留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

姜精油和柠檬醛对生姜枯萎病菌的抑菌作用及盆栽防效

周丽荣 熊诗洁 张玲玲 马慧慧 朱学栋 尹军良 刘奕清

周丽荣, 熊诗洁, 张玲玲, 马慧慧, 朱学栋, 尹军良, 刘奕清. 姜精油和柠檬醛对生姜枯萎病菌的抑菌作用及盆栽防效[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−11 doi: 10.12357/cjea.20230230
引用本文: 周丽荣, 熊诗洁, 张玲玲, 马慧慧, 朱学栋, 尹军良, 刘奕清. 姜精油和柠檬醛对生姜枯萎病菌的抑菌作用及盆栽防效[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−11 doi: 10.12357/cjea.20230230
ZHOU L R, XIONG S J, ZHANG L L, MA H, ZHU X D, YIN J L, LIU Y Q. Control effect and mechanism of ginger essential oil and citral on ginger Fusamum wilt[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20230230
Citation: ZHOU L R, XIONG S J, ZHANG L L, MA H, ZHU X D, YIN J L, LIU Y Q. Control effect and mechanism of ginger essential oil and citral on ginger Fusamum wilt[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20230230

姜精油和柠檬醛对生姜枯萎病菌的抑菌作用及盆栽防效

doi: 10.12357/cjea.20230230
基金项目: 重庆英才优秀科学项目(2022CQYC027)、调味品产业技术体系生姜品种选育与丰产技术研究推广(2022-2023-07)和湖北省重点研发计划项目(2022BBA0061, 2021BBA096)资助
详细信息
    作者简介:

    周丽荣, 主要研究方向为植物病害防控。E-mail:1832721032@qq.com

    通讯作者:

    刘奕清, 主要研究方向为生姜生物育种与病害防控。E-mail: liung906@163.com

  • 中图分类号: S435.72

Control effect and mechanism of ginger essential oil and citral on ginger Fusamum wilt

Funds: This study was supported by the Chongqing Yingcai Excellent Science Project (2022CQYC027), Research and Promotion of Ginger Variety Selection and Productivity Technology (2022-2023-07) and Hubei Provincial Key R&D Projects (2022BBA0061, 2021BBA096).
More Information
  • 摘要: 生姜枯萎病是由尖孢镰刀菌(Fusarium oxysporum)引起的的土传病害, 防控极为困难。为了探究环境友好和安全的植物源生物农药, 本研究利用平板抑菌试验和孢子萌发试验研究了姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌的生长抑制作用, 并通过盆栽试验进一步验证了姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌的防控效果。结果显示, 姜精油和柠檬醛处理可显著抑制生姜枯萎病菌尖孢镰刀菌的菌丝生长与孢子萌发, 2 g·L−1姜精油和0.5 g·L−1柠檬醛对生姜枯萎病菌尖孢镰刀菌菌丝生长的抑制率分别为82.0%与100%, 孢子萌发抑制率分别为34.7%与95.0%; 扫描电镜结果表明, 姜精油和柠檬醛处理生姜枯萎病菌尖孢镰刀菌菌丝体3 d后, 其菌丝体表现出不同程度的弯曲、褶皱和凹陷; PI染色结果发现, 姜精油和柠檬醛处理严重破坏了生姜枯萎病菌尖孢镰刀菌细胞膜的完整性和通透性, 从而导致胞浆流失、胞外电导率、蛋白质、核酸与丙二醛含量急剧增加, 麦角固醇含量减少, 进而减弱了生姜枯萎病菌尖孢镰刀菌的致病力。接种生姜枯萎病菌尖孢镰刀菌15 d后, 2 g·L−1姜精油和0.5 g·L−1柠檬醛处理对生姜枯萎病的防控效果分别为32.7%、42.3%, 0.5 g·L−1柠檬醛处理与8 g·L−1百菌清防控效果(47.1%)无显著差异。综上, 姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌的生长有显著抑制作用, 并对生姜枯萎病有较好的防治效果, 研究结果可为开发新型植物源抑菌剂防控生姜枯萎病提供理论依据。
  • 图  1  不同培养时间与不同质量浓度姜精油(A)和柠檬醛(B)对生姜枯萎病菌尖孢镰刀菌菌丝生长的抑菌作用

    CK: 空白对照; 30%E: 阴性对照, 30% (质量体积分数)乙醇; Chtl.: 阳性化学药物对照, 百菌清(8 g∙L−1). CK: blank control; 30%E: negative control, 30% (v/v) ethanol; Chtl.: positive chemical control, chlorothalonil (8 g∙L−1).

    Figure  1.  Effect of different concentrations of ginger essential oil (A) and citral (B) on mycelial growth of F. oxysporum FOX-1 in different incubation times

    图  2  不同质量浓度姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌菌丝形态的影响

    A: 空白对照组; B: 1/2 MIC姜精油处理; C: 1/2 MIC柠檬醛处理; D: MIC姜精油处理; E: MIC柠檬醛处理。A: blank control group; B: 1/2 MIC GEO treatment; C: 1/2 citral treatment; D: MIC GEO treatment; E: MIC citral treatment. SEM HV: 20.0 kv; SEM MAG : 5.00 kx.

    Figure  2.  Effect of different concentrations of ginger essential oil and citral on mycelial morphology of F. oxysporum FOX-1

    图  3  荧光显微镜观察生姜枯萎病菌尖孢镰刀菌表型

    A: 空白对照组; B: 1/2 MIC姜精油处理; C: 1/2 MIC柠檬醛处理; D: MIC姜精油处理; E: MIC柠檬醛处理; 显微镜放大倍数10×40。A: blank control group; B: 1/2 MIC GEO treatment; C: 1/2 citral treatment; D: MIC GEO treatment; E: MIC citral treatment; 10×40 magnification of microscope was 10×40 times.

    Figure  3.  Phenotype of F. oxysporum FOX-1 observed by fluorescence microscopy

    图  4  不同质量浓度姜精油和柠檬醛处理后生姜枯萎病菌尖孢镰刀菌细胞完整性的变化

    A: 姜精油处理组电导率; B: 柠檬醛处理组电导率; C: 姜精油处理组蛋白质含量; D: 柠檬醛处理组蛋白质含量; E: 姜精油处理组核酸含量; F: 柠檬醛处理组核酸含量。A: Conductivity of ginger essential oil treated group; B: Conductivity of citral treated group; C: Protein content of ginger essential oil treated group; D: Protein content of citral treated group; E: Nucleic acid content of ginger essential oil treated group; F: Nucleic acid content of citral treated group.

    Figure  4.  Changes in cellular integrity of F. oxysporum FOX-1, after treatment with different concentrations of ginger essential oil and citral

    图  5  不同质量浓度姜精油和柠檬醛处理对生姜枯萎病菌尖孢镰刀菌MDA与麦角固醇含量的影响

    A: 姜精油处理组MDA含量; B: 柠檬醛处理组MDA含量; C: 姜精油处理组麦角固醇含量; D: 柠檬醛处理组麦角固醇含量。A: MDA content in ginger essential oil treated group; B: MDA content in citral treated group; C: Ergosterol content in ginger essential oil treated group; D: Ergosterol content in citral treated group.

    Figure  5.  Effect of different concentrations of ginger essential oil and citral on MDA and ergosterol content of F. oxysporum FOX-1

    表  1  姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌的抑菌效果

    Table  1.   Inhibitory effects of ginger essential oil and citral on F. oxysporum FOX-1

    处理
    Treatment
    浓度
    Concentration
    (g·L−1)
    菌落直径
    Colonydia
    meter (cm)
    抑菌率
    Inhibition
    rate (%)
    毒力方程
    Virulence equation
    半最大效应浓度
    Median effective concentration
    EC50 (μL·L−1)
    R2最小抑菌量
    minimal inhibitory concentration
    MIC (g·L−1)
    姜精油
    Ginger essential oil
    04.7±0.1 a0.0±0.0 fy=25.929x+9.3951.1020.8762
    30% ethanol4.6±0.4a0.0±0.0f
    0.1254.4±0.1 ab7.1±1.1 e
    0.253.9±0.1 c18.2±1.3 d
    0.53.7±0.1 cd24.3±3.2 cd
    13.4±0.2 d32.1±5.3 c
    21.4±0.1 e82.0±6.1 b
    40.6±0.0 f100.0±0.0 a
    百菌清
    Chlorothalonil (Chtl.)
    80.6±0.0 f100.0±0.0 a\\\\
    柠檬醛
    Citral
    04.9±0.1 a0.0±0.0 dy=12.178x−18.9430.1410.8990.5
    30% ethanol4.7±0.3 a0.0±0.0 d
    0.1253.2±0.1 b40.2±3.1 c
    0.250.9±0.2 c93.2±4.1 b
    0.50.6±0.0 d100.0±0.0 a
    10.6±0.0 d100.0±0.0 a
      同列不同字母表示差异显著(P<0.05)。Different letters in the same column meant significant difference at 0.05 level.
    下载: 导出CSV

    表  2  不同质量浓度姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌孢子萌发的影响

    Table  2.   Effect of different concentrations of ginger essential oil and citral on spore germination of F. oxysporum FOX-1

    处理
    Treatment
    孢子数量
    Number of
    spores (×104 ml L−1)
    孢子萌发率
    Spore
    germination (%)
    空白对照
    Blank control
    5.9±0.5a89.3±1.9a
    阳性对照
    Negative control
    5.4±0.5a90.7±1.8a
    阳性药物对照
    Positive chemical control
    1.8±0.3cd9.0±0.1e
    1/2MIC 姜精油
    1/2MIC ginger essential oil
    3.8±0.6b71.1±1.5b
    1/2 MIC 柠檬醛
    1/2 MIC citral
    2.3±0.2c12.4±1.9d
    MIC 姜精油
    MIC ginger essential oil
    2.4±0.5c58.3±1.7c
    MIC 柠檬醛
    MIC citral
    1.3±0.3d4.5±0.1f
      同列不同字母表示差异显著(P<0.05)。CK: 空白对照; 30%E: 阴性对照, 30% (质量体积分数)乙醇; Chtl.: 阳性化学药物对照, 百菌清(8 g∙L−1)。Different letters in the same column meant significant difference at 0.05 level. CK: blank control; 30%E: negative control, 30% (v/v) ethanol; Chtl.: positive chemical control, chlorothalonil (8 g∙L−1).
    下载: 导出CSV

    表  3  姜精油和柠檬醛处理对生姜枯萎病的盆栽防治效果

    Table  3.   The control effect of ginger essential oil and citral on ginger Fusarium wilt

    处理
    Treatment
    浓度
    Concentration
    (g·L−1)
    病情指数
    Disease
    Index (%)
    防控效果
    Control
    Efficacy (%)
    空白对照
    Blank control group
    05.0±0.7d0±0.0c
    阳性对照
    Positive control
    068.1±0.8a0±0.0c
    阳性药物对照
    Positive chemical controls
    836.0±1.9c47.1±4.5a
    姜精油
    Ginger Essential Oil
    245.8±1.5b32.7±3.5b
    柠檬醛
    Citral
    0.539.3±2.1c42.3±4.2a
      同列不同字母表示差异显著(P<0.05)。Different letters in the same column meant significant difference at 0.05 level.
    下载: 导出CSV
  • [1] 张玲玲, 周洁, 秦曼丽, 等. 生姜青枯病病原菌的鉴定与PCR检测方法的建立[J]. 西南大学学报(自然科学版), 2021, 43(9): 10−20

    ZHANG L L, ZHOU J, QIN M L, et al. Isolation and identification ofthe pathogen of ginger bacterial wilt and establishment of a PCR detection system[J]. Journal of Southwest University (Natural Science), 2021, 43(9): 10−20
    [2] 周洁, 覃竹山, 吴金平, 等. 生姜品质成分及姜辣素的比较[J]. 中国调味品, 2021, 46(12): 151−154

    ZHOU J, QIN Z S, WU J P, et al. Comparison of quality components and gingerols of ginger[J]. China Condiment, 2021, 46(12): 151−154
    [3] LE D P, SMITH M, HUDLER G W, et al. Pythium soft rot of ginger: detection and identification of the causal pathogens, and their control[J]. Crop Protection, 2014, 65: 153−167 doi: 10.1016/j.cropro.2014.07.021
    [4] DANG K K, HOU J F, LIU H, et al. Root exudates of ginger induced by Ralstonia solanacearum infection could inhibit bacterial wilt[J]. Journal of Agricultural and Food Chemistry, 2023, 71(4): 1957−1969 doi: 10.1021/acs.jafc.2c06708
    [5] RAI M, INGLE A P, PARALIKAR P, et al. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp. : emerging role of nanotechnology[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 6827−6839 doi: 10.1007/s00253-018-9145-8
    [6] LIU Y, WISNIEWSHI M, KENNEDY J F, et al. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage[J]. Carbohydrate Polymers, 2016, 151: 474−479 doi: 10.1016/j.carbpol.2016.05.103
    [7] 周洁, 张玲玲, 袁继荣, 等. 生姜腐皮镰刀菌的分离鉴定及PCR快速检测方法构建[J]. 植物病理学报, 2022, 52(4): 681−690

    ZHOU J, ZHANG L L, YUAN J R, et al. Isolation and identification of Fusarium solani from ginger rhizomes and establishment of a rapid PCR detection method[J]. Acta Phytopathologica Sinica, 2022, 52(4): 681−690
    [8] LI Y X, ERHUNMWUNSEE F, LIU M, et al. Antimicrobial mechanisms of spice essential oils and application in food industry[J]. Food Chemistry, 2022, 382: 132312 doi: 10.1016/j.foodchem.2022.132312
    [9] 朱永兴, 王艳红, 尹军良, 等. 生姜杀虫活性成分在植物源杀虫剂中的研究现状[J]. 应用生态学报, 2023, 34(3): 825−834

    ZHU Y X, WANG Y H, YIN J L, et al. Research status of ginger insecticidal components in botanical insecticides[J]. Chinese Journal of Applied Ecology, 2023, 34(3): 825−834
    [10] 孙迪, 贺依琳, 沈丹宇, 等. 芥菜生物熏蒸对烟草疫霉菌的抑制作用[J]. 中国生态农业学报(中英文), 2023, 31(4): 567−576

    SUN D, HE Y L, SHEN D Y, et al. Inhibiting effect of biological fumigation of mustard against Phytophthora nicotianae[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 567−576
    [11] 王启方, 王晓云, 李浩森, 等. 芳樟醇对灰葡萄孢生长的影响及对番茄灰霉病的防控效果[J]. 应用生态学报, 2023, 34(1): 213−220

    WANG Q F, WANG X Y, LI H S, et al. Effects of linalool on Botrytis cinerea growth and control of tomato gray mold[J]. Chinese Journal of Applied Ecology, 2023, 34(1): 213−220
    [12] MAHBOUBI M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity[J]. Clinical Phytoscience, 2019, 5(1): 1−12 doi: 10.1186/s40816-018-0096-5
    [13] 黄亚茹, 高芳, 迟韵阳, 等. 天然柠檬醛提取方法与生物活性研究进展[J]. 南方农业学报, 2022, 53(11): 3217−3228

    HUANG Y R, GAO F, CHI Y Y, et al. Research progress of extraction method and biological activity of natural citral[J]. Journal of Southern Agriculture, 2022, 53(11): 3217−3228
    [14] 高强, 李明, 李荣玉, 等. 31%柠檬醛羟丙基-β-环糊精水剂制备及其对稻瘟病菌的抑制作用[J]. 山地农业生物学报, 2016(2): 29−33

    GAO Q, LI M, LI R Y, et al. Preparation of citral HP-β-CD 31% AS and its biological activity of Magnaporthe grisea[J]. Journal of Mountain Agriculture and Biology, 2016(2): 29−33
    [15] 陈雨然, 罗黎明, 刘志勇. 不同产地生姜挥发油化学成分比较与分析[J]. 江西中医药, 2022, 53(4): 67−70

    CHEN Y R, LUO L M, LIU Z Y. Comparison and analysis of chemical constituents of volatile oil from ginger from different habitats[J]. Jiangxi Journal of Traditional Chinese Medicine, 2022, 53(4): 67−70
    [16] XI K Y, XIONG S J, LI G, et al. Antifungal activity of ginger rhizome extract against Fusarium solani[J]. Horticulturae, 2022, 8(11): 983 doi: 10.3390/horticulturae8110983
    [17] 周洁, 王艳红, 刘德麒, 等. 生姜主栽品种枯萎病抗性评价及抗病性鉴定指标筛选[J]. 南方农业学报, 2022, 53(9): 2557−2567

    ZHOU J, WANG Y H, LIU D Q, et al. Identification and evaluation of resistance to Fusarium wilt of ginger varieties and screening of resistance indexes[J]. Journal of Southern Agriculture, 2022, 53(9): 2557−2567
    [18] 王江来, 张锦锋, 马金秀, 等. 香芹酚和丁香酚对腐皮镰刀菌的抑菌活性及抑菌机理[J]. 微生物学通报, 2022, 49(5): 1638−1650

    WANG J L, ZHANG J F, MA J X, et al. Antagonistic activity and defense mechanism of carvacrol and eugenol against Fusarium solani[J]. Microbiology China, 2022, 49(5): 1638−1650
    [19] 马潇洋, 于存. 8种杀菌剂对尖孢镰刀菌的抑菌能力和田间防治效果[J]. 西部林业科学, 2023, 52(02): 69−74

    MA X Y, YU C. Bacteriostatic ability and field control effect of eight fungicides against Fusarium oxysporum[J]. Journal of West China Forestry Science, 2023, 52(02): 69−74
    [20] YU D, WANG J, SHAO X, et al. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea[J]. Journal of Applied Microbiology, 2015, 119(5): 1253−1262 doi: 10.1111/jam.12939
    [21] 翁甜, 王昱晴, 龙超安. 香叶醇对柑橘酸腐病菌的抑菌机制[J]. 食品科学, 2023, 44(1): 14−21

    WENG T, WANG Y Q, LONG C A. Inhibitory mechanism of geraniol against Geotrichum citri-aurantii in Citrus[J]. Food Science, 2023, 44(1): 14−21
    [22] ZHANG L L, QIN M L, YIN J L, et al. Antibacterial activity and mechanism of ginger extract against Ralstonia solanacearum[J]. Journal of Applied Microbiology, 2022, 133(4): 2642−2654 doi: 10.1111/jam.15733
    [23] 潘汝浩, 王继琛, 王磊, 等. 生姜枯萎病病原菌的分离鉴定及其接种浓度对生姜枯萎病发生程度的影响[J]. 南京农业大学学报, 2014, 37(1): 94−100

    PAN R H, WANG J C, WANG L, et al. Isolation and identification of ginger Fusarium wilt pathogen and the effect of spore suspension concentration on the extent of disease[J]. Journal of Nanjing Agricultural University, 2014, 37(1): 94−100
    [24] GUO Y X, CHEN X F, GONG P, et al. Advances in the role and mechanisms of essential oils and plant extracts as natural preservatives to extend the postharvest shelf life of edible mushrooms[J]. Foods, 2023, 12(4): 801 doi: 10.3390/foods12040801
    [25] MATHERON M E, PORCHAS M. Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of Three phytophthora spp[J]. Plant Disease, 2000, 84(4): 454−458 doi: 10.1094/PDIS.2000.84.4.454
    [26] 王刘庆, 王多, 姜冬梅等. 柠檬醛熏蒸对互隔交链孢生长及其产毒的抑制作用[J]. 菌物学报, 2020, 39(10): 1866−1783

    WANG L Q, WANG D, JIANG D M et al. Effects of citral fumigation on suppressing the growth and mycotoxin production of Alternaria alternata[J]. Mycosystema, 2020, 39(10): 1866−1783
    [27] REIS‐TEIXEIRA F B, SOUSA I P, ALVES V F, et al. Evaluation of lemongrass and ginger essential oils to inhibit Listeria monocytogenes in biofilms[J]. Journal of Food Safety, 2019, 39(4): e12627 doi: 10.1111/jfs.12627
    [28] JU J, XIE Y, YU H, et al. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation[J]. Food Chemistry, 2020, 310: 125974 doi: 10.1016/j.foodchem.2019.125974
    [29] GUNASENA M T, RAFI A, MOHD ZOBIR S A, et al. Phytochemicals profiling, antimicrobial activity and mechanism of action of essential oil extracted from ginger (Zingiber officinale roscoe cv. Bentong) against Burkholderia glumae causative agent of bacterial panicle blight disease of rice[J]. Plants, 2022, 11(11): 1466 doi: 10.3390/plants11111466
    [30] 张晶晶, 彭锐, 杜春贵等. 柠檬醛抑制真菌作用的研究进展及其在食品防霉中的应用前景[J]. 中国调味品, 2020, 45(7): 186−190,200

    ZHANG J J, PENG R, DU C G, et al. Research progress of antifungal action of citral and its application prospect in food mildew prevention[J]. China Condiment, 2020, 45(7): 186−190,200
    [31] GESSNER M O. Ergosterol as a measure of fungal biomass[M]// Methods to Study Litter Decomposition. Cham: Springer, 2020: 247−255
    [32] WEI J, BI Y, XUE H, et al. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves inhibition of ergosterol biosynthesis[J]. Journal of Applied Microbiology, 2020, 129(2): 256−265 doi: 10.1111/jam.14601
    [33] XIN Z T, OUYANG Q L, WAN C P, et al. Isolation of antofine from Cynanchum atratum BUNGE (Asclepiadaceae) and its antifungal activity against Penicillium digitatum[J]. Postharvest Biology and Technology, 2019, 157: 110961 doi: 10.1016/j.postharvbio.2019.110961
    [34] KUMAR P S, NATTUDURAI G, ISLAM V I H, et al. The effects of some essential oils on Alternaria alternata, a post-harvest phyto-pathogenic fungus in wheat by disrupting ergosterol biosynthesis[J]. Phytoparasitica, 2022, 50(2): 513−525 doi: 10.1007/s12600-021-00970-4
    [35] FERREIRA F M D, HIROOKA E Y, FERREIRA F D, et al. Effect of Zingiber officinale Roscoe essential oil in fungus control and deoxynivalenol production of Fusarium graminearum Schwabe in vitro[J]. Food Additives & Contaminants:Part A, 2018, 35(11): 2168−2174
    [36] WEI L, CHEN C, CHEN J, et al. Possible fungicidal effect of citral on kiwifruit pathogens and their mechanisms of actions[J]. Physiological and Molecular Plant Pathology, 2021, 114: 101631 doi: 10.1016/j.pmpp.2021.101631
    [37] 包华, 李康, 钟睦琪, 等. 胡椒碱对番茄灰霉病菌抑制作用及其机理研究[J]. 中国农业大学学报, 2022, 27(9): 117−124

    BAO H, LI K, ZHONG M Q, et al. Inhibitory effect of piperine on Botrytis cinerea and its mechanism[J]. Journal of China Agricultural University, 2022, 27(9): 117−124
    [38] WANG Y C, LIU M H, HAN X B, et al. Prickly ash seed kernel: a new bio-fumigation material against tobacco black shank[J]. Agronomy, 2020, 10(6): 770 doi: 10.3390/agronomy10060770
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  38
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 录用日期:  2023-08-21
  • 修回日期:  2023-09-19
  • 网络出版日期:  2023-10-09

目录

    /

    返回文章
    返回