCW1 NC W1 270 320 NCW2 NC W2 270 240 NJWC NJ WC 202.5 400 NJW1 NJ W1 202.5 320 NJW2 NJ W2 202.5 240 N0WC N0 WC 0 400 N0W1 N0 W1 0 320 N0W2 N0 W2 0 240 表 3 不同施氮量和灌溉定额处理下春小麦收获后0~100 cm土壤矿质氮残留量
Table 3. Residual mineral nitrogen contents in 0−100 cm soil layer after spring wheat harvesting with different treatments of nitrogen application and irrigation
kg·hm−2 处理
Treatment土层深度 Soil depth (cm) 0~20 20~40 40~60 60~80 80~100 0~100 NCWC 81.07±7.76Aa 67.77±8.75Aa 51.51±5.21Aa 42.03±4.80Aa 35.68±6.10Aa 278.07±26.70Aa NCW1 66.31±0.71Ba 52.74±5.39Aa 41.84±4.01Aa 36.55±1.51ABa 29.81±0.35Aa 227.26±9.27Aa NCW2 60.78±3.35Ba 54.63±8.33Aa 45.28±9.75Aa 34.32±0.66Bab 35.18±6.96Aa 230.19±27.16Aa NJWC 51.45±10.26Ab 52.01±2.75Ab 48.83±12.90Aab 39.31±11.92Aa 31.56±4.65Aab 223.16±13.85Ab NJW1 50.32±2.32Ab 49.19±6.78ABa 35.93±1.37Aab 31.43±2.77Aa 29.82±2.67Aa 196.69±9.01Ab NJW2 48.08±4.60Aab 40.15±2.12Ba 33.00±2.19Aa 39.49±5.98Aa 32.64±2.36Aa 193.35±11.85Ab N0WC 38.18±3.17Ab 33.35±1.50Ac 30.02±2.07Ab 26.25±2.26Aa 20.48±4.97Ab 148.28±7.56Ac N0W1 40.13±9.64Ab 39.75±5.69Aa 32.22±3.52Ab 28.65±3.48Ab 24.27±6.68Aa 165.02±15.77Ac N0W2 36.85±12.60Ab 37.32±8.68Aa 36.66±18.46Aa 26.44±4.67Ab 22.90±10.51Aa 160.17±19.59Ac 不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05). 表 4 春小麦茬不同施氮量和灌溉定额处理对油菜水分利用效率的影响
Table 4. Effects of different treatments of nitrogen application and irrigation of spring wheat on water use efficiency of the succession oilseed rape
处理
Treatment耗水量
Water consumption
(mm)灌溉水利用效率
Utilization rate of irrigation water
(kg·m−3)水分利用效率
Water use efficiency
(kg·m−3)降水生产效率
Precipitation productivity
(kg·mm−1)NCWC 181.81±5.17Aa 5.32±0.37Ba 3.27±0.33Ca 111.64±7.46Aa NCW1 184.57±8.66Aa 5.95±0.29Aa 3.61±0.33Ba 124.87±5.83Aa NCW2 145.96±9.72Ba 5.33±0.13Ba 4.10±0.33Aa 111.89±2.56Aa NJWC 163.34±9.06Ab 5.20±0.42ABa 3.58±0.49Ba 109.06±8.57Aa NJW1 156.57±12.92Ab 5.33±0.13Ab 3.82±0.30ABa 111.74±2.70Ab NJW2 126.99±5.67Bb 4.55±0.12Bb 4.01±0.26Aa 97.97±2.65Ab N0WC 161.55±7.37Ab 4.06±0.13Ab 2.81±0.06Ab 85.19±2.59Ab N0W1 158.50±3.23Aa 4.15±0.15Ac 2.46±0.13Bb 87.01±3.06Ac N0W2 122.52±1.81Bb 4.26±0.06Ac 2.88±0.10Ab 89.43±1.15Ac N ** ** ** ** W ** * ** * N×W * * ns ns 不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。*和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation quota (P<0.05). * and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota. 表 5 春小麦茬不同施氮量和灌溉定额处理对后茬油菜土壤氮素平衡的影响
Table 5. Effects of different treatments of nitrogen application and irrigation of spring wheat on soil nitrogen balance of the succession oilseed rape
kg·hm−2 处理
Treatment氮输入 Nitrogen input 氮输出 Nitrogen output 矿化氮
Mineral nitrogen油菜起始矿质氮
Initial mineral nitrogn for rape season油菜吸收量
Nitrogen uptake of rape残留氮
Residual nitrogen氮素表观损失量
Apparent nitrogen lossNCWC −70.43±11.45 278.07±26.70 25.68±0.94Aa 181.96±15.84Ba 70.43±11.45 NCW1 −49.03±12.12 227.26±9.27 23.41±0.23Ba 154.82±12.58Cc 49.03±12.12 NCW2 −9.15±17.66 230.20±27.16 23.30±0.69Ba 197.75±9.43Aa 9.15±17.66 NJWC −31.16±6.82 223.17±13.85 22.37±1.19Ab 169.64±13.38Bb 31.16±6.82 NJW1 1.74±4.84 196.70±9.01 20.59±0.60Bb 177.85±8.94ABa 0 NJW2 16.51±5.27 193.35±11.85 20.70±0.46Bb 189.16±11.10Aa 0 N0WC 35.57±5.36 148.29±7.56 16.17±0.80Ac 167.69±8.33Ab 0 N0W1 18.48±9.31 165.02±15.77 15.25±0.43ABc 168.25±13.01Aab 0 N0W2 22.65±6.00 160.17±19.59 14.31±0.23Bc 168.51±13.50Ab 0 不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation level (P<0.05). 表 6 春小麦茬不同施氮量和灌溉定额处理对氮肥利用率及残留氮利用率的影响
Table 6. Effects of different treatments of nitrogen application and irrigation of spring wheat on nitrogen utilization and residual nitrogen utilization of the succession oilseed rape
% 处理
Treatment氮肥利用率
Nitrogen recovery efficiency残留氮利用率
Residual nitrogen efficiency累积氮利用率
Accumulative nitrogen efficiencyNCWC 40.25±2.40B 3.40±0.16A 43.65B NCW1 53.19±1.96A 3.02±0.14A 56.21A NCW2 35.42±2.46C 3.30±0.19A 38.72C NJWC 56.73±1.51B 3.07±0.17A 59.80B NJW1 87.18±3.05A 2.64±0.07A 89.82A NJW2 46.41±5.79C 3.16±0.27A 49.57C 不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation level (P<0.05). -
[1] 赵营, 郭鑫年, 赵护兵, 等. 宁夏引黄灌区春小麦施肥现状与评价[J]. 麦类作物学报, 2014, 34(9): 1274−1280 doi: 10.7606/j.issn.1009-1041.2014.09.017ZHAO Y, GUO X N, ZHAO H B, et al. Evaluation on present situation of fertilization in spring wheat in the Yellow River Irrigation Region of Ningxia[J]. Journal of Triticeae Crops, 2014, 34(9): 1274−1280 doi: 10.7606/j.issn.1009-1041.2014.09.017 [2] 张学军, 王海廷, 赵营, 等. 不同水肥调控对宁夏优势特色作物氮淋失及产量的影响[J]. 宁夏农林科技, 2020, 61(7): 6−11 doi: 10.3969/j.issn.1002-204x.2020.07.002ZHANG X J, WANG H T, ZHAO Y, et al. Effect of different water and fertilizer regulation on nitrogen leaching loss and yield of dominant and characteristic crops in Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(7): 6−11 doi: 10.3969/j.issn.1002-204x.2020.07.002 [3] 王朝辉, 李生秀, 王西娜, 等. 旱地土壤硝态氮残留淋溶及影响因素研究[J]. 土壤, 2006, 38(6): 676−681 doi: 10.3321/j.issn:0253-9829.2006.06.002WANG Z H, LI S X, WANG X N, et al. Nitrate nitrogen residue and leaching in dryland soil and influence factors[J]. Soils, 2006, 38(6): 676−681 doi: 10.3321/j.issn:0253-9829.2006.06.002 [4] SEBILO M, MAYER B, NICOLARDOT B, et al. Long-term fate of nitrate fertilizer in agricultural soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18185−18189 [5] 王俊, 薄晶晶, 付鑫. 填闲种植及其在黄土高原旱作农业区的可行性分析[J]. 生态学报, 2018, 38(14): 5244−5254WANG J, BO J J, FU X. Research progress in cover cropping and its feasibility in the dryland farming systems on the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(14): 5244−5254 [6] GARBA I I, BELL L W, WILLIAMS A. Cover crop legacy impacts on soil water and nitrogen dynamics, and on subsequent crop yields in drylands: a meta-analysis[J]. Agronomy for Sustainable Development, 2022, 42(3): 1−21 [7] MIN J, SHI W M, XING G X, et al. Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling in Agroecosystems, 2011, 91(1): 31−39 doi: 10.1007/s10705-011-9441-5 [8] POEPLAU C, DON A. Carbon sequestration in agricultural soils via cultivation of cover crops— A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2015, 200: 33−41 [9] FRASER P M, CURTIN D, HARRISON-KIRK T, et al. Winter nitrate leaching under different tillage and winter cover crop management practices[J]. Soil Science Society of America Journal, 2013, 77(4): 1391−1401 doi: 10.2136/sssaj2012.0256 [10] NOURI A, LUKAS S, SINGH S, et al. When do cover crops reduce nitrate leaching? A global meta-analysis[J]. Global Change Biology, 2022, 28(15): 4736−4749 doi: 10.1111/gcb.16269 [11] 冒辛平, 陈晓群, 罗健航, 等. 宁夏引黄灌区设施菜田填闲作物种植试验初报[J]. 宁夏农林科技, 2015(9): 1−4 doi: 10.3969/j.issn.1002-204X.2015.09.001MAO X P, CHEN X Q, LUO J H, et al. A preliminary study of catch crop growing in greenhouse in Yellow River Irrigation Area of Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2015(9): 1−4 doi: 10.3969/j.issn.1002-204X.2015.09.001 [12] 张树兰, Lars Lovdahl, 同延安. 渭北旱塬不同田间管理措施下冬小麦产量及水分利用效率[J]. 农业工程学报, 2005, 21(4): 20−24 doi: 10.3321/j.issn:1002-6819.2005.04.005ZHANG S L, LOVDAHL L, TONG Y A. Effects of different field management practices on winter wheat yield and water utilization efficiency in Weibei Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(4): 20−24 doi: 10.3321/j.issn:1002-6819.2005.04.005 [13] 仇化民, 李怀德, 李桂芳. 陇东黄土高原麦茬绿肥保水增肥效应的研究[J]. 资源科学, 1988, 10(3): 87–89QIU H M, LI H D, LI G F. Study on water retention and fertilization effect of stubble green fertilizer in Longdong Loess Plateau[J]. Resources Science, 1988, 10(3): 87–89 [14] 邰通桥, 杭朝平, 杨胜俊. 果园套种绿肥对果园土壤改良的效果[J]. 贵州农业科学, 1999, 27(1): 35−37 doi: 10.3969/j.issn.1001-3601.1999.01.010TAI T Q, HANG C P, YANG S J. Effect of interplanting green manure crop in orchard for improving soil[J]. Guizhou Agricultural Sciences, 1999, 27(1): 35−37 doi: 10.3969/j.issn.1001-3601.1999.01.010 [15] 陈姣, 张池, 陈玉佩, 等. 不同绿肥和覆膜措施对渭北旱塬冬小麦产量和土壤水分动态的影响[J]. 植物营养与肥料学报, 2021, 27(12): 2136−2148 doi: 10.11674/zwyf.2021251CHEN J, ZHANG C, CHEN Y P, et al. Effects of different green manure crops and mulching approaches on wheat yield and soil moisture dynamics in the dryland region[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2136−2148 doi: 10.11674/zwyf.2021251 [16] 马致慧, 李惠霞, 何文寿. 不同施肥量对麦后复种饲料油菜养分吸收及产量的影响 −以宁夏引黄灌区为例[J]. 湖南农业科学, 2020(5): 26−30, 36MA Z H, LI H X, HE W S. Effects of different fertilizer amounts on nutrient uptake and yield of post-wheat forage rape — Taking the Yellow River irrigation district of Ningxia as an example[J]. Hunan Agricultural Sciences, 2020(5): 26−30, 36 [17] 韦春雨, 贾彪, 何文寿. 氮磷配施对麦后复种饲料油菜农艺性状及产量的影响[J]. 湖北农业科学, 2018, 57(20): 40−43WEI C Y, JIA B, HE W S. Effects of nitrogen phosphorus combined application on agronomic characters and yield of Brassica napus of multiple cropping after wheat[J]. Hubei Agricultural Sciences, 2018, 57(20): 40−43 [18] 马永鑫, 王西娜, 韦广源, 等. 减氮节水对宁夏引黄灌区春小麦光合特性与产量的影响[J]. 农业工程学报, 2022, 38(10): 75−84 doi: 10.11975/j.issn.1002-6819.2022.10.010MA Y X, WANG X N, WEI G Y, et al. Effects of nitrogen reduction and water saving on the photosynthetic characteristics and yield of spring wheat in the Yellow River Irrigation Areas of Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 75−84 doi: 10.11975/j.issn.1002-6819.2022.10.010 [19] 卜容燕, 任涛, 鲁剑巍, 等. 水稻-油菜轮作条件下氮肥效应及其后效[J]. 中国农业科学, 2012, 45(24): 5049−5056 doi: 10.3864/j.issn.0578-1752.2012.24.010BU R Y, REN T, LU J W, et al. Study on N fertilizer efficiency and the residual effect under rice-oilseed rape rotation system[J]. Scientia Agricultura Sinica, 2012, 45(24): 5049−5056 doi: 10.3864/j.issn.0578-1752.2012.24.010 [20] 雒文鹤, 师祖姣, 王旭敏, 等. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924−936 doi: 10.3724/SP.J.1006.2020.91060LUO W H, SHI Z J, WANG X M, et al. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat[J]. Acta Agronomica Sinica, 2020, 46(6): 924−936 doi: 10.3724/SP.J.1006.2020.91060 [21] 马兴华, 王东, 于振文, 等. 不同施氮量下灌水量对小麦耗水特性和氮素分配的影响[J]. 生态学报, 2010, 30(8): 1955−1965MA X H, WANG D, YU Z W, et al. Effect of irrigation regimes on water consumption characteristics and nitrogen distribution in wheat at different nitrogen applications[J]. Acta Ecologica Sinica, 2010, 30(8): 1955−1965 [22] 孙敏, 温斐斐, 高志强, 等. 不同降水年型旱地小麦休闲期耕作的蓄水增产效应[J]. 作物学报, 2014, 40(8): 1459−1469 doi: 10.3724/SP.J.1006.2014.01459SUN M, WEN F F, GAO Z Q, et al. Effects of farming practice during fallow period on soil water storage and yield of dryland wheat in different rainfall years[J]. Acta Agronomica Sinica, 2014, 40(8): 1459−1469 doi: 10.3724/SP.J.1006.2014.01459 [23] 赵欢, 董宝娣, 乔匀周, 等. 灌溉畦田规格对张杂谷生长、产量及水分利用的影响[J]. 灌溉排水学报, 2017, 36(1): 16−21 doi: 10.13522/j.cnki.ggps.2017.01.003ZHAO H, DONG B D, QIAO Y Z, et al. Effect of different border dimensions irrigation on growth, yield and water use of hybrid millet[J]. Journal of Irrigation and Drainage, 2017, 36(1): 16−21 doi: 10.13522/j.cnki.ggps.2017.01.003 [24] 马尚宇, 于振文, 张永丽, 等. 不同畦宽灌溉对小麦耗水特性和产量及水分利用效率的影响[J]. 中国农业科学, 2014(8): 1531−1540 doi: 10.3864/j.issn.0578-1752.2014.08.009MA S Y, YU Z W, ZHANG Y L, et al. Effect of field border width for irrigation on water consumption characteristics, yield and water use efficiency of wheat[J]. Scientia Agricultura Sinica, 2014(8): 1531−1540 doi: 10.3864/j.issn.0578-1752.2014.08.009 [25] 刘宏斌, 李志宏, 张维理, 等. 露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J]. 植物营养与肥料学报, 2004, 10(3): 286−291 doi: 10.3321/j.issn:1008-505X.2004.03.013LIU H B, LI Z H, ZHANG W L, et al. Study on N use efficiency of Chinese cabbage and nitrate leaching under open field cultivation[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(3): 286−291 doi: 10.3321/j.issn:1008-505X.2004.03.013 [26] 王西娜, 王朝辉, 李华, 等. 旱地土壤中残留肥料氮的动向及作物有效性[J]. 土壤学报, 2016, 53(5): 1202−1212WANG X N, WANG Z H, LI H, et al. Dynamics and availability to crops of residual fertilizer nitrogen in upland soil[J]. Acta Pedologica Sinica, 2016, 53(5): 1202−1212 [27] 董娴娴, 刘新宇, 任翠莲, 等. 潮褐土冬小麦-夏玉米轮作体系氮肥后效及去向研究[J]. 中国农业科学, 2012, 45(11): 2209−2216 doi: 10.3864/j.issn.0578-1752.2012.11.009DONG X X, LIU X Y, REN C L, et al. Fate and residual effect of fertilizer nitrogen under winter wheat-summer maize rotation in North China Plain in meadow cinnamon soils[J]. Scientia Agricultura Sinica, 2012, 45(11): 2209−2216 doi: 10.3864/j.issn.0578-1752.2012.11.009 [28] 王家顺, 李志友, 陆引罡. 烤烟-油菜轮作条件下的氮肥效应[J]. 江苏农业科学, 2017, 45(5): 70−73WANG J S, LI Z Y, LU Y G. Effect of nitrogen fertilizer on flue-cured tobacco-rape rotation[J]. Jiangsu Agricultural Sciences, 2017, 45(5): 70−73 [29] 王盈盈, 夏龙龙, 蔡思源, 等. 长期不施氮肥下稻麦轮作农田残留化肥氮的后效及去向[J]. 土壤学报, 2022, 59(6): 1626−1639WANG Y Y, XIA L L, CAI S Y, et al. Effect and direction of residual fertilizer nitrogen in rice-wheat rotation without nitrogen fertilizer for a long time[J]. Journal of Soil, 2022, 59(6): 1626−1639 [30] FRICK H, OBERSON A, CORMANN M, et al. Similar distribution of 15N labeled cattle slurry and mineral fertilizer in soil after one year[J]. Nutrient Cycling in Agroecosystems, 2023, 125(2): 153−169 doi: 10.1007/s10705-022-10205-5 [31] 巨昇容, 闵炬, 董刚强, 等. 不同种类填闲作物阻控设施菜地氮磷淋溶效果及机制研究[J]. 土壤学报: 1–12 [2023-06-10]. http://kns.cnki.net/kcms/detail/32.1119.P.20220609.1832.008.html.JU S R, MIN J, DONG G Q, et al. Study on nitrogen and phosphorus leaching effect and mechanism of different kinds of idle crops in vegetable fields under control facilities[J]. Acta Pedologica Sinica: 1−12 [2023-06-10]. http://kns.cnki.net/kcms/detail/32.1119.P.20220609.1832.008.html. [32] 闵炬, 陆扣萍, 陆玉芳, 等. 太湖地区大棚菜地土壤养分与地下水水质调查[J]. 土壤, 2012, 44(2): 213−217 doi: 10.3969/j.issn.0253-9829.2012.02.007MIN J, LU K P, LU Y F, et al. Investigation of soil fertility and quality of ground water in greenhouse vegetable fields of Tai Lake region[J]. Soils, 2012, 44(2): 213−217 doi: 10.3969/j.issn.0253-9829.2012.02.007 [33] 李富翠, 赵护兵, 王朝辉, 等. 渭北旱地夏闲期秸秆还田和种植绿肥对土壤水分、养分和冬小麦产量的影响[J]. 农业环境科学学报, 2011, 30(9): 1861−1871LI F C, ZHAO H B, WANG Z H, et al. Effects of straw mulching and planting green manure on soil water, nutrient and winter wheat yield on Weibei Plateau, China[J]. Journal of Agro-Environment Science, 2011, 30(9): 1861−1871 [34] NIELSEN C B, GROFFMAN P M, HAMBURG S P, et al. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal, 2001, 65(6): 1723−1730 doi: 10.2136/sssaj2001.1723 [35] 于贺, 谢洪宝, 陈一民, 等. 冻融作用对土壤氮转化影响的研究进展[J]. 中国农学通报, 2021, 37(26): 88−92 doi: 10.11924/j.issn.1000-6850.casb2021-0121YU H, XIE H B, CHEN Y M, et al. Effects of freeze-thaw on soil nitrogen conversion: research progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 88−92 doi: 10.11924/j.issn.1000-6850.casb2021-0121 [36] 刘学军, 巨晓棠, 潘家荣, 等. 冬小麦-夏玉米轮作中的氮素平衡与损失途径[J]. 土壤学报, 2002, 39(suppl.): 228−237LIU X J, JU X T, PAN J R, et al. Nitrogen balance and loss pathways in winter wheat-summer maize rotation[J]. Acta Pedologica Sinica, 2002, 39(suppl.): 228−237 [37] 邓建强, 梁志婷, 刘渊博, 等. 陇东旱塬冬小麦复种饲草轮作系统产量和水分利用特征[J]. 草业学报, 2017, 26(2): 161−170 doi: 10.11686/cyxb2016131DENG J Q, LIANG Z T, LIU Y B, et al. Dry matter production and water use of winter wheat-forage catch crop rotation systems on the Longdong Loess Plateau[J]. Acta Prataculturae Sinica, 2017, 26(2): 161−170 doi: 10.11686/cyxb2016131 [38] 赛力汗·赛, 张永强, 薛丽华, 等. 新疆滴灌冬小麦灌溉量对产量形成与水分利用的影响[J]. 中国农业大学学报, 2018, 23(8): 30−40 doi: 10.11841/j.issn.1007-4333.2018.08.04SAILIHNA·SAI, ZHANG Y Q, XUE L H, et al. Effects of different drip irrigation amount on yield formation and water use of winter wheat in Xinjiang[J]. Journal of China Agricultural University, 2018, 23(8): 30−40 doi: 10.11841/j.issn.1007-4333.2018.08.04 -