Difference of response thresholds between leaf gas exchange and yield to drought for spring wheat
-
摘要: 叶片气体交换过程是作物干物质及产量形成的基础, 在干旱发展过程中作物叶片气体交换对水分胁迫存在阈值响应, 众多相关生理指标也以此为基础用于监测作物受旱状况。然而作物叶片气体交换过程与产量对干旱的响应阈值是否具有同步性, 目前尚不清楚, 这在一定程度上影响了利用作物生长期叶片气体交换相关生理指标监测农业干旱的准确性。本研究通过控制试验确定春小麦叶片气体交换对干旱的响应阈值, 并利用该阈值特征参数化春小麦生长模型, 从而设计水分控制模拟试验, 分析春小麦产量对干旱的阈值响应特征及其与叶片气体交换指标阈值的差异。结果表明: 春小麦气孔导度对土壤有效含水量的响应阈值为0.50, 大于蒸腾速率与净光合速率的响应阈值(0.40)。用净光合速率对土壤有效含水量的响应阈值参数化春小麦生长模型, 能够准确模拟春小麦地上部生物量和产量的变化。春小麦地上部生物量与产量对根系层土壤有效含水量的响应阈值为0.18, 明显小于叶片气体交换指标对土壤有效含水量的响应阈值。证明了利用作物生育期间叶片气体交换等生理指标表征作物受旱状况, 反映作物最终产量降低程度会存在一定问题。本研究结果可为农业干旱监测、预测及干旱影响评估提供参考依据。Abstract: Leaf gas exchange is the basis for crop biomass and yield formation. During drought development, the leaf gas exchange exhibits a threshold response to water stress, and many related physiological indicators are based on this response to monitor drought severity in crops. However, the focus of agricultural production is crop yield, and it is unclear whether the response threshold of leaf gas exchange indicators used to monitor drought is synchronous with that of crop yield to drought. To some extent, this affects the accuracy of agricultural drought monitoring using physiological indicators related to leaf gas exchange. In this study, based on drying experiments, changes in leaf gas exchange in spring wheat during the drought development process were observed and analyzed. The response threshold of leaf gas exchange in spring wheat to drought was determined and used to parameterize the crop model for spring wheat. Drought stress simulation experiments were designed to analyze the response threshold characteristics of spring wheat yield to drought and the differences in the threshold of leaf gas exchange. The results showed that the response threshold of stomatal conductance for spring wheat to available soil water content was 0.50, which was higher than that of transpiration rate and net photosynthetic rate (0.40). The aboveground biomass and yield of spring wheat were simulated by parameterizing the crop model for spring wheat with the response threshold of the net photosynthetic rate to the available soil water content. The model simulation values explained more than 70% of the observed variation, and the results were highly significant (P<0.01). The relative root mean square error between the model simulation and observed values was less than 30%, indicating a high overall simulation accuracy of the model. The consistency index was greater than 0.85, and the relationship slope between the simulated and observed values was between 1.00 and 1.50. This indicates that the proposed crop model can accurately simulate changes in the aboveground biomass and yield of spring wheat. Using the validated model, this study analyzed the formation process of spring wheat soil moisture, leaf area index, aboveground biomass, and yield under different drought stress scenarios. The response threshold of the aboveground biomass and yield of spring wheat to available soil water content was 0.18, which was significantly lower than that of the leaf gas exchange indicators. These results demonstrate that using physiological indicators, such as leaf gas exchange, during the crop growth period to characterize drought severity and reflect the degree of crop yield reduction may have certain issues. When using physiological indicators, such as leaf gas exchange, obtained during the crop growth period to characterize drought severity, the crop’s own drought resistance characteristics and the impact of drought duration on crop yield might be overlooked, which can lead to an overestimation of the severity of crop drought and underestimation of the final crop yield. The results of this study provide a reference for agricultural drought monitoring, prediction, and impact assessment.
-
Key words:
- Response threshold /
- Water stress /
- Leaf gas exchange /
- Yield /
- Crop model /
- Spring wheat
-
图 2 模拟春小麦生长发育过程的气象条件及不同处理补水量
Tmax和Tmin分别表示最高温度和最低温度。T1、T2、T3和T4分别表示小麦播后32~72 d补水230 mm、165 mm、115 mm和50 mm。Tmax and Tmin indicate maximum and minimum temperatures. T1, T2, T3 and T4 indicate supplementary irrigations of 230 mm, 165 mm, 115 mm and 50 mm from 32 to 72 days after sowing, respectively.
Figure 2. Weather conditions and water treatments for simulation of spring wheat growth
图 3 春小麦叶片气体交换指标对干旱过程的响应
拟合公式参数见表5, DX2014、DX2015和DX2017分别表示2014年、2015年和2017年在定西开展的观测试验。The parameters of the regression equations are shown in Table 5. DX2014, DX2015 and DX2017 indicate experiments at Dingxi Station in 2014, 2015 and 2017, respectively.
Figure 3. Response of leaf gas exchange for spring wheat to drought
图 4 春小麦生长模型模拟的开花期(a)与收获期(b)模拟值与观测值(播种后天数)
*和**分别表示统计检验显著水平为P<0.05和P<0.01; RRMSE为相对均方根误差, d为一致性指数。* and ** indicate significant levels of P<0.05 and P<0.01, respectively. RRMSE is the relative root mean square error. d is the index of agreement.
Figure 4. Observed and growth model-simulated dates (days after sowing) of flower stage (a) and harvest stage (b) of spring wheat
图 5 春小麦生长模型模拟的地上部生物量(a)和产量(b)与实测值
**表示统计检验极显著(P<0.01), RRMSE为相对均方根误差, d为一致性指数, P后的方程为调参数据拟合公式, E后的方程为验证数据拟合公式。** indicates significant level of P<0.01. RRMSE is the relative root mean square error. d is the index of agreement. The fitted equation after letter P is established from parameterized data. The fitted equation after letter E is established from evaluated data.
Figure 5. Growth modle simulation and observation values of aboveground biomass (a) and yield (b) of spring wheat
图 6 不同水分供给下模拟获得的小麦叶面积指数、根层土壤有效含水量、生物量以及产量的变化特征
T1、T2、T3、T4和T5分别表示播后32~72 d补水230 mm、165 mm、115 mm、50 mm和0 mm, 图中灰色区域表示不同的水分处理时段, 拟合公式参数见表5。T1, T2, T3, T4 and T5 indicate supplementary irrigations of 230, 165, 115, 50 and 0 mm from 32 to 72 days after sowing, respectively. Grey area indicate the period with different supplementary irrigation treatments. The regression equations are shown in Table 5.
Figure 6. Variations of simulated leaf area index, available soil water content, biomass and yield for spring wheat under different water treatments
表 1 定西农业气象试验站春小麦不同年份播种及施肥信息
Table 1. Planting and fertilizing details for spring wheat at Dingxi Agrometeorological Experimental Station
年份
Year品种
Variety熟性
Maturity播种量
Sowing rate
(kg∙hm−2)肥料 Fertilizer 农家肥
Farmyard manure (kg∙hm−2)氮肥
Nitrogen fertilizer [kg(N)∙hm−2]1987—1991 渭春1 Weichun 1 中晚熟 Middle-late 187.5 35 000 42 1992—1998, 2000 81139-2 中晚熟 Middle-late 195.0 24 000 65 1999 92鉴46 92 Jian 46 中熟 Middle 195.0 24 000 65 2001 定西35 Dingxi 35 中熟 Middle 195.0 24 000 85 2002, 2005—2007,
2008—2017定西新24
Dingxi New 24中熟 Middle 225.0 15 000 104 2003—2004 陇春20 Longchun 20 中熟 Middle 225.0 15 000 85 表 2 1987—2017年试验区春小麦发育期信息(月-日)
Table 2. Earliest and latest dates of growth stages of spring wheat from 1987 to 2017 (month-day)
发育期
Growth stage播种期
Sowing出苗期
Emergence分蘖期
Tillering拔节期
Jointing孕穗期
Booting抽穗期
Heading开花期
Flowering乳熟期
Milk-ripe成熟期
Mature最早日期 Earliest date 03-12 04-06 04-22 05-16 05-26 06-03 06-08 06-24 07-06 最晚日期 Latest date 03-30 04-24 05-18 06-04 06-12 06-18 06-23 07-19 07-26 表 3 文献所收集的春小麦生长发育及产量数据集信息
Table 3. Information of spring wheat growth and yield collected from references
作者
Author发表年份
Published year试验品种
Experimental variety灌溉条件
Irrigation condition试验年份
Experimental year魏虹, 等 Wei, et al[18] 2000 8139-2 生育期灌溉 Irrigation in growth season 1995 Li, et al[19] 2004 8139-2 播前灌溉 Irrigation before planting 1999—2000 Huang, et al[20] 2005 8139-2 雨养 Rainfed 1982—1992, 1997—1998 王晓娟, 等 Wang, et al[21] 2010 定西35 Dingxi 35 雨养 Rainfed 2008 李文龙, 等 Li, et al[22] 2012 定西新24 Dingxi New 24 生育期灌溉 Irrigation in growth season 2011 侯慧芝, 等 Hou, et al[23] 2014 陇春20 Longchun 27 雨养 Rainfed 2011—2013 表 4 春小麦生长模型主要参数及其取值
Table 4. Parameters and their values for the simulation of spring wheat using the ACM-Wheat model
参数
Parameter定义
Definition取值
Assignment来源
ResourceTBDC 基础温度 Base temperature (℃) 0 B[27] TP1DC 最低适宜温度 Lower optimum temperature (℃) 20 B[26] TP2DC 最高适宜温度 Upper optimum temperature (℃) 25 B[26] TCDC 最高临界温度 Ceiling temperature (℃) 35 B[26] TuSOWEMRNC 播种到出苗积温 Thermal unit from sowing to emergence (℃) 150.3/149.3 E TuEMRTLMNC 出苗到叶片停止生长积温 Thermal unit from emergence to termination leaf growth (℃) 580 E TuTLGBSGNC 叶片停止生长到开始灌浆积温
Thermal unit from termination leaf growth to beginning seed growth (℃)205/207 E TuBSGTSGNC 开始灌浆到灌浆结束积温
Thermal unit from beginning seed growth to termination seed growth (℃)423/485 E TuTSGMATNC 灌浆结束到成熟期积温
Thermal unit from termination seed growth to physiological maturity (℃)440/468 E PhylC 叶热间距 Phyllochron (℃∙leaf−1) 98 B[27] SLAC 比叶面积 Specific leaf area (m2∙g−1) 0.021 B[27] RUEC 光能利用率 Radiation use efficiency under optimal condition (g∙MJ−1) 2.2 B[26] FRTRLNC 灌浆开始后干物质籽粒分配比
Fraction crop mass at beginning seed growth which is translocateble to grains0.12 CV GCCNC 籽粒转化系数 Grain conversion coefficient 0.95 CV DEPPRTC 根系初始深度 Depth of roots at emergence (mm) 200 B[26] MEEDNC 最大根系深度 Maximum effective depth of water extraction from soil by roots (mm) 1000 B[26] TECC 蒸腾效率系数 Transpiration efficiency coefficient (Pa) 5.8 B[28] WSSGNC 干物质积累对水分的响应阈值 Threshold of dry matter production to soil water 0.4 M WSSLNC 叶片生长水分的响应阈值 Threshold of leaf area development to soil water 0.5 B[29] WSSDNC 生育进程对水分的响应阈值
Coefficient that specifies acceleration or retardation in development in response to water deficit0.4 B[26] C为常数参数; NC为变幅较大参数; CV为校正的参数; B为来源于文献资料的参数; E为历史资料分析后获得的参数; M为试验观测获得的参数。“/”两侧数据表示以2000年为界两个不同阶段(即1987—2000年和2001—2017年)的参数值。C indicates the conservative parameter. NC indicates variable parameter. CV indicates calibrated parameter. B indicates parameter obtained from references. E indicates parameter calculated from long-term observational data. M indicates parameter obtained from current experiment. Data before and after “/” indicate the two different parameters during two different periods (1987–2000, 2001–2017). 表 5 小麦叶片光合生理指标及作物产出对土壤有效含水量响应函数的参数值
Table 5. Parameters of response functions for leaf photosynthetic indices and production of spring wheat to available soil moisture
指标
IndexSmax a b R2 P 响应阈值
Threshold气孔导度 Stomatal conductance 0.40 −11.50 0.24 0.71 <0.05 0.50 蒸腾速率 Transpiration rate 5.50 −14.90 0.17 0.78 <0.05 0.40 净光合速率 Net photosynthetic rate 23.00 −13.90 0.16 0.85 <0.001 0.40 地上部生物量 Aboveground biomass 9200.00 −40.70 0.06 0.88 <0.001 0.18 产量 Yield 5100.00 −40.50 0.05 0.91 <0.001 0.18 Smax表示观测获得的平均最大值; a和b为拟合系数, a表示所拟合要素随自变量变化上升或下降的速率, b表示所拟合要素数值随自变量快速下降过程由外凸向内凹转变的拐点。Smax is the average maximum value obtained by observation. a and b are fitting coefficients. a is the rate at which the fitted factor rises or falls with the change of the independent variable. b is the inflection point at which the value of the fitted factor changes from convex to concave with the rapid decline of the independent variable. -
[1] PANU U S, SHARMA T C. Challenges in drought research: some perspectives and future directions[J]. Hydrological Sciences Journal, 2002, 47(sup1): S19−S30 doi: 10.1080/02626660209493019 [2] 张强, 韩兰英, 郝小翠, 等. 气候变化对中国农业旱灾损失率的影响及其南北区域差异性[J]. 气象学报, 2015, 73(6): 1092−1103 doi: 10.11676/qxxb2015.083ZHANG Q, HAN L Y, HAO X C, et al. On the impact of the climate change on the agricultural disaster loss caused by drought in China and the regional differences between the North and the South[J]. Acta Meteorologica Sinica, 2015, 73(6): 1092−1103 doi: 10.11676/qxxb2015.083 [3] 赵福年, 王润元. 基于模式识别的半干旱区雨养春小麦干旱发生状况判别[J]. 农业工程学报, 2014(24): 124−132 doi: 10.3969/j.issn.1002-6819.2014.24.015ZHAO F N, WANG R Y. Discrimination of drought occurrence for rainfed spring wheat in semi-arid area based on pattern recognition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014(24): 124−132 doi: 10.3969/j.issn.1002-6819.2014.24.015 [4] HEIM R R. A review of twentieth-century drought indices used in the United States[J]. Bulletin of the American Meteorological Society, 2002, 83(8): 1149−1165 doi: 10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2 [5] 赵福年, 王润元, 王莺, 等. 干旱过程、 时空尺度及干旱指数构建机制的探讨[J]. 灾害学, 2018, 33(4): 32−39 doi: 10.3969/j.issn.1000-811X.2018.04.007ZHAO F N, WANG R Y, WANG Y, et al. Discussion of process, temporal and spatial scale for drought and establishment of drought indices[J]. Journal of Catastrophology, 2018, 33(4): 32−39 doi: 10.3969/j.issn.1000-811X.2018.04.007 [6] LIU F, STÜTZEL H. Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying[J]. Journal of the American Society for Horticultural Science, 2002, 127(5): 878−883 doi: 10.21273/JASHS.127.5.878 [7] CASADEBAIG P, DEBAEKE P, LECOEUR J. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes[J]. European Journal of Agronomy, 2008, 28(4): 646−654 doi: 10.1016/j.eja.2008.02.001 [8] 赵福年, 王润元, 张凯, 等. 叶片光合生理参数变化特征与小麦受旱状态的关系[J]. 干旱地区农业研究, 2020, 38(1): 107−116 doi: 10.7606/j.issn.1000-7601.2020.01.15ZHAO F N, WANG R Y, ZHANG K, et al. Relationship between drought severity and leaf photosynthetic physiological parameter variation of spring wheat[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 107−116 doi: 10.7606/j.issn.1000-7601.2020.01.15 [9] 赵福年, 张虹, 陈家宙, 等. 玉米作物水分胁迫指数(CWSI)基线差异原因初探[J]. 中国农学通报, 2013, 29(6): 46−53 doi: 10.3969/j.issn.1000-6850.2013.06.009ZHAO F N, ZHANG H, CHEN J Z, et al. Preliminary investigation on difference of crop water stress index baseline for maize[J]. Chinese Agricultural Science Bulletin, 2013, 29(6): 46−53 doi: 10.3969/j.issn.1000-6850.2013.06.009 [10] GU S J, LIAO Q, GAO S Y, et al. Crop water stress index as a proxy of phenotyping maize performance under combined water and salt stress[J]. Remote Sensing, 2021, 13(22): 4710 doi: 10.3390/rs13224710 [11] 张强, 韩兰英, 王胜, 等. 影响南方农业干旱灾损率的气候要素关键期特征[J]. 科学通报, 2018, 63(23): 2378−2392 doi: 10.1360/N972018-00240ZHANG Q, HAN L Y, WANG S, et al. The affected characteristic of key period’s climate factor on the agricultural disaster loss caused by drought in the South China[J]. Chinese Science Bulletin, 2018, 63(23): 2378−2392 doi: 10.1360/N972018-00240 [12] LV P C, RADEMACHER T, HUANG X R, et al. Prolonged drought duration, not intensity, reduces growth recovery and prevents compensatory growth of oak trees[J]. Agricultural and Forest Meteorology, 2022, 326: 109183 doi: 10.1016/j.agrformet.2022.109183 [13] FARRÉ I, FACI J M. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment[J]. Agricultural Water Management, 2009, 96(3): 383−394 doi: 10.1016/j.agwat.2008.07.002 [14] SADOK W, SCHOPPACH R, GHANEM M E, et al. Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring[J]. European Journal of Agronomy, 2019, 107: 1−9 doi: 10.1016/j.eja.2019.03.009 [15] SINCLAIR T R, MESSINA C D, BEATTY A, et al. Assessment across the United States of the benefits of altered soybean drought traits[J]. Agronomy Journal, 2010, 102(2): 475−482 doi: 10.2134/agronj2009.0195 [16] ZHAO F N, LEI J, WANG R Y, et al. Environmental determination of spring wheat yield in a climatic transition zone under global warming[J]. International Journal of Biometeorology, 2022, 66(3): 481−491 doi: 10.1007/s00484-021-02196-9 [17] 张凯, 李巧珍, 王润元, 等. 播期对春小麦生长发育及产量的影响[J]. 生态学杂志, 2012, 31(2): 324−331 doi: 10.13292/j.1000-4890.2012.0039ZHANG K, LI Q Z, WANG R Y, et al. Effects of sowing date on the growth and yield of spring wheat[J]. Chinese Journal of Ecology, 2012, 31(2): 324−331 doi: 10.13292/j.1000-4890.2012.0039 [18] 魏虹, 林魁, 李凤民, 等. 有限灌溉对半干旱区春小麦根系发育的影响[J]. 植物生态学报, 2000, 24(1): 106−110 doi: 10.3321/j.issn:1005-264X.2000.01.020WEI H, LIN K, LI F M, et al. Effect of limited irrigation on root development of spring wheat in semi-arid area[J]. Acta Phytoecologica Sinica, 2000, 24(1): 106−110 doi: 10.3321/j.issn:1005-264X.2000.01.020 [19] LI F M, WANG P, WANG J, et al. Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China[J]. Agricultural Water Management, 2004, 67(2): 77−88 doi: 10.1016/j.agwat.2004.02.001 [20] HUANG Y L, CHEN L D, FU B J, et al. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects[J]. Agricultural Water Management, 2005, 72(3): 209−222 doi: 10.1016/j.agwat.2004.09.012 [21] 王晓娟, 黄高宝, 李卿沛, 等. 不同耕作措施下旱地春小麦田和豌豆田的蒸发蒸腾特性及产量效应[J]. 干旱区资源与环境, 2010, 24(5): 172−177 doi: 10.13448/j.cnki.jalre.2010.05.026WANG X J, HUANG G B, LI Q P, et al. Characteristics of the evapotranspiration and its yield performance of rainfed spring wheat and peas fields[J]. Journal of Arid Land Resources and Environment, 2010, 24(5): 172−177 doi: 10.13448/j.cnki.jalre.2010.05.026 [22] 李文龙, 许静, 李自珍. 干旱期灌溉与施化肥对半干旱区春小麦产量及其水分利用效率的影响[J]. 兰州大学学报(自然科学版), 2012, 48(3): 76−82 doi: 10.13885/j.issn.0455-2059.2012.03.013LI W L, XU J, LI Z Z. Irrigation and fertilizer application of dry-period affect yield of spring wheat and water use efficiency in semi-arid regions[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(3): 76−82 doi: 10.13885/j.issn.0455-2059.2012.03.013 [23] 侯慧芝, 吕军峰, 郭天文, 等. 旱地全膜覆土穴播对春小麦耗水、产量和土壤水分平衡的影响[J]. 中国农业科学, 2014, 47(22): 4392−4404 doi: 10.3864/j.issn.0578-1752.2014.22.005HOU H Z, LYU J F, GUO T W, et al. Effects of whole field soil-plastic mulching on spring wheat water consumption, yield, and soil water balance in semiarid region[J]. Scientia Agricultura Sinica, 2014, 47(22): 4392−4404 doi: 10.3864/j.issn.0578-1752.2014.22.005 [24] SINCLAIR T R. Water and nitrogen limitations in soybean grain productionⅠ. Model development[J]. Field Crops Research, 1986, 15(2): 125−141 doi: 10.1016/0378-4290(86)90082-1 [25] AMIR J, SINCLAIR T R. A model of water limitation on spring wheat growth and yield[J]. Field Crops Research, 1991, 28(1/2): 59−69 [26] SOLTANI A, SINCLAIR T R. Modeling Physiology of Crop Development, Growth and Yield[M]. Wallingford: Cambridge University Press, 2012: 1–322 [27] SOLTANI A, MADDAH, SINCLAIR. SSM-Wheat: a simulation model for wheat development, growth and yield[J]. International Journal of Plant Production, 2013, 7(4): 711−740 [28] KIRKHAM M B. Water and yield[M]//KIRKHAM M B. Principles of Soil and Plant Water Relations. Amsterdam: Elsevier, 2014: 515–532 [29] SADRAS V O, MILROY S P. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review[J]. Field Crops Research, 1996, 47(2/3): 253−266 [30] CORRENDO A A, ROSSO L H M, HERNANDEZ C H, et al. Metrica: an R package to evaluate prediction performance of regression and classification point-forecast models[J]. Journal of Open Source Software, 2022, 7(79): 4655 doi: 10.21105/joss.04655 [31] FLEXAS J, BOTA J, ESCALONA J M, et al. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations[J]. Functional Plant Biology, 2002, 29(4): 461 doi: 10.1071/PP01119 [32] WU J, SERBIN S P, ELY K S, et al. The response of stomatal conductance to seasonal drought in tropical forests[J]. Global Change Biology, 2020, 26(2): 823−839 doi: 10.1111/gcb.14820 [33] ZHAO F N, ZHOU S X, WANG R Y, et al. Quantifying key model parameters for wheat leaf gas exchange under different environmental conditions[J]. Journal of Integrative Agriculture, 2020, 19(9): 2188−2205 doi: 10.1016/S2095-3119(19)62796-6 [34] LECOEUR J, SINCLAIR T R. Field pea transpiration and leaf growth in response to soil water deficits[J]. Crop Science, 1996, 36(2): 331−335 doi: 10.2135/cropsci1996.0011183X003600020020x [35] 赵福年, 张强, 周广胜, 等. 春小麦对骤旱的响应特征及其阈值分析[J]. 生态学报, 2023, 43(13): 5581−5591ZHAO F N, ZHANG Q, ZHOU G S, et al. The response characteristics and threshold of spring wheat to flash drought[J]. Acta Ecologica Sinica, 2023, 43(13): 5581−5591 [36] CHEN F, WANG H L, ZHAO F N, et al. The response mechanism and threshold of spring wheat to rapid drought[J]. Atmosphere, 2022, 13(4): 596 doi: 10.3390/atmos13040596 [37] SASEENDRAN S A, AHUJA L R, MA L, et al. Current water deficit stress simulations in selected agricultural system models[M]//AHUJA L R, REDDY V R, SASEENDRAN S A, et al. Response of Crops to Limited Water. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015: 1–38 [38] JIN Z N, ZHUANG Q L, TAN Z L, et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches[J]. Global Change Biology, 2016, 22(9): 3112−3126 doi: 10.1111/gcb.13376 [39] FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185−212 doi: 10.1051/agro:2008021 [40] IRMAK S, HAMAN D Z, BASTUG R. Determination of crop water stress index for irrigation timing and yield estimation of corn[J]. Agronomy Journal, 2000, 92(6): 1221−1227 doi: 10.2134/agronj2000.9261221x [41] 赵福年, 陈家宙, 张虹. 施氮水平对红壤区夏玉米水分胁迫指数下基线的影响[J]. 中国农业气象, 2012, 33(2): 215−219, 225 doi: 10.3969/j.issn.1000-6362.2012.02.010ZHAO F N, CHEN J Z, ZHANG H. Effect of nitrogen fertilization level on the low baseline of crop water stress index for summer maize in red soil[J]. Chinese Journal of Agrometeorology, 2012, 33(2): 215−219, 225 doi: 10.3969/j.issn.1000-6362.2012.02.010 [42] 赵福年, 王瑞君, 张虹, 等. 基于冠气温差的作物水分胁迫指数经验模型研究进展[J]. 干旱气象, 2012, 30(4): 522−528ZHAO F N, WANG R J, ZHANG H, et al. Advances in crop water stress index empirical model research based on canopy and atmosphere temperature difference[J]. Journal of Arid Meteorology, 2012, 30(4): 522−528 -