Effects of salt stress on photosynthetic characteristics and canopy structure of edible sunflower leaves at budding stage
-
摘要: 为探明不同程度盐胁迫对现蕾期食用型向日葵(下称“食葵”)光合作用的影响, 测定分析轻度(全盐量1.00 g∙kg−1, LS)、中度(全盐量2.68 g∙kg−1, MS)和重度(全盐量4.93 g∙kg−1, HS)盐胁迫下, 现蕾期食葵不同叶位叶片的光合性能和冠层结构参数。结果表明, 盐胁迫降低了食葵叶片的净光合速率(Pn), 其中MS和HS处理的Pn最大值较LS分别降低5.09%和37.16%, 并减少了具有较高光合速率的叶片数量。盐胁迫降低了食葵顶叶的Pn, MS、HS处理的食葵顶叶Pn最大值较LS分别降低8.07%、14.35%。LS处理的光合速率受到气孔和非气孔双重因素的影响, 而MS、HS处理主要受非气孔因素的影响。盐胁迫改变了食葵的株型, LS处理的冠层结构呈宝塔型, 而MS和HS处理的冠层结构分别呈平展型和圆柱体型。盐胁迫会减小食葵总叶面积和主要功能叶面积, 其中HS处理的总叶面积较LS、MS处理分别降低56.03%、47.74%, HS处理的最大单叶面积较LS、MS处理分别降低38.71%、49.46%; 同时增大叶倾角, HS处理的叶倾角最大值与LS、MS处理相比分别提高30.92%、14.59%。总之, 盐胁迫会明显降低食葵主要功能叶片的光合性能和叶面积, 并使其冠层结构由伸展型向收缩型变化, 进而抑制植株正常生长。Abstract: To explore the effects of salt-stress degree on the photosynthesis of edible sunflowers (hereinafter referred to as 'Shikui') at budding stage, the photosynthetic characteristics of leaves and its canopy structure were obtained from three degrees of salt stress classed by lower (LS), medium (MS) and higher (HS) total dissolved solids values (1.00, 2.68 and 4.93 g∙kg−1, respectively). The results showed that the three salt-stress treatments dramatically decreased net photosynthetic rate (Pn) of leaves and reduced the number of leaves those with a higher Pn. Compared to the LS treatment, the maximum Pn in the MS and HS treatments decreased by 5.09% and 37.16%, respectively. In addition, salt stress reduced the Pn of the top leaves, and the maximum Pn values of the top leaves in the MS and HS treatments were 8.07% and 14.35% lower than that in the LS treatment, respectively. The Pn of all leaves was mainly affected by the synergistic effect of stomatal and non-stomatal factors in the LS treatment, while it was mainly affected by non-stomatal factors in the MS and HS treatments. Meanwhile, salt stress changed the plant type of edible sunflowers. The LS treatment showed a pagoda shape; however, the canopy structure of the MS and HS treatments showed a flat and cylindrical shape, respectively. Salt stress reduced the total leaf area and main functional leaf area of edible sunflower. Compared to the LS and MS treatments, the total leaf area of the HS treatment decreased by 56.03% and 47.74%, and the maximum single leaf area of the HS treatment also decreased by 38.71 % and 49.46 %, respectively. In contrast, the maximum leaf inclination angle of the HS treatment increased by 30.92% and 14.59% than those of the LS and MS treatments, respectively. In conclusion, salt stress can significantly reduce the photosynthetic performance and leaf area of the main functional leaves of edible sunflowers, causing the canopy structure to change from an extension type to a contraction type, thereby inhibiting normal plant growth.
-
Key words:
- Edible Sunflower /
- Salt stress /
- Photosynthetic rate /
- Canopy structure
-
表 1 不同处理土壤的盐分含量
Table 1. Salt content of soil at different treatments
处理
Treatment电导率
Conductivity (μS∙cm−1)全盐量
Total salt (g∙kg−1)pH LS 轻度盐胁迫
Light salt stress313 1.00 7.92 MS 中度盐胁迫
Moderate salt stress839 2.68 7.84 HS 重度盐胁迫
heavy salt stress1 542 4.93 9.10 表 2 不同盐分水平下食葵不同叶位叶片净光合速率与各因素之间的相关系数
Table 2. Correlation coefficients between net photosynthetic rate and its affecting factors at different positions of sunflower leaves under different salinity levels
处理
Treatment气孔导度
Stomatal conductance (Gs)胞间CO2浓度
Intercellular CO2 concentration (Ci)蒸腾速率
Transpiration
rate (Tr)叶温
Leaf temperature (TL)光合有效辐射
Photosynthetically active radiation (PAR)气孔限制值
Stomatal limitation value (Ls)叶面积
Leaf area
(LA)LS 0.819** 0.666* 0.920** −0.675* 0.637* −0.795* 0.367 MS 0.865** 0.639* 0.922** −0.532 0.472 −0.767* 0.889* HS 0.911** 0.745* 0.984** −0.921** 0.140 −0.803** 0.701* LS: 轻度盐胁迫; MS: 中度盐胁迫; HS: 重度盐胁迫。*表示在P<0.05水平差异显著, **表示在P<0.01水平差异显著。LS: Light salt stress; MS: moderate salt stress; HS: heavy salt stress. * means significant difference at P<0.05 level, ** means significant difference at P<0.01 level. 表 3 不同盐分水平下食葵顶叶净光合速率(Pn)与各因素相关系数比较
Table 3. Comparison of correlation coefficients between net photosynthetic rate and various factors in the top leaves of sunflower under different salinity levels
处理
Treatment时间
Time气孔导度
Stomatal
conductance (Gs)胞间CO2浓度
Intercellular CO2
concentration (Ci)蒸腾速率
Transpiration
rate (Tr)叶温
Leaf temperature (TL)光合有效辐射
Photosynthetically active
radiation (PAR)气孔限制值
Stomatal limitation
value (Ls)LS 8:00 0.710* 0.575 0.632 −0.742* −0.572 −0.597 10:00 0.999** 0.988** −0.961** −0.995** 0.983** −0.996** 12:00 0.914** −0.680 0.990** −0.902** −0.978** 0.174 14:00 1.000** 0.732* 0.992** −0.999** −0.901** −0.997** 16:00 0.826** −0.098 0.649 0.540 −0.684 −0.479 18:00 0.696* −0.778* 0.934** 0.714* −0.945** 0.603 MS 8:00 −0.900** −0.931** −0.910** 0.751* −0.436 0.930** 10:00 0.196 −0.995** −0.964** −0.310 −0.898* 0.996** 12:00 0.975** 0.791* 0.986** −0.955** 0.930** −0.924** 14:00 0.915** −0.357 0.936** −0.111 −0.255 −0.512 16:00 0.947** −0.707* 0.603 −0.143 −0.740* 0.453 18:00 0.910** 0.599 0.904** 0.881* 0.843* −0.669* HS 8:00 −0.569 −0.988** −0.300 0.411 −0.177 0.976** 10:00 0.661* −0.875* −0.801* −0.521 −0.458 0.165 12:00 −0.902** 0.927** 0.971** −0.910** −0.978** −0.928** 14:00 −0.325 −0.967** 0.968** 0.952** 0.296 0.959** 16:00 0.890* 0.858* 0.846* −0.186 −0.865* −0.854* 18:00 0.935** −0.994** 0.943** 0.950** −0.929** 0.969** LS: 轻度盐胁迫; MS: 中度盐胁迫; HS: 重度盐胁迫。*表示在P<0.05水平差异显著, **表示在P<0.01水平差异显著。LS: Light salt stress; MS: moderate salt stress; HS: heavy salt stress. * means significant difference at P<0.05 level, ** means significant difference at P<0.01 level. 表 4 不同盐分处理下不同时段食葵光合作用主要受到的影响
Table 4. The photosynthesis of sunflower was mainly affected by different salt treatments at different periods
处理
Treatment时间
Time影响因子
Impact factorLS 8:00 Gs, TL 10:00 Gs, Ci, Tr, TL, PAR,Ls 12:00 Gs, TL, Tr, PAR 14:00 Gs, Ci, Tr, TL, PAR,Ls 16:00 Gs 18:00 Gs, Ci, Tr, TL, PAR MS 8:00 Gs, Ci, Tr, TL,Ls 10:00 Ci, Tr, PAR,Ls 12:00 Gs, Ci, Tr, TL, PAR,Ls 14:00 Gs, Tr 16:00 Gs, Ci, PAR 18:00 Gs, Tr, TL, PAR, Ls HS 8:00 Ci,Ls 10:00 Gs, Ci, Tr 12:00 Gs, Ci, Tr, TL, PAR,Ls 14:00 Ci, Tr, TL,Ls 16:00 Gs, Ci, Tr, PAR,Ls 18:00 Gs, Ci, Tr, TL, PAR, Ls LS: 轻度盐胁迫; MS: 中度盐胁迫; HS: 重度盐胁迫。TL: 叶片温度; Tr: 蒸腾速率; Ci: 细胞间隙CO2浓度; Gs: 气孔导度; Ls: 气孔限制值; PAR光合有效辐射。LS: Light salt stress; MS: moderate salt stress; HS: heavy salt stress. TL: Leaf temperature; Tr: Transpiration rate; Ci: Intercellular CO2 concentration; Gs: Stomatal conductance; Ls: Stomatal limitation value; PAR: Photosynthetically active radiation. -
[1] 黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展[J]. 土壤, 2022, 54(1): 18−23HUANG J, KONG Y L, XU Q S, et al. Progresses for characteristics and amelioration measures of saline soil[J]. Soils, 2022, 54(1): 18−23 [2] 杨春武, 李长有, 张美丽, 等. 盐、碱胁迫下小冰麦体内的pH及离子平衡[J]. 应用生态学报, 2008, 19(5): 1000−1005YANG C W, LI C Y, ZHANG M L, et al. pH and ion balance in wheat-wheatgrass under salt-or alkali stress[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1000−1005 [3] REHMAN S, ABBAS G, SHAHID M, et al. Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: implications for phytoremediation[J]. Ecotoxicology and Environmental Safety, 2019, 171: 146−153 doi: 10.1016/j.ecoenv.2018.12.077 [4] 李素萍. 食用型向日葵杂种优势及配合力研究[D]. 呼和浩特: 内蒙古农业大学, 2006LI S P. The study on heterosis and combining ability in confection sunflower[D]. Hohhot: Inner Mongolia Agricultural University, 2006 [5] MUNIRA S, HOSSAIN M, ZAKARIA M, et al. Evaluation of potato varieties against salinity stress in Bangladesh[J]. International Journal of Plant & Soil Science, 2015, 6(2): 73−81 [6] YANG X L, LI Y Y, CHEN H B, et al. Photosynthetic response mechanism of soil salinity-induced cross-tolerance to subsequent drought stress in tomato plants[J]. Plants, 2020, 9(3): 363 doi: 10.3390/plants9030363 [7] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453−467 [8] 曾文治. 向日葵水、氮、盐耦合效应及其模拟[D]. 武汉: 武汉大学, 2015ZENG W Z. Research and simulation for the coupling effects of water, nitrogen, and salt on sunflower[D]. Wuhan: Wuhan University, 2015 [9] 凌云鹤. 银叶向日葵响应盐胁迫的形态及生理机制的初步研究[D]. 杨凌: 西北农林科技大学, 2019LING Y H. Preliminary study on the morphology and physiological mechanism of silver leaf sunflower in response to salt stress[D]. Yangling: Northwest A & F University, 2019 [10] LONG S P, ZHU X G, NAIDU S L, et al. Can improvement in photosynthesis increase crop yields?[J]. Plant, Cell & Environment, 2006, 29(3): 315−330 [11] 马韬, 曾文治, 伍靖伟, 等. 不同施氮量下盐渍农田向日葵冠层生长与辐射利用规律[J]. 农业机械学报, 2020, 51(12): 292−303MA T, ZENG W Z, WU J W, et al. Sunflower canopy development, radiation absorption and use efficiency at different nitrogen application rates in saline fields[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 292−303 [12] 陈泽彬. 盐胁迫对向日葵产质量及相关性状的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2013CHEN Z B. Study on the impact of yield and quality with related properties of sunflower under salt stress[D]. Hohhot: Inner Mongolia Agricultural University, 2013 [13] PANG H C, LI Y Y, YANG J S, et al. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J]. Agricultural Water Management, 2010, 97(12): 1971−1977 doi: 10.1016/j.agwat.2009.08.020 [14] BERRY J A, DOWNTON W J S. Environmental regulation of photosynthesis[M]//Photosynthesis. Amsterdam: Elsevier, 1982: 263–343 [15] RIVELLI A R, LOVELLI S, PERNIOLA M. Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus)[J]. Functional Plant Biology:FPB, 2002, 29(12): 1405−1415 doi: 10.1071/PP01086 [16] MUNNS R, JAMES R A, LÄUCHLI A. Approaches to increasing the salt tolerance of wheat and other cereals[J]. Journal of Experimental Botany, 2006, 57(5): 1025−1043 doi: 10.1093/jxb/erj100 [17] 张俊莲, 陈勇胜, 武季玲, 等. 向日葵对盐逆境伤害的生理反应及耐盐性研究[J]. 中国油料作物学报, 2003, 25(1): 45−49 doi: 10.3321/j.issn:1007-9084.2003.01.012ZHANG J L, CHEN Y S, WU J L, et al. Physiological responses and salt-tolerance of sunflower (Helianthus annuus) under salt stress injury[J]. Chinese Journal of Oil Crop Scieves, 2003, 25(1): 45−49 doi: 10.3321/j.issn:1007-9084.2003.01.012 [18] 徐惠风, 金研铭, 徐克章. 向日葵不同节位叶片光合特性及其与产量关系的研究[J]. 吉林农业大学学报, 2001, 23(1): 6−9 doi: 10.3969/j.issn.1000-5684.2001.01.002XU H F, JIN Y M, XU K Z. Photosynthetic characteristics of sunflower leaves at different node positions and their relations to yield[J]. Journal of Jilin Agricultural University, 2001, 23(1): 6−9 doi: 10.3969/j.issn.1000-5684.2001.01.002 [19] TEZARA W, LAWLOR D W. Effects of water stress on the biochemistry and physiology of photosynthesis in sunflower[M]//MANT A, ROBINSON C. Photosynthesis: From Light to Biosphere. Dordrecht: Springer Netherlands, 1995: 3589–3592 [20] 郑国琦, 许兴, 徐兆桢, 等. 盐胁迫对枸杞光合作用的气孔与非气孔限制[J]. 西北农业学报, 2002, 11(3): 87−90ZHENG G Q, XU X, XU Z Z, ET AL. THE EFFECT OF SALT STRESS ON THE STOMATAL AND NON-STOMATAL LIMITATION OF PHOTOSYNTHESIS OF WOLF BERRY[J]. ACTA AGRICULTURAE BOREALI-OCCIDENTALIS SINICA, 2002, 11(3): 87−90 [21] JAMES R A, RIVELLI A R, MUNNS R, et al. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat[J]. Functional Plant Biology, 2002, 29(12): 1393 doi: 10.1071/FP02069 [22] SANTOS C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves[J]. Scientia Horticulturae, 2004, 103(1): 93−99 doi: 10.1016/j.scienta.2004.04.009 [23] MANIVANNAN P, JALEEL C A, SANKAR B, et al. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress[J]. Colloids and Surfaces B:Biointerfaces, 2007, 59(2): 141−149 doi: 10.1016/j.colsurfb.2007.05.002 [24] FOYER C H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis[J]. Environmental and Experimental Botany, 2018, 154: 134−142 doi: 10.1016/j.envexpbot.2018.05.003 [25] 孔东, 史海滨, 李延林, 等. 不同盐分条件下油葵光合日变化特征研究[J]. 干旱地区农业研究, 2005, 23(1): 111−115 doi: 10.3321/j.issn:1000-7601.2005.01.022KONG D, SHI H B, LI Y L, et al. Studies on photosynthetic rate of oil sunflower under difference salt stresses[J]. Agricultural Research in the Arid Areas, 2005, 23(1): 111−115 doi: 10.3321/j.issn:1000-7601.2005.01.022 [26] 杨晓盆, 张超, 王文梅, 等. 扁核木光合特性的研究[J]. 中国生态农业学报, 2008, 16(4): 909−913YANG X P, ZHANG C, WANG W M, ET AL. Photosynthetic characteristics of Prinsepla uniflora Batal.[J]. Chinese Journal of Eco-agriculture, 2008, 16(4): 909−913 [27] 吾木提汗·卡克木, 海利力·库尔班, 陈其军, 等. 盐胁迫条件下骆驼刺与绿豆光合日变化特征及午休现象的成因[J]. 干旱区研究, 2012, 29(6): 1039−1045UMETHAN KAKEM, HALIL KURBAN, CHEN Q J, et al. Study on daily change and midday depression of photosynthesis of Alhagi pseudoalhagi Vigna radiataunder salt stress[J]. Arid Zone Research, 2012, 29(6): 1039−1045 [28] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317−345 doi: 10.1146/annurev.pp.33.060182.001533 [29] YANG H M, ZHANG X Y, ZHAO L A. Stomatal control partly explains different photosynthetic characteristics in Helianthus laetiflora and H. annuus[J]. New Zealand Journal of Crop and Horticultural Science, 2009, 37(1): 33−39 doi: 10.1080/01140670909510247 [30] 韩瑞锋, 李建明, 胡晓辉, 等. 甜瓜幼苗叶片光合变化特性[J]. 生态学报, 2012, 32(5): 1471−1480 doi: 10.5846/stxb201101190103HAN R F, LI J M, HU X H, et al. Research on dynamic characteristics of photosynthesis in muskmelon seedling leaves[J]. Acta Ecologica Sinica, 2012, 32(5): 1471−1480 doi: 10.5846/stxb201101190103 [31] ORT D R, MERCHANT S S, ALRIC J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8529−8536 [32] 谷艳芳, 丁圣彦, 李婷婷, 等. 盐胁迫对冬小麦幼苗干物质分配和生理生态特性的影响[J]. 生态学报, 2009, 29(2): 840−845GU Y F, DING S Y, LI T T, et al. Effects of saline stress on dry matter partitioning and ecophysiological characteristics of winter wheat seedlings[J]. Acta Ecologica Sinica, 2009, 29(2): 840−845 [33] WU X H, FAN W L, DU H Q, et al. Estimating crown structure parameters of moso bamboo: leaf area and leaf angle distribution[J]. Forests, 2019, 10(8): 686 doi: 10.3390/f10080686 [34] ANDERSON M C, DENMEAD O T. Short wave radiation on inclined surfaces in model plant communities[J]. Agronomy Journal, 1969, 61(6): 867−872 doi: 10.2134/agronj1969.00021962006100060012x [35] 徐昭. 水肥调控对盐渍化灌区向日葵冠层结构和光合性能的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2016XU Z. Study on the impact of water and fertilizer regulation on sunflower canopy structure and photosynthetic characteristics in salinization irrigation district[D]. Hohhot: Inner Mongolia Agricultural University, 2016 [36] NIINEMETS Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance[J]. Ecological Research, 2010, 25(4): 693−714 doi: 10.1007/s11284-010-0712-4 [37] MEDINA E. Mangrove physiology: the challenge of salt, heat, and light stress under recurrent flooding[J]. Ecosistemas de Manglar en América Tropical, 1999: 109−126 [38] 刘星, 曹红霞, 廖阳, 等. 滴灌模式对苹果光合特性、产量及灌溉水利用的影响[J]. 中国农业科学, 2021, 54(15): 3264−3278LIU X, CAO H X, LIAO Y, et al. Effects of drip irrigation methods on photosynthetic characteristics, yield and irrigation water use of apple[J]. Scientia Agricultura Sinica, 2021, 54(15): 3264−3278 -