Spatial-temporal differentiation characteristics and key driving factors of agricultural carbon emissions in the three northeastern provinces of China
-
摘要: 推动农业低碳发展是应对气候威胁和农业面源污染的有效途径。本文基于IPCC和农用物资投入数据核算2000—2019年东北三省农业碳排放, 利用空间自相关等方法分析其时空分异特征, 通过LMDI指数分解模型和地理探测器探究农业碳排放驱动因素及其交互作用关系。结果表明: 1)东北三省2015年农业碳排放总量达到峰值, 约为1759.66万t, 较2000年(1048.19万t)增加67.88%, 年均递增4.53%; 研究期整体呈现“先上升、后下降”的态势, 碳排放增量变动可划分为“波动上升期(2000—2009年)—过渡期(2010—2015年)—平稳下降期(2016—2019年)”3个阶段。化肥施用是主要碳源, 占比75.12%。2)分解模型测算结果表明, 农业生产效率、农业产业结构和农业劳动力规模对碳排放具有抑制作用, 其碳减排比例分别为207.31%、21.56%、20.72%; 农业经济发展水平对碳排放表现出较强的推动作用, 实现349.59%的碳增量。3)相较于单因子来说, 农业经济发展水平、农业生产效率与农业产业结构之间交互结果对农业碳排放的影响呈非线性增强特征, 农业劳动力规模与其他因素叠加均呈现出双因子增强的作用效果。以上研究结果表明东北三省农业碳排放受周边地区影响且影响程度不断加强, 同时碳排放关键驱动因素之间存在协同作用。本研究成果为推动农业低碳发展提供理论基础与政策依据。Abstract: The climate problem caused by increasing carbon dioxide emissions is one of the major challenges facing the world today. Promoting low-carbon development of agriculture is an effective way to deal with climate threats and agricultural non-point source pollution. Accurately measuring the effect of agricultural carbon emission and its spatial and temporal evolution characteristics is the data basis for promoting low-carbon development of agriculture, and studying the key driving factors of agricultural carbon emission and the trade-off and coordination relationship between driving factors is of great significance for formulating regional carbon emission reduction policies in Northeast China. Based on the input data of agricultural materials and the IPCC method, this paper calculates the agricultural carbon emissions of the three northeastern provinces of China from 2000 to 2019, uses the spatial autocorrelation analysis method to clarify the spatial and temporal differentiation characteristics of agricultural carbon emissions, and explores the driving factors of agricultural carbon emissions and their interaction through the LMDI index decomposition model and geographic detector. The results show that 1) the total carbon emissions of the three northeastern provinces of China showed an increasing trend first and then decreased. The incremental changes of carbon emissions can be divided into three stages: fluctuating rising period (2000−2009), transitional period (2010−2015) and steady decline period (2016−2019). In 2015, the total amount of agricultural carbon emissions reached a peak of 17.5966 million tons (an increase of 67.88% compared to 2000), with an average annual increase of 4.53%. During the study period, all carbon sources showed different degrees of growth, and chemical fertilizer application was the main carbon source, accounting for 75.12%. 2) The spatial distribution of total carbon emissions in the three northeastern provinces has significant spatial autocorrelation. The hot spots of carbon emissions are mainly distributed in the northeast plain area, and the trend and scope of agglomeration are expanding. The cold spots of carbon emissions are mainly distributed in the Changbai Mountains and Daxing’an mountains and do not change significantly with time. 3) The total amount of agricultural carbon emissions in the three northeastern provinces is affected by many factors. The improvement of agricultural production efficiency, the optimization of agricultural industrial structure and the reduction of agricultural labor force have an inhibitory effect on carbon emissions, and the proportion of carbon emission reduction is 207.31%, 21.56% and 20.72%, while the level of agricultural economic development has a strong driving effect on carbon emissions, achieving 349.59% carbon increment. The interaction between the level of agricultural economic development, agricultural production efficiency and agricultural structure is more nonlinear than the influence of single factor on carbon emissions. The driving force of the paired combination of agricultural labor force size and other factors exhibits a two-factor enhancement effect. The research results reveal that the carbon emission effect of the three northeastern provinces is easily affected by the surrounding areas and the degree of the influences is increasing. At the same time, there is a strong synergy between the driving factors of carbon emissions.
-
图 4 2001—2019年东北三省农业碳排放驱动因素对农业碳排放量贡献率
APE: 农业生产效率; AIS: 农业产业结构; AEDL: 农业经济发展水平; ALFS: 农业劳动力规模。
Figure 4. The contribution rate of driving factors of agricultural carbon emissions to agricultural carbon emissions in the three northeastern provinces of China from 2001 to 2019
APE: agricultural production efficiency; AIS: agricultural industrial structure; AEDL: agricultural economic development level; ALFS: agricultural labor force size.
表 1 农业碳源碳排放系数
Table 1. Carbon emission factors of different agricultural carbon sources
碳源
Carbon source排放系数
Emission factor包含的过程
Processes included数据来源
Data source农药
Pesticides4.9341 kg(CO2eq)∙kg−1 生产、运输和使用
Production, transportation and use美国橡树岭国家实验室[24]
Oak Ridge National Laboratory, USA [24]化肥
Chemical fertilizer0.8956 kg(CO2eq)∙kg−1 West, et al[25]、美国橡树岭国家实验室[24]
West, et al[25] and Oak Ridge National Laboratory, USA [24]农膜
Agricultural film5.1800 kg(CO2eq)∙kg−1 政府间气候变化专门委员会[26]
Intergovernmental Panel on Climate Change[26]灌溉
Irrigation20.4760 kg(CO2eq)∙hm−2 农作物实际灌溉面积
Actual irrigated area of crops湖北农村发展研究中心[27]
Rural Development Research Center of Hubei[27]翻耕
Ploughing3.1260 kg(CO2eq)∙km−2 农作物实际播种总面积
Actual sown area of crops中国农业大学农学与生物技术学院[28]
College of Agronomy and Biotechnology, China Agricultural University[28]农业机械
Agricultural machinery0.5927 kg(CO2eq)∙kg−1 农用机械消耗柴油量
Diesel fuel consumption by agricultural machinery政府间气候变化专门委员会[26]
Intergovernmental Panel on Climate Change[26]表 2 驱动因素交互作用结果类型
Table 2. Types of interaction between two covariates
交互作用
Interaction判别依据
Distinguish basis非线性减弱
Non-linear weakeningq(Xi∩Xj) < Min[q(Xi), q(Xj)] 单因子非线性减弱
Single factor nonlinear weakeningMin[q(Xi), q(Xj)] < q(Xi∩Xj) <
Max[q(Xi), q(Xj)]双因子增强
Two-factor enhancementq(Xi∩Xj) > Max[q(Xi), q(Xj)] 相互独立
Independentq(Xi∩Xj) = q(Xi) + q(Xj) 非线性增强
Non-linear enhancementq(Xi∩Xj) > q(Xi) + q(Xj) Xi和Xj: 农业碳排放关键驱动因素; Min[q(Xi), q(Xj)]: 取q(Xi)和q(Xj)的最小值; Max[q(Xi), q(Xj)]: 取q(Xi)和q(Xj)的最大值; q(Xi) + q(Xj): q(Xi)和q(Xj)求和; q(Xi∩Xj): q(Xi)和q(Xj)交互。Xi, Xj: key driving factors of agricultural carbon emissions; Min[q(Xi), q(Xj)]: minimum value of q(Xi) and q(Xj) ; Max[q(Xi), q(Xj)]: maximum value of q(Xi) and q(Xj); q(Xi) + q(Xj): sum of q(Xi) and q(Xj); q(Xi∩Xj): interaction between q(Xi) and q(Xj). 表 3 2000—2019年东北三省农业碳排放总量的全域莫兰指数(Moran’s I)与检验
Table 3. Global Moran’s I and test of total agricultural carbon emissions in the three northeastern provinces from 2000 to 2019
2000 2004 2008 2012 2016 2019 P值 P value 0.001 0.001 0.001 0.001 0.001 0.001 Moran’s I 0.8334 0.8787 0.8807 0.9081 0.9010 0.9419 表 4 2019年东北三省各地级市农业碳排放总量、各碳源排放占比及碳排强度
Table 4. Total amount of agricultural carbon emissions, the proportion of carbon emissions from each carbon source and carbon emission intensity of each city in the three northeastern provinces of China in 2019
市
City碳排放总量
Total carbon
emissions
(×104 t)占比
Proportion
(%)碳排放源排放量占比
Proportion of carbon emissions from each sources (%)碳排放强度
Carbon emission
intensity (kg·hm−2)农药
Pesticides农膜
Agricultural film化肥
Chemical fertilizer农业机械
Agricultural
machinery农业灌溉
Irrigation农业翻耕
Ploughing沈阳 Shenyang 74.83 4.69 2.39 13.16 77.84 5.56 0.77 0.28 870.89 大连 Dalian 48.73 3.05 9.60 16.78 55.05 18.04 0.33 0.20 1231.01 鞍山 Anshan 28.51 1.78 5.19 11.29 76.42 6.25 0.57 0.28 970.24 抚顺 Fushun 14.21 0.89 5.19 11.29 76.40 6.25 0.59 0.28 855.70 本溪 Benxi 6.60 0.41 5.19 11.29 76.42 6.25 0.57 0.28 732.46 丹东 Dandong 23.44 1.47 5.18 11.27 76.29 6.24 0.75 0.28 930.44 锦州 Jinzhou 51.27 3.21 5.18 11.27 76.24 6.23 0.80 0.28 1070.44 营口 Yingkou 12.95 0.81 5.15 11.22 75.89 6.20 1.26 0.28 848.86 阜新 Fuxin 52.90 3.31 5.19 11.29 76.40 6.25 0.59 0.28 1229.91 辽阳 Liaoyang 17.73 1.11 5.17 11.26 76.16 6.23 0.90 0.28 770.72 盘锦 Panjin 15.70 0.98 5.15 11.21 75.82 6.20 1.35 0.28 920.20 铁岭 Tieling 56.67 3.55 5.18 11.28 76.34 6.24 0.67 0.28 903.45 朝阳 Chaoyang 52.25 3.27 5.18 11.27 76.26 6.23 0.78 0.28 993.86 葫芦岛 Huludao 29.42 1.84 5.19 11.30 76.43 6.25 0.56 0.28 1005.92 长春 Changchun 108.64 6.80 4.37 4.80 82.98 7.00 0.48 0.38 691.26 吉林 Jilin 64.33 4.03 5.26 6.66 78.47 8.70 0.51 0.38 980.86 四平 Siping 71.45 4.47 4.13 2.33 86.42 6.11 0.56 0.44 759.66 辽源 Liaoyuan 20.24 1.27 4.84 6.13 80.44 8.01 0.23 0.35 1046.50 通化 Tonghua 30.49 1.91 5.03 6.37 79.23 8.32 0.69 0.37 984.44 白山 Baishan 3.94 0.25 7.87 9.95 68.49 13.00 0.12 0.57 605.94 松原 Songyuan 87.59 5.48 5.91 7.48 75.10 9.78 1.29 0.43 721.66 白城 Baicheng 65.92 4.13 6.99 8.85 70.31 11.56 1.79 0.51 801.15 延边 Yanbian 21.56 1.35 8.62 10.91 64.91 14.26 0.67 0.63 631.03 哈尔滨 Harbin 113.00 7.08 4.84 7.11 77.60 8.45 1.46 0.53 507.38 齐齐哈尔 Qiqihar 92.04 5.76 5.26 4.99 72.58 14.44 1.97 0.75 336.73 鸡西 Jixi 14.73 0.92 5.45 6.56 68.86 15.33 2.83 0.97 311.27 鹤岗 Hegang 9.97 0.62 3.44 4.14 79.35 9.68 2.77 0.61 485.46 双鸭山 Shuangyashan 16.01 1.00 4.38 5.27 75.94 12.32 1.31 0.78 317.74 大庆 Daqing 34.89 2.18 3.58 4.31 78.22 10.07 3.18 0.64 439.21 伊春 Yichun 7.55 0.47 5.32 6.39 70.74 14.94 1.66 0.94 346.28 佳木斯 Jiamusi 67.11 4.20 8.28 8.25 60.10 20.98 1.87 0.51 560.68 七台河 Qitaihe 7.67 0.48 3.95 4.75 78.87 11.11 0.61 0.70 403.39 牡丹江 Mudanjiang 21.50 1.35 5.07 6.09 72.59 14.24 1.11 0.90 342.53 黑河 Heihe 33.89 2.12 6.24 7.50 67.07 17.53 0.56 1.11 355.02 绥化 Suihua 92.16 5.77 3.48 4.19 80.59 9.79 1.34 0.62 419.72 大兴安岭
Da Hinggan Ling Prefecture2.77 0.17 10.68 12.85 43.86 30.03 0.69 1.90 180.32 黑龙江农垦总局
Farms & Land Reclamation Administration in Heilongjiang124.41 7.79 3.95 4.75 76.34 11.10 3.16 0.70 1275.38 黑龙江农垦总局各指标数据是从各地级市指标中剥离出来的, 并独立统计。Data for each indicator in Farms & Land Reclamation Administration in Heilongjiang are separated from that in different cities, and collected independently. 表 5 2001—2019年东北三省农业碳排放驱动因素分解
Table 5. Decomposition of driving factors of agricultural carbon emissions in the three northeastern provinces of China from 2001 to 2019
年份
Year农业生产效率
Agricultural production
efficiency (×104t)农业产业结构
Agricultural industrial
structure (×104t)农业经济发展水平
Agricultural economic
development level (×104t)农业劳动力规模
Agricultural labour
force size (×104t)总效应
Total effect (×104t)2001 −126.46 −11.26 123.39 −13.58 −27.91 2002 −201.13 −3.76 −253.92 −30.19 −489.00 2003 −210.69 −148.95 448.03 −45.57 42.82 2004 −365.28 −124.72 645.15 −127.31 27.83 2005 −406.57 −147.33 780.07 −132.04 94.13 2006 −496.11 −131.99 921.95 −131.47 162.38 2007 −606.68 −112.40 1132.58 −130.02 283.48 2008 −803.81 −150.48 1422.80 −136.41 332.10 2009 −806.27 −194.41 1614.31 −140.80 472.83 2010 −1053.43 −143.42 1832.20 −151.37 483.98 2011 −1294.83 −120.52 2151.57 −175.59 560.63 2012 −1478.83 −91.28 2369.80 −43.65 756.04 2013 −1559.58 −115.23 2547.68 507.85 1380.72 2014 −1655.41 −33.55 2648.58 −210.04 749.57 2015 −1627.33 −95.59 2666.12 −149.23 793.96 2016 −1529.74 −110.73 2625.18 −166.57 818.15 2017 −1380.87 −124.77 2502.60 −183.27 813.69 2018 −1522.39 −39.19 2678.61 −198.45 918.58 2019 −1571.42 −45.24 2672.12 −210.61 844.86 表 6 交互探测器结果
Table 6. Results of interactive detector
交互因子 Interacting factor AEDL∩APE AEDL∩AIS ALFS∩APE ALFS∩AIS ALFS∩AEDL APE∩AIS q值 q value 0.82** 0.64** 0.92* 0.91* 0.90* 0.38* APE: 农业生产效率; AIS: 农业产业结构; AEDL: 农业经济发展水平; ALFS: 农业劳动力规模; ∩: 两者交互; *: 双因子增强; **: 非线性增强。双因子增强的交互作用弱于非线性增强的交互作用。APE: agricultural production efficiency; AIS: agricultural industrial structure; AEDL: agricultural economic development level; ALFS: agricultural labor force size; ∩: interaction between two factors; *: two-factor enhancement; **: non-linear enhancement. The interaction of tow-factor enhancement is weaker than that of non-linear enhancement. -
[1] CHENG Y Q, WANG Z Y, YE X Y, et al. Spatiotemporal dynamics of carbon intensity from energy consumption in China[J]. Journal of Geographical Sciences, 2014, 24(4): 631−650 doi: 10.1007/s11442-014-1110-6 [2] XIAO P N, ZHANG Y, QIAN P, et al. Spatiotemporal characteristics, decoupling effect and driving factors of carbon emission from cultivated land utilization in Hubei Province[J]. International Journal of Environmental Research and Public Health, 2022, 19(15): 9326 doi: 10.3390/ijerph19159326 [3] 黄杰, 孙自敏. 中国种植业碳生产率的区域差异及分布动态演进[J]. 农业技术经济, 2022(7): 109−127HUANG J, SUN Z M. Regional differences and dynamic evolution of carbon productivity of China’s planting industry[J]. Journal of Agrotechnical Economics, 2022(7): 109−127 [4] DU X Y, SHEN L Y, WONG S W, et al. Night-time light data based decoupling relationship analysis between economic growth and carbon emission in 289 Chinese cities[J]. Sustainable Cities and Society, 2021, 73: 103119 doi: 10.1016/j.scs.2021.103119 [5] 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269−273 doi: 10.3321/j.issn:1002-6819.2008.10.055DONG H M, LI Y E, TAO X P, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269−273 doi: 10.3321/j.issn:1002-6819.2008.10.055 [6] 李波, 刘雪琪, 王昆. 中国农地利用结构变化的碳效应及时空演进趋势研究[J]. 中国土地科学, 2018, 32(3): 43−51 doi: 10.11994/zgtdkx.20180312.091047LI B, LIU X Q, WANG K. Study on carbon effects and spatial-temporal evolution trend based on the changes of agricultural land use in China[J]. China Land Science, 2018, 32(3): 43−51 doi: 10.11994/zgtdkx.20180312.091047 [7] 陈炜, 殷田园, 李红兵. 1997—2015年中国种植业碳排放时空特征及与农业发展的关系[J]. 干旱区资源与环境, 2019, 33(2): 37−44CHEN W, YIN T Y, LI H B. Spatiotemporal distribution characteristics of carbon emission from plant industry and the relationship with agriculture development in China from 1997 to 2015[J]. Journal of Arid Land Resources and Environment, 2019, 33(2): 37−44 [8] 邱怡慧, 王璞, 苏时鹏. 中国农地利用碳排放时空演变特征及驱动因素研究−基于IPCC法与LMDI指数分解模型[J]. 资源开发与市场, 2019, 35(5): 625−631 doi: 10.3969/j.issn.1005-8141.2019.05.006QIU Y H, WANG P, SU S P. Temporal and spatial evolution characteristics and driving factors of carbon emissions of agricultural land use in china—Based on IPCC method and LMDI exponential decomposition model[J]. Resource Development & Market, 2019, 35(5): 625−631 doi: 10.3969/j.issn.1005-8141.2019.05.006 [9] 李波, 刘雪琪, 梅倩, 等. 湖北省农地利用方式变化的碳效应特征与空间差异[J]. 中国人口·资源与环境, 2018, 28(10): 62−70LI B, LIU X Q, MEI Q, et al. Study on carbon effects and spatial differences based on changes of agricultural land use in Hubei Province[J]. China Population, Resources and Environment, 2018, 28(10): 62−70 [10] 赵先超, 宋丽美. 湖南省农地利用碳排放与农业经济关系研究[J]. 生态与农村环境学报, 2018, 34(11): 976−981 doi: 10.11934/j.issn.1673-4831.2018.11.003ZHAO X C, SONG L M. Carbon emission from agricultural land use and its relationship with agricultural economy in Hunan Province[J]. Journal of Ecology and Rural Environment, 2018, 34(11): 976−981 doi: 10.11934/j.issn.1673-4831.2018.11.003 [11] 黄锐, 周玉玺, 周霞. 山东省农业碳排放强度的时空特征与趋势演进[J]. 山东农业大学学报(社会科学版), 2021, 23(2): 57−63,73HUANG R, ZHOU Y X, ZHOU X. Space and temporal characteristics and trend evolution of agricultural carbon emission intensity in Shandong Province[J]. Journal of Shandong Agricultural University (Social Science Edition), 2021, 23(2): 57−63,73 [12] 宋德勇, 卢忠宝. 中国碳排放影响因素分解及其周期性波动研究[J]. 中国人口·资源与环境, 2009, 19(3): 18−24 doi: 10.3969/j.issn.1002-2104.2009.03.005SONG D Y, LU Z B. The factor decomposition and periodic fluctuations of carbon emission in China[J]. China Population, Resources and Environment, 2009, 19(3): 18−24 doi: 10.3969/j.issn.1002-2104.2009.03.005 [13] 朱勤, 彭希哲, 陆志明, 等. 中国能源消费碳排放变化的因素分解及实证分析[J]. 资源科学, 2009, 31(12): 2072−2079ZHU Q, PENG X Z, LU Z M, et al. Factors decomposition and empirical analysis of variations in energy carbon emission in China[J]. Resources Science, 2009, 31(12): 2072−2079 [14] 苏洋, 马惠兰, 颜璐. 新疆农地利用碳排放时空差异及驱动机理研究[J]. 干旱区地理, 2013, 36(6): 1162−1169SU Y, MA H L, YAN L. Spatial-temporal differences and driving mechanism of agricultural land use carbon emission in Xinjiang[J]. Arid Land Geography, 2013, 36(6): 1162−1169 [15] 张乐勤, 李荣富, 陈素平, 等. 安徽省1995年-2009年能源消费碳排放驱动因子分析及趋势预测−基于STIRPAT模型[J]. 资源科学, 2012, 34(2): 316−327ZHANG L Q, LI R F, CHEN S P, et al. Trend prediction and analysis of driving factors of carbon emissions from energy consumption during the period 1995-2009 in Anhui Province based on the STIRPAT model[J]. Resources Science, 2012, 34(2): 316−327 [16] 王锋, 吴丽华, 杨超. 中国经济发展中碳排放增长的驱动因素研究[J]. 经济研究, 2010, 45(2): 123−136WANG F, WU L H, YANG C. Driving factors for growth of carbon dioxide emissions during economic development in China[J]. Economic Research Journal, 2010, 45(2): 123−136 [17] 黄敏, 刘剑锋. 外贸隐含碳排放变化的驱动因素研究−基于I-O SDA模型的分析[J]. 国际贸易问题, 2011(4): 94−103HUANG M, LIU J F. An empirical study of driving factors in growth of embodied carbon in foreign trade: analysis based on I-O SDA model[J]. Journal of International Trade, 2011(4): 94−103 [18] 姚亮, 刘晶茹, 王如松. 中国城乡居民消费隐含的碳排放对比分析[J]. 中国人口·资源与环境, 2011, 21(4): 25−29 doi: 10.3969/j.issn.1002-2104.2011.04.004YAO L, LIU J R, WANG R S. Comparison and analysis of carbon emissions embodied in household consumption between urban and rural area of China[J]. China Population, Resources and Environment, 2011, 21(4): 25−29 doi: 10.3969/j.issn.1002-2104.2011.04.004 [19] 林伯强, 蒋竺均. 中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J]. 管理世界, 2009(4): 27−36 doi: 10.19744/j.cnki.11-1235/f.2009.04.004LIN B Q, JIANG Z J. Prediction of environmental Kuznets Curve of carbon dioxide in China and analysis of influencing factors[J]. Management World, 2009(4): 27−36 doi: 10.19744/j.cnki.11-1235/f.2009.04.004 [20] 田云, 张俊飚, 李波. 基于投入角度的农业碳排放时空特征及因素分解研究−以湖北省为例[J]. 农业现代化研究, 2011, 32(6): 752−755 doi: 10.3969/j.issn.1000-0275.2011.06.025TIAN Y, ZHANG J B, LI B. Research on spatial-temporal characteristics and factor decomposition of agricultural carbon emission based on input angle—Taking Hubei Province for example[J]. Research of Agricultural Modernization, 2011, 32(6): 752−755 doi: 10.3969/j.issn.1000-0275.2011.06.025 [21] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116−134 doi: 10.11821/dlxb201701010WANG J F, XU C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116−134 doi: 10.11821/dlxb201701010 [22] 胡雪瑶, 张子龙, 陈兴鹏, 等. 县域经济发展时空差异和影响因素的地理探测−以甘肃省为例[J]. 地理研究, 2019, 38(4): 772−783 doi: 10.11821/dlyj020171169HU X Y, ZHANG Z L, CHEN X P, et al. Geographic detection of spatial-temporal difference and its influencing factors on county economic development: A case study of Gansu Province[J]. Geographical Research, 2019, 38(4): 772−783 doi: 10.11821/dlyj020171169 [23] 杨忍, 刘彦随, 龙花楼, 等. 中国村庄空间分布特征及空间优化重组解析[J]. 地理科学, 2016, 36(2): 170−179 doi: 10.13249/j.cnki.sgs.2016.02.002YANG R, LIU Y S, LONG H L, et al. Spatial distribution characteristics and optimized reconstructing analysis of rural settlement in China[J]. Scientia Geographica Sinica, 2016, 36(2): 170−179 doi: 10.13249/j.cnki.sgs.2016.02.002 [24] 智静, 高吉喜. 中国城乡居民食品消费碳排放对比分析[J]. 地理科学进展, 2009, 28(3): 429−434 doi: 10.11820/dlkxjz.2009.03.016ZHI J, GAO J X. Comparative analysis of carbon emissions from food consumption of urban and rural residents in China[J]. Progress in Geography, 2009, 28(3): 429−434 doi: 10.11820/dlkxjz.2009.03.016 [25] WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture Ecosystems & Environment, 2002, 91(1/3): 217−232 [26] IPCC. Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2007 [27] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013 [28] 伍芬琳, 李琳, 张海林, 等. 保护性耕作对农田生态系统净碳释放量的影响[J]. 生态学杂志, 2007(12): 2035−2039 doi: 10.13292/j.1000-4890.2007.0360WU F L, LI L, ZHANG H L, et al. Effects of conservation tillage on net carbon release from farmland ecosystem[J]. Chinese Journal of Ecology, 2007(12): 2035−2039 doi: 10.13292/j.1000-4890.2007.0360 [29] 李慧, 李玮, 姚西龙. 基于GWR模型的农业碳排放影响因素时空分异研究[J]. 科技管理研究, 2019, 39(18): 238−245 doi: 10.3969/j.issn.1000-7695.2019.18.031LI H, LI W, YAO X L. Study on spatial and temporal variation of impacting factors of agricultural carbon emissions based on the GWR model[J]. Science and Technology Management Research, 2019, 39(18): 238−245 doi: 10.3969/j.issn.1000-7695.2019.18.031 [30] 田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097−2105TIAN Y, ZHANG J B, LI B. Agricultural carbon emissions in China: calculation, spatial-temporal comparison and decoupling effects[J]. Resources Science, 2012, 34(11): 2097−2105 [31] 李政通, 白彩全, 肖薇薇. 基于LMDI模型的东北地区农业碳排放测度与分解[J]. 干旱地区农业研究, 2017, 35(4): 145−152LI Z T, BAI C Q, XIAO W W. The measurement and decomposition of agricultural carbon emissions in Northeast China based on LMDI model[J]. Agricultural Research in the Arid Areas, 2017, 35(4): 145−152 [32] 徐小雨, 董会忠, 庞敏. 东北三省农业碳排放效率时空演化特征及驱动因素分析[J]. 中国环境管理, 2023, 15(2): 86−97XU X Y, DONG H Z, PANG M. Analysis on the spatio-temporal evolution characteristics and driving factors of agricultural carbon emission efficiency in three northeastern provinces of China[J]. Chinese Journal of Environmental Management, 2023, 15(2): 86−97 -
附图1 东北三省地图.docx
-