留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

春小麦叶片气体交换与产量对干旱响应的阈值差异

赵福年 刘江 张强 王润元 王鹤龄 张凯 赵鸿 齐月 陈斐

赵福年, 刘江, 张强, 王润元, 王鹤龄, 张凯, 赵鸿, 齐月, 陈斐. 春小麦叶片气体交换与产量对干旱响应的阈值差异[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1733−1744 doi: 10.12357/cjea.20230223
引用本文: 赵福年, 刘江, 张强, 王润元, 王鹤龄, 张凯, 赵鸿, 齐月, 陈斐. 春小麦叶片气体交换与产量对干旱响应的阈值差异[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1733−1744 doi: 10.12357/cjea.20230223
ZHAO F N, LIU J, ZHANG Q, WANG R Y, WANG H L, ZHANG K, ZHAO H, QI Y, CHEN F. Difference of response thresholds between leaf gas exchange and yield to drought for spring wheat[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1733−1744 doi: 10.12357/cjea.20230223
Citation: ZHAO F N, LIU J, ZHANG Q, WANG R Y, WANG H L, ZHANG K, ZHAO H, QI Y, CHEN F. Difference of response thresholds between leaf gas exchange and yield to drought for spring wheat[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1733−1744 doi: 10.12357/cjea.20230223

春小麦叶片气体交换与产量对干旱响应的阈值差异

doi: 10.12357/cjea.20230223
基金项目: 国家自然科学基金项目(42230611, 42005097, 42175192)和博士后科研基金项目(BSH2022001)资助
详细信息
    作者简介:

    赵福年, 主要从事干旱影响评估研究。E-mail: zfn0622@163.com

    通讯作者:

    张强, 主要从事干旱气候变化研究。E-mail: zhangqiang@cma.gov.cn

  • 中图分类号: S166

Difference of response thresholds between leaf gas exchange and yield to drought for spring wheat

Funds: This research was supported by the National Natural Science Foundation of China (42230611, 42005097, 42175192), the Postdoctoral Research Fund Project (BSH2022001)
More Information
  • 摘要: 叶片气体交换过程是作物干物质及产量形成的基础, 在干旱发展过程中作物叶片气体交换对水分胁迫存在阈值响应, 众多相关生理指标也以此为基础用于监测作物受旱状况。然而作物叶片气体交换过程与产量对干旱的响应阈值是否具有同步性, 目前尚不清楚, 这在一定程度上影响了利用作物生长期叶片气体交换相关生理指标监测农业干旱的准确性。本研究通过控制试验确定春小麦叶片气体交换对干旱的响应阈值, 并利用该阈值特征参数化春小麦生长模型, 从而设计水分控制模拟试验, 分析春小麦产量对干旱的阈值响应特征及其与叶片气体交换指标阈值的差异。结果表明: 春小麦气孔导度对土壤有效含水量的响应阈值为0.50, 大于蒸腾速率与净光合速率的响应阈值(0.40)。用净光合速率对土壤有效含水量的响应阈值参数化春小麦生长模型, 能够准确模拟春小麦地上部生物量和产量的变化。春小麦地上部生物量与产量对根系层土壤有效含水量的响应阈值为0.18, 明显小于叶片气体交换指标对土壤有效含水量的响应阈值。证明了利用作物生育期间叶片气体交换等生理指标表征作物受旱状况, 反映作物最终产量降低程度会存在一定问题。本研究结果可为农业干旱监测、预测及干旱影响评估提供参考依据。
  • 图  1  春小麦生长模型胁迫系数计算

    ASWC为土壤有效含水量, ASWCt为土壤水分阈值。ASWC is available soil water content, ASWCt is the threshold of available soil water content.

    Figure  1.  Calculation of stress index for spring wheat growth model

    图  2  模拟春小麦生长发育过程的气象条件及不同处理补水量

    TmaxTmin分别表示最高温度和最低温度。T1、T2、T3和T4分别表示小麦播后32~72 d补水230 mm、165 mm、115 mm和50 mm。Tmax and Tmin indicate maximum and minimum temperatures. T1, T2, T3 and T4 indicate supplementary irrigations of 230 mm, 165 mm, 115 mm and 50 mm from 32 to 72 days after sowing, respectively.

    Figure  2.  Weather conditions and water treatments for simulation of spring wheat growth

    图  3  春小麦叶片气体交换指标对干旱过程的响应

    拟合公式参数见表5, DX2014、DX2015和DX2017分别表示2014年、2015年和2017年在定西开展的观测试验。The parameters of the regression equations are shown in Table 5. DX2014, DX2015 and DX2017 indicate experiments at Dingxi Station in 2014, 2015 and 2017, respectively.

    Figure  3.  Response of leaf gas exchange for spring wheat to drought

    图  4  春小麦生长模型模拟的开花期(a)与收获期(b)模拟值与观测值(播种后天数)

    *和**分别表示统计检验显著水平为P<0.05和P<0.01; RRMSE为相对均方根误差, d为一致性指数。* and ** indicate significant levels of P<0.05 and P<0.01, respectively. RRMSE is the relative root mean square error. d is the index of agreement.

    Figure  4.  Observed and growth model-simulated dates (days after sowing) of flower stage (a) and harvest stage (b) of spring wheat

    图  5  春小麦生长模型模拟的地上部生物量(a)和产量(b)与实测值

    **表示统计检验极显著(P<0.01), RRMSE为相对均方根误差, d为一致性指数, P后的方程为调参数据拟合公式, E后的方程为验证数据拟合公式。** indicates significant level of P<0.01. RRMSE is the relative root mean square error. d is the index of agreement. The fitted equation after letter P is established from parameterized data. The fitted equation after letter E is established from evaluated data.

    Figure  5.  Growth modle simulation and observation values of aboveground biomass (a) and yield (b) of spring wheat

    图  6  不同水分供给下模拟获得的小麦叶面积指数、根层土壤有效含水量、生物量以及产量的变化特征

    T1、T2、T3、T4和T5分别表示播后32~72 d补水230 mm、165 mm、115 mm、50 mm和0 mm, 图中灰色区域表示不同的水分处理时段, 拟合公式参数见表5。T1, T2, T3, T4 and T5 indicate supplementary irrigations of 230, 165, 115, 50 and 0 mm from 32 to 72 days after sowing, respectively. Grey area indicate the period with different supplementary irrigation treatments. The regression equations are shown in Table 5.

    Figure  6.  Variations of simulated leaf area index, available soil water content, biomass and yield for spring wheat under different water treatments

    表  1  定西农业气象试验站春小麦不同年份播种及施肥信息

    Table  1.   Planting and fertilizing details for spring wheat at Dingxi Agrometeorological Experimental Station

    年份
    Year
    品种
    Variety
    熟性
    Maturity
    播种量
    Sowing rate
    (kg∙hm−2)
    肥料 Fertilizer
    农家肥
    Farmyard manure (kg∙hm−2)
    氮肥
    Nitrogen fertilizer [kg(N)∙hm−2]
    1987—1991渭春1 Weichun 1中晚熟 Middle-late187.535 00042
    1992—1998, 200081139-2中晚熟 Middle-late195.024 00065
    199992鉴46 92 Jian 46中熟 Middle195.024 00065
    2001定西35 Dingxi 35中熟 Middle195.024 00085
    2002, 2005—2007,
    2008—2017
    定西新24
    Dingxi New 24
    中熟 Middle225.015 000104
    2003—2004陇春20 Longchun 20中熟 Middle225.0 15 00085
    下载: 导出CSV

    表  2  1987—2017年试验区春小麦发育期信息(月-日)

    Table  2.   Earliest and latest dates of growth stages of spring wheat from 1987 to 2017 (month-day)

    发育期
    Growth stage
    播种期
    Sowing
    出苗期
    Emergence
    分蘖期
    Tillering
    拔节期
    Jointing
    孕穗期
    Booting
    抽穗期
    Heading
    开花期
    Flowering
    乳熟期
    Milk-ripe
    成熟期
    Mature
    最早日期 Earliest date03-1204-0604-2205-1605-2606-0306-0806-2407-06
    最晚日期 Latest date03-3004-2405-1806-0406-1206-1806-2307-1907-26
    下载: 导出CSV

    表  3  文献所收集的春小麦生长发育及产量数据集信息

    Table  3.   Information of spring wheat growth and yield collected from references

    作者
    Author
    发表年份
    Published year
    试验品种
    Experimental variety
    灌溉条件
    Irrigation condition
    试验年份
    Experimental year
    魏虹, 等 Wei, et al[18]20008139-2生育期灌溉 Irrigation in growth season1995
    Li, et al[19]20048139-2播前灌溉 Irrigation before planting1999—2000
    Huang, et al[20]20058139-2雨养 Rainfed1982—1992, 1997—1998
    王晓娟, 等 Wang, et al[21]2010定西35 Dingxi 35雨养 Rainfed2008
    李文龙, 等 Li, et al[22]2012定西新24 Dingxi New 24生育期灌溉 Irrigation in growth season2011
    侯慧芝, 等 Hou, et al[23]2014陇春20 Longchun 27雨养 Rainfed2011—2013
    下载: 导出CSV

    表  4  春小麦生长模型主要参数及其取值

    Table  4.   Parameters and their values for the simulation of spring wheat using the ACM-Wheat model

    参数
    Parameter
    定义
    Definition
    取值
    Assignment
    来源
    Resource
    TBDC基础温度 Base temperature (℃)0B[27]
    TP1DC最低适宜温度 Lower optimum temperature (℃)20B[26]
    TP2DC最高适宜温度 Upper optimum temperature (℃)25B[26]
    TCDC最高临界温度 Ceiling temperature (℃)35B[26]
    TuSOWEMRNC播种到出苗积温 Thermal unit from sowing to emergence (℃)150.3/149.3E
    TuEMRTLMNC出苗到叶片停止生长积温 Thermal unit from emergence to termination leaf growth (℃)580E
    TuTLGBSGNC叶片停止生长到开始灌浆积温
    Thermal unit from termination leaf growth to beginning seed growth (℃)
    205/207E
    TuBSGTSGNC开始灌浆到灌浆结束积温
    Thermal unit from beginning seed growth to termination seed growth (℃)
    423/485E
    TuTSGMATNC灌浆结束到成熟期积温
    Thermal unit from termination seed growth to physiological maturity (℃)
    440/468E
    PhylC叶热间距 Phyllochron (℃∙leaf−1)98B[27]
    SLAC比叶面积 Specific leaf area (m2∙g−1)0.021B[27]
    RUEC光能利用率 Radiation use efficiency under optimal condition (g∙MJ−1)2.2B[26]
    FRTRLNC灌浆开始后干物质籽粒分配比
    Fraction crop mass at beginning seed growth which is translocateble to grains
    0.12CV
    GCCNC籽粒转化系数 Grain conversion coefficient0.95CV
    DEPPRTC根系初始深度 Depth of roots at emergence (mm)200B[26]
    MEEDNC最大根系深度 Maximum effective depth of water extraction from soil by roots (mm)1000B[26]
    TECC蒸腾效率系数 Transpiration efficiency coefficient (Pa)5.8B[28]
    WSSGNC干物质积累对水分的响应阈值 Threshold of dry matter production to soil water0.4M
    WSSLNC叶片生长水分的响应阈值 Threshold of leaf area development to soil water0.5B[29]
    WSSDNC生育进程对水分的响应阈值
    Coefficient that specifies acceleration or retardation in development in response to water deficit
    0.4B[26]
      C为常数参数; NC为变幅较大参数; CV为校正的参数; B为来源于文献资料的参数; E为历史资料分析后获得的参数; M为试验观测获得的参数。“/”两侧数据表示以2000年为界两个不同阶段(即1987—2000年和2001—2017年)的参数值。C indicates the conservative parameter. NC indicates variable parameter. CV indicates calibrated parameter. B indicates parameter obtained from references. E indicates parameter calculated from long-term observational data. M indicates parameter obtained from current experiment. Data before and after “/” indicate the two different parameters during two different periods (1987–2000, 2001–2017).
    下载: 导出CSV

    表  5  小麦叶片光合生理指标及作物产出对土壤有效含水量响应函数的参数值

    Table  5.   Parameters of response functions for leaf photosynthetic indices and production of spring wheat to available soil moisture

    指标
    Index
    SmaxabR2P响应阈值
    Threshold
    气孔导度 Stomatal conductance0.40−11.500.240.71<0.050.50
    蒸腾速率 Transpiration rate5.50−14.900.170.78<0.050.40
    净光合速率 Net photosynthetic rate23.00−13.900.160.85<0.0010.40
    地上部生物量 Aboveground biomass9200.00−40.700.060.88<0.0010.18
    产量 Yield5100.00−40.500.050.91<0.0010.18
      Smax表示观测获得的平均最大值; ab为拟合系数, a表示所拟合要素随自变量变化上升或下降的速率, b表示所拟合要素数值随自变量快速下降过程由外凸向内凹转变的拐点。Smax is the average maximum value obtained by observation. a and b are fitting coefficients. a is the rate at which the fitted factor rises or falls with the change of the independent variable. b is the inflection point at which the value of the fitted factor changes from convex to concave with the rapid decline of the independent variable.
    下载: 导出CSV
  • [1] PANU U S, SHARMA T C. Challenges in drought research: some perspectives and future directions[J]. Hydrological Sciences Journal, 2002, 47(sup1): S19−S30 doi: 10.1080/02626660209493019
    [2] 张强, 韩兰英, 郝小翠, 等. 气候变化对中国农业旱灾损失率的影响及其南北区域差异性[J]. 气象学报, 2015, 73(6): 1092−1103 doi: 10.11676/qxxb2015.083

    ZHANG Q, HAN L Y, HAO X C, et al. On the impact of the climate change on the agricultural disaster loss caused by drought in China and the regional differences between the North and the South[J]. Acta Meteorologica Sinica, 2015, 73(6): 1092−1103 doi: 10.11676/qxxb2015.083
    [3] 赵福年, 王润元. 基于模式识别的半干旱区雨养春小麦干旱发生状况判别[J]. 农业工程学报, 2014(24): 124−132 doi: 10.3969/j.issn.1002-6819.2014.24.015

    ZHAO F N, WANG R Y. Discrimination of drought occurrence for rainfed spring wheat in semi-arid area based on pattern recognition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014(24): 124−132 doi: 10.3969/j.issn.1002-6819.2014.24.015
    [4] HEIM R R. A review of twentieth-century drought indices used in the United States[J]. Bulletin of the American Meteorological Society, 2002, 83(8): 1149−1165 doi: 10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2
    [5] 赵福年, 王润元, 王莺, 等. 干旱过程、 时空尺度及干旱指数构建机制的探讨[J]. 灾害学, 2018, 33(4): 32−39 doi: 10.3969/j.issn.1000-811X.2018.04.007

    ZHAO F N, WANG R Y, WANG Y, et al. Discussion of process, temporal and spatial scale for drought and establishment of drought indices[J]. Journal of Catastrophology, 2018, 33(4): 32−39 doi: 10.3969/j.issn.1000-811X.2018.04.007
    [6] LIU F, STÜTZEL H. Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying[J]. Journal of the American Society for Horticultural Science, 2002, 127(5): 878−883 doi: 10.21273/JASHS.127.5.878
    [7] CASADEBAIG P, DEBAEKE P, LECOEUR J. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes[J]. European Journal of Agronomy, 2008, 28(4): 646−654 doi: 10.1016/j.eja.2008.02.001
    [8] 赵福年, 王润元, 张凯, 等. 叶片光合生理参数变化特征与小麦受旱状态的关系[J]. 干旱地区农业研究, 2020, 38(1): 107−116 doi: 10.7606/j.issn.1000-7601.2020.01.15

    ZHAO F N, WANG R Y, ZHANG K, et al. Relationship between drought severity and leaf photosynthetic physiological parameter variation of spring wheat[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 107−116 doi: 10.7606/j.issn.1000-7601.2020.01.15
    [9] 赵福年, 张虹, 陈家宙, 等. 玉米作物水分胁迫指数(CWSI)基线差异原因初探[J]. 中国农学通报, 2013, 29(6): 46−53 doi: 10.3969/j.issn.1000-6850.2013.06.009

    ZHAO F N, ZHANG H, CHEN J Z, et al. Preliminary investigation on difference of crop water stress index baseline for maize[J]. Chinese Agricultural Science Bulletin, 2013, 29(6): 46−53 doi: 10.3969/j.issn.1000-6850.2013.06.009
    [10] GU S J, LIAO Q, GAO S Y, et al. Crop water stress index as a proxy of phenotyping maize performance under combined water and salt stress[J]. Remote Sensing, 2021, 13(22): 4710 doi: 10.3390/rs13224710
    [11] 张强, 韩兰英, 王胜, 等. 影响南方农业干旱灾损率的气候要素关键期特征[J]. 科学通报, 2018, 63(23): 2378−2392 doi: 10.1360/N972018-00240

    ZHANG Q, HAN L Y, WANG S, et al. The affected characteristic of key period’s climate factor on the agricultural disaster loss caused by drought in the South China[J]. Chinese Science Bulletin, 2018, 63(23): 2378−2392 doi: 10.1360/N972018-00240
    [12] LV P C, RADEMACHER T, HUANG X R, et al. Prolonged drought duration, not intensity, reduces growth recovery and prevents compensatory growth of oak trees[J]. Agricultural and Forest Meteorology, 2022, 326: 109183 doi: 10.1016/j.agrformet.2022.109183
    [13] FARRÉ I, FACI J M. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment[J]. Agricultural Water Management, 2009, 96(3): 383−394 doi: 10.1016/j.agwat.2008.07.002
    [14] SADOK W, SCHOPPACH R, GHANEM M E, et al. Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring[J]. European Journal of Agronomy, 2019, 107: 1−9 doi: 10.1016/j.eja.2019.03.009
    [15] SINCLAIR T R, MESSINA C D, BEATTY A, et al. Assessment across the United States of the benefits of altered soybean drought traits[J]. Agronomy Journal, 2010, 102(2): 475−482 doi: 10.2134/agronj2009.0195
    [16] ZHAO F N, LEI J, WANG R Y, et al. Environmental determination of spring wheat yield in a climatic transition zone under global warming[J]. International Journal of Biometeorology, 2022, 66(3): 481−491 doi: 10.1007/s00484-021-02196-9
    [17] 张凯, 李巧珍, 王润元, 等. 播期对春小麦生长发育及产量的影响[J]. 生态学杂志, 2012, 31(2): 324−331 doi: 10.13292/j.1000-4890.2012.0039

    ZHANG K, LI Q Z, WANG R Y, et al. Effects of sowing date on the growth and yield of spring wheat[J]. Chinese Journal of Ecology, 2012, 31(2): 324−331 doi: 10.13292/j.1000-4890.2012.0039
    [18] 魏虹, 林魁, 李凤民, 等. 有限灌溉对半干旱区春小麦根系发育的影响[J]. 植物生态学报, 2000, 24(1): 106−110 doi: 10.3321/j.issn:1005-264X.2000.01.020

    WEI H, LIN K, LI F M, et al. Effect of limited irrigation on root development of spring wheat in semi-arid area[J]. Acta Phytoecologica Sinica, 2000, 24(1): 106−110 doi: 10.3321/j.issn:1005-264X.2000.01.020
    [19] LI F M, WANG P, WANG J, et al. Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China[J]. Agricultural Water Management, 2004, 67(2): 77−88 doi: 10.1016/j.agwat.2004.02.001
    [20] HUANG Y L, CHEN L D, FU B J, et al. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects[J]. Agricultural Water Management, 2005, 72(3): 209−222 doi: 10.1016/j.agwat.2004.09.012
    [21] 王晓娟, 黄高宝, 李卿沛, 等. 不同耕作措施下旱地春小麦田和豌豆田的蒸发蒸腾特性及产量效应[J]. 干旱区资源与环境, 2010, 24(5): 172−177 doi: 10.13448/j.cnki.jalre.2010.05.026

    WANG X J, HUANG G B, LI Q P, et al. Characteristics of the evapotranspiration and its yield performance of rainfed spring wheat and peas fields[J]. Journal of Arid Land Resources and Environment, 2010, 24(5): 172−177 doi: 10.13448/j.cnki.jalre.2010.05.026
    [22] 李文龙, 许静, 李自珍. 干旱期灌溉与施化肥对半干旱区春小麦产量及其水分利用效率的影响[J]. 兰州大学学报(自然科学版), 2012, 48(3): 76−82 doi: 10.13885/j.issn.0455-2059.2012.03.013

    LI W L, XU J, LI Z Z. Irrigation and fertilizer application of dry-period affect yield of spring wheat and water use efficiency in semi-arid regions[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(3): 76−82 doi: 10.13885/j.issn.0455-2059.2012.03.013
    [23] 侯慧芝, 吕军峰, 郭天文, 等. 旱地全膜覆土穴播对春小麦耗水、产量和土壤水分平衡的影响[J]. 中国农业科学, 2014, 47(22): 4392−4404 doi: 10.3864/j.issn.0578-1752.2014.22.005

    HOU H Z, LYU J F, GUO T W, et al. Effects of whole field soil-plastic mulching on spring wheat water consumption, yield, and soil water balance in semiarid region[J]. Scientia Agricultura Sinica, 2014, 47(22): 4392−4404 doi: 10.3864/j.issn.0578-1752.2014.22.005
    [24] SINCLAIR T R. Water and nitrogen limitations in soybean grain productionⅠ. Model development[J]. Field Crops Research, 1986, 15(2): 125−141 doi: 10.1016/0378-4290(86)90082-1
    [25] AMIR J, SINCLAIR T R. A model of water limitation on spring wheat growth and yield[J]. Field Crops Research, 1991, 28(1/2): 59−69
    [26] SOLTANI A, SINCLAIR T R. Modeling Physiology of Crop Development, Growth and Yield[M]. Wallingford: Cambridge University Press, 2012: 1–322
    [27] SOLTANI A, MADDAH, SINCLAIR. SSM-Wheat: a simulation model for wheat development, growth and yield[J]. International Journal of Plant Production, 2013, 7(4): 711−740
    [28] KIRKHAM M B. Water and yield[M]//KIRKHAM M B. Principles of Soil and Plant Water Relations. Amsterdam: Elsevier, 2014: 515–532
    [29] SADRAS V O, MILROY S P. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review[J]. Field Crops Research, 1996, 47(2/3): 253−266
    [30] CORRENDO A A, ROSSO L H M, HERNANDEZ C H, et al. Metrica: an R package to evaluate prediction performance of regression and classification point-forecast models[J]. Journal of Open Source Software, 2022, 7(79): 4655 doi: 10.21105/joss.04655
    [31] FLEXAS J, BOTA J, ESCALONA J M, et al. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations[J]. Functional Plant Biology, 2002, 29(4): 461 doi: 10.1071/PP01119
    [32] WU J, SERBIN S P, ELY K S, et al. The response of stomatal conductance to seasonal drought in tropical forests[J]. Global Change Biology, 2020, 26(2): 823−839 doi: 10.1111/gcb.14820
    [33] ZHAO F N, ZHOU S X, WANG R Y, et al. Quantifying key model parameters for wheat leaf gas exchange under different environmental conditions[J]. Journal of Integrative Agriculture, 2020, 19(9): 2188−2205 doi: 10.1016/S2095-3119(19)62796-6
    [34] LECOEUR J, SINCLAIR T R. Field pea transpiration and leaf growth in response to soil water deficits[J]. Crop Science, 1996, 36(2): 331−335 doi: 10.2135/cropsci1996.0011183X003600020020x
    [35] 赵福年, 张强, 周广胜, 等. 春小麦对骤旱的响应特征及其阈值分析[J]. 生态学报, 2023, 43(13): 5581−5591

    ZHAO F N, ZHANG Q, ZHOU G S, et al. The response characteristics and threshold of spring wheat to flash drought[J]. Acta Ecologica Sinica, 2023, 43(13): 5581−5591
    [36] CHEN F, WANG H L, ZHAO F N, et al. The response mechanism and threshold of spring wheat to rapid drought[J]. Atmosphere, 2022, 13(4): 596 doi: 10.3390/atmos13040596
    [37] SASEENDRAN S A, AHUJA L R, MA L, et al. Current water deficit stress simulations in selected agricultural system models[M]//AHUJA L R, REDDY V R, SASEENDRAN S A, et al. Response of Crops to Limited Water. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015: 1–38
    [38] JIN Z N, ZHUANG Q L, TAN Z L, et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches[J]. Global Change Biology, 2016, 22(9): 3112−3126 doi: 10.1111/gcb.13376
    [39] FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185−212 doi: 10.1051/agro:2008021
    [40] IRMAK S, HAMAN D Z, BASTUG R. Determination of crop water stress index for irrigation timing and yield estimation of corn[J]. Agronomy Journal, 2000, 92(6): 1221−1227 doi: 10.2134/agronj2000.9261221x
    [41] 赵福年, 陈家宙, 张虹. 施氮水平对红壤区夏玉米水分胁迫指数下基线的影响[J]. 中国农业气象, 2012, 33(2): 215−219, 225 doi: 10.3969/j.issn.1000-6362.2012.02.010

    ZHAO F N, CHEN J Z, ZHANG H. Effect of nitrogen fertilization level on the low baseline of crop water stress index for summer maize in red soil[J]. Chinese Journal of Agrometeorology, 2012, 33(2): 215−219, 225 doi: 10.3969/j.issn.1000-6362.2012.02.010
    [42] 赵福年, 王瑞君, 张虹, 等. 基于冠气温差的作物水分胁迫指数经验模型研究进展[J]. 干旱气象, 2012, 30(4): 522−528

    ZHAO F N, WANG R J, ZHANG H, et al. Advances in crop water stress index empirical model research based on canopy and atmosphere temperature difference[J]. Journal of Arid Meteorology, 2012, 30(4): 522−528
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  717
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 录用日期:  2023-07-10
  • 修回日期:  2023-07-10
  • 网络出版日期:  2023-08-14
  • 刊出日期:  2023-11-10

目录

    /

    返回文章
    返回