Control effect and mechanism of ginger essential oil and citral on ginger Fusamum wilt
-
摘要: 生姜枯萎病是由尖孢镰刀菌(Fusarium oxysporum)引起的的土传病害, 防控极为困难。为了探究环境友好和安全的植物源生物农药, 本研究利用平板抑菌试验和孢子萌发试验研究了姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌的生长抑制作用, 并通过盆栽试验进一步验证了姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌的防控效果。结果显示, 姜精油和柠檬醛处理可显著抑制生姜枯萎病菌尖孢镰刀菌的菌丝生长与孢子萌发, 2 g·L−1姜精油和0.5 g·L−1柠檬醛对生姜枯萎病菌尖孢镰刀菌菌丝生长的抑制率分别为82.0%与100%, 孢子萌发抑制率分别为34.7%与95.0%; 扫描电镜结果表明, 姜精油和柠檬醛处理生姜枯萎病菌尖孢镰刀菌菌丝体3 d后, 其菌丝体表现出不同程度的弯曲、褶皱和凹陷; PI染色结果发现, 姜精油和柠檬醛处理严重破坏了生姜枯萎病菌尖孢镰刀菌细胞膜的完整性和通透性, 从而导致胞浆流失、胞外电导率、蛋白质、核酸与丙二醛含量急剧增加, 麦角固醇含量减少, 进而减弱了生姜枯萎病菌尖孢镰刀菌的致病力。接种生姜枯萎病菌尖孢镰刀菌15 d后, 2 g·L−1姜精油和0.5 g·L−1柠檬醛处理对生姜枯萎病的防控效果分别为32.7%、42.3%, 0.5 g·L−1柠檬醛处理与8 g·L−1百菌清防控效果(47.1%)无显著差异。综上, 姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌的生长有显著抑制作用, 并对生姜枯萎病有较好的防治效果, 研究结果可为开发新型植物源抑菌剂防控生姜枯萎病提供理论依据。Abstract: Fusarium wilt in ginger plants is primarily caused by Fusarium oxysporum, and is extremely difficult to control. Yet, chemical agents are an effective means to manage Fusarium wilt. To investigate environmentally friendly and safe plant-derived biopesticides, this study evaluated the inhibitory effects of ginger essential oil (GEO) and citral on F. oxysporum FOX-1 using the mycelium growth rate method and the spore germination method. First, the mycelial growth rate method was used to determine the inhibitory effect of various concentrations of GEO and citral on F. oxysporum FOX-1 mycelial growth. The lowest concentrations of GEO and citral that effectively prevented mycelial growth on a potato dextrose agar (PDA) plate after 48 h was recorded as the minimum inhibitory concentration (MIC). Following which, the spore germination method was used to assess the effects of GEO and citral at different concentrations (0, 1/2 MIC, MIC) on the spore number and spore germination of F. oxysporum FOX-1, respectively. The scanning electron microscope (SEM) was used to observe the mycelial morphology of F. oxysporum FOX-1, and propidium iodide (PI) staining was used to assess damage to its cell membrane. Furthermore, the effects of GEO and citral on the cell integrity and permeability of F. oxysporum FOX-1 were evaluated through experiments that measured the changes of the relative electrical conductivity, proteins, nucleic acids, malondialdehyde, and ergosterol. The effects of MIC GEO and citral on controlling Fusarium wilt in ginger in a pot experiment were determined 15 d after inoculation with F. oxysporum FOX-1. The results indicated that 2 g∙L−1 GEO and 0.5 g∙L−1 citral PDA plates significantly inhibited the mycelial growth of F. oxysporum FOX-1, with EC50 values of 1.102 g∙L−1 and 0.141 g∙L−1 for GEO and citral, respectively. This indicates that both GEO and citral exhibited dose-dependent effects, with MIC values of 2 g∙L−1 and 0.5 g∙L−1, respectively. In addition, these treatments significantly inhibited the germination of F. oxysporum FOX-1 spores in the treatment of Fusarium wilt disease of ginger compared to the control (CK), particularly the 1/2 MIC versus MIC treatment. Compared to the CK, the 1/2 MIC and MIC GEO treatment reduced the number of F. oxysporum FOX-1 spores by 35.6% and 59.3%, respectively. Similarly, the 1/2 MIC and MIC citral treatment reduced the number of F. oxysporum FOX-1 spores by 61.0% and 78.0%, respectively. After 12 h of treatment, the germination rate of F. oxysporum FOX-1 spores in the 1/2 MIC and MIC GEO treatments reduced by 20.4% and 34.7%; whereas the germination rates in the 1/2 MIC and MIC citral treatments reduced by 86.1% and 95.0%, respectively. After 3 d of GEO and citral treatment, the SEM results showed that the cell wall and cell membrane of F. oxysporum FOX-1 were damaged, and could not maintain the normal linear morphology of mycelium, and showed different degrees of curvature, folds and depressions. Furthermore, the PI staining revealed that the GEO and citral treatment severely damaged the integrity and permeability of the cell membrane of F. oxysporum FOX-1, resulting in a significant increase in the number of spores. Moreover, this treatment resulted in a sharp increase in cytoplasmic loss, extracellular conductivity, protein, nucleic acid and malondialdehyde content in the damaged F. oxysporum FOX-1 cells. After 3 d of treating the mycelium, high concentrations of GEO (2 g∙L−1) and eugenol (2 g∙L−1) reduced the ergosterol content of F. oxysporum FOX-1 by 27.0% and 45.2%, respectively, compared with that of CK. Notably, GEO and citral treatments also weakened the pathogenicity of F. oxysporum FOX-1. Moreover, after 15 d of inoculation with F. oxysporum FOX-1, the 2 g∙L−1 GEO and 0.5 g∙L−1 citral treatments exhibited efficacy rates of 32.7% and 42.3%, respectively, which 0.5 g∙L−1 citral treatments was not significantly different from that of the positive control, chlorothalonil, which exhibited an efficacy rate of 47.1%. In summary, GEO and citral had significant inhibitory effect on the growth of F. oxysporum FOX-1 and could control Fusamum wilt in gingers. These findings could lay the foundation for developing botanical antifungal agents for management of Fusamum wilt.
-
Key words:
- Ginger essential oil /
- Citral /
- Fusarium wilt /
- Zingiber offificinale /
- Antibacterial activity
-
图 1 不同培养时间与不同质量浓度姜精油(A)和柠檬醛(B)对生姜枯萎病菌尖孢镰刀菌菌丝生长的抑菌作用
CK: 空白对照; 30%E: 阴性对照, 30% (质量体积分数)乙醇; Chtl.: 阳性化学药物对照, 百菌清(8 g∙L−1). CK: blank control; 30%E: negative control, 30% (v/v) ethanol; Chtl.: positive chemical control, chlorothalonil (8 g∙L−1).
Figure 1. Effect of different concentrations of ginger essential oil (A) and citral (B) on mycelial growth of F. oxysporum FOX-1 in different incubation times
图 2 不同质量浓度姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌菌丝形态的影响
A: 空白对照组; B: 1/2 MIC姜精油处理; C: 1/2 MIC柠檬醛处理; D: MIC姜精油处理; E: MIC柠檬醛处理。A: blank control group; B: 1/2 MIC GEO treatment; C: 1/2 citral treatment; D: MIC GEO treatment; E: MIC citral treatment. SEM HV: 20.0 kv; SEM MAG : 5.00 kx.
Figure 2. Effect of different concentrations of ginger essential oil and citral on mycelial morphology of F. oxysporum FOX-1
图 3 荧光显微镜观察生姜枯萎病菌尖孢镰刀菌表型
A: 空白对照组; B: 1/2 MIC姜精油处理; C: 1/2 MIC柠檬醛处理; D: MIC姜精油处理; E: MIC柠檬醛处理; 显微镜放大倍数10×40。A: blank control group; B: 1/2 MIC GEO treatment; C: 1/2 citral treatment; D: MIC GEO treatment; E: MIC citral treatment; 10×40 magnification of microscope was 10×40 times.
Figure 3. Phenotype of F. oxysporum FOX-1 observed by fluorescence microscopy
图 4 不同质量浓度姜精油和柠檬醛处理后生姜枯萎病菌尖孢镰刀菌细胞完整性的变化
A: 姜精油处理组电导率; B: 柠檬醛处理组电导率; C: 姜精油处理组蛋白质含量; D: 柠檬醛处理组蛋白质含量; E: 姜精油处理组核酸含量; F: 柠檬醛处理组核酸含量。A: Conductivity of ginger essential oil treated group; B: Conductivity of citral treated group; C: Protein content of ginger essential oil treated group; D: Protein content of citral treated group; E: Nucleic acid content of ginger essential oil treated group; F: Nucleic acid content of citral treated group.
Figure 4. Changes in cellular integrity of F. oxysporum FOX-1, after treatment with different concentrations of ginger essential oil and citral
图 5 不同质量浓度姜精油和柠檬醛处理对生姜枯萎病菌尖孢镰刀菌MDA与麦角固醇含量的影响
A: 姜精油处理组MDA含量; B: 柠檬醛处理组MDA含量; C: 姜精油处理组麦角固醇含量; D: 柠檬醛处理组麦角固醇含量。A: MDA content in ginger essential oil treated group; B: MDA content in citral treated group; C: Ergosterol content in ginger essential oil treated group; D: Ergosterol content in citral treated group.
Figure 5. Effect of different concentrations of ginger essential oil and citral on MDA and ergosterol content of F. oxysporum FOX-1
表 1 姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌的抑菌效果
Table 1. Inhibitory effects of ginger essential oil and citral on F. oxysporum FOX-1
处理
Treatment浓度
Concentration
(g·L−1)菌落直径
Colonydia
meter (cm)抑菌率
Inhibition
rate (%)毒力方程
Virulence equation半最大效应浓度
Median effective concentration
EC50 (μL·L−1)R2 最小抑菌量
minimal inhibitory concentration
MIC (g·L−1)姜精油
Ginger essential oil0 4.7±0.1 a 0.0±0.0 f y=25.929x+9.395 1.102 0.876 2 30% ethanol 4.6±0.4a 0.0±0.0f 0.125 4.4±0.1 ab 7.1±1.1 e 0.25 3.9±0.1 c 18.2±1.3 d 0.5 3.7±0.1 cd 24.3±3.2 cd 1 3.4±0.2 d 32.1±5.3 c 2 1.4±0.1 e 82.0±6.1 b 4 0.6±0.0 f 100.0±0.0 a 百菌清
Chlorothalonil (Chtl.)8 0.6±0.0 f 100.0±0.0 a \ \ \ \ 柠檬醛
Citral0 4.9±0.1 a 0.0±0.0 d y=12.178x−18.943 0.141 0.899 0.5 30% ethanol 4.7±0.3 a 0.0±0.0 d 0.125 3.2±0.1 b 40.2±3.1 c 0.25 0.9±0.2 c 93.2±4.1 b 0.5 0.6±0.0 d 100.0±0.0 a 1 0.6±0.0 d 100.0±0.0 a 同列不同字母表示差异显著(P<0.05)。Different letters in the same column meant significant difference at 0.05 level. 表 2 不同质量浓度姜精油和柠檬醛对生姜枯萎病菌尖孢镰刀菌孢子萌发的影响
Table 2. Effect of different concentrations of ginger essential oil and citral on spore germination of F. oxysporum FOX-1
处理
Treatment孢子数量
Number of
spores (×104 ml L−1)孢子萌发率
Spore
germination (%)空白对照
Blank control5.9±0.5a 89.3±1.9a 阳性对照
Negative control5.4±0.5a 90.7±1.8a 阳性药物对照
Positive chemical control1.8±0.3cd 9.0±0.1e 1/2MIC 姜精油
1/2MIC ginger essential oil3.8±0.6b 71.1±1.5b 1/2 MIC 柠檬醛
1/2 MIC citral2.3±0.2c 12.4±1.9d MIC 姜精油
MIC ginger essential oil2.4±0.5c 58.3±1.7c MIC 柠檬醛
MIC citral1.3±0.3d 4.5±0.1f 同列不同字母表示差异显著(P<0.05)。CK: 空白对照; 30%E: 阴性对照, 30% (质量体积分数)乙醇; Chtl.: 阳性化学药物对照, 百菌清(8 g∙L−1)。Different letters in the same column meant significant difference at 0.05 level. CK: blank control; 30%E: negative control, 30% (v/v) ethanol; Chtl.: positive chemical control, chlorothalonil (8 g∙L−1). 表 3 姜精油和柠檬醛处理对生姜枯萎病的盆栽防治效果
Table 3. The control effect of ginger essential oil and citral on ginger Fusarium wilt
处理
Treatment浓度
Concentration
(g·L−1)病情指数
Disease
Index (%)防控效果
Control
Efficacy (%)空白对照
Blank control group0 5.0±0.7d 0±0.0c 阳性对照
Positive control0 68.1±0.8a 0±0.0c 阳性药物对照
Positive chemical controls8 36.0±1.9c 47.1±4.5a 姜精油
Ginger Essential Oil2 45.8±1.5b 32.7±3.5b 柠檬醛
Citral0.5 39.3±2.1c 42.3±4.2a 同列不同字母表示差异显著(P<0.05)。Different letters in the same column meant significant difference at 0.05 level. -
[1] 张玲玲, 周洁, 秦曼丽, 等. 生姜青枯病病原菌的鉴定与PCR检测方法的建立[J]. 西南大学学报(自然科学版), 2021, 43(9): 10−20ZHANG L L, ZHOU J, QIN M L, et al. Isolation and identification ofthe pathogen of ginger bacterial wilt and establishment of a PCR detection system[J]. Journal of Southwest University (Natural Science), 2021, 43(9): 10−20 [2] 周洁, 覃竹山, 吴金平, 等. 生姜品质成分及姜辣素的比较[J]. 中国调味品, 2021, 46(12): 151−154ZHOU J, QIN Z S, WU J P, et al. Comparison of quality components and gingerols of ginger[J]. China Condiment, 2021, 46(12): 151−154 [3] LE D P, SMITH M, HUDLER G W, et al. Pythium soft rot of ginger: detection and identification of the causal pathogens, and their control[J]. Crop Protection, 2014, 65: 153−167 doi: 10.1016/j.cropro.2014.07.021 [4] DANG K K, HOU J F, LIU H, et al. Root exudates of ginger induced by Ralstonia solanacearum infection could inhibit bacterial wilt[J]. Journal of Agricultural and Food Chemistry, 2023, 71(4): 1957−1969 doi: 10.1021/acs.jafc.2c06708 [5] RAI M, INGLE A P, PARALIKAR P, et al. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp. : emerging role of nanotechnology[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 6827−6839 doi: 10.1007/s00253-018-9145-8 [6] LIU Y, WISNIEWSHI M, KENNEDY J F, et al. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage[J]. Carbohydrate Polymers, 2016, 151: 474−479 doi: 10.1016/j.carbpol.2016.05.103 [7] 周洁, 张玲玲, 袁继荣, 等. 生姜腐皮镰刀菌的分离鉴定及PCR快速检测方法构建[J]. 植物病理学报, 2022, 52(4): 681−690ZHOU J, ZHANG L L, YUAN J R, et al. Isolation and identification of Fusarium solani from ginger rhizomes and establishment of a rapid PCR detection method[J]. Acta Phytopathologica Sinica, 2022, 52(4): 681−690 [8] LI Y X, ERHUNMWUNSEE F, LIU M, et al. Antimicrobial mechanisms of spice essential oils and application in food industry[J]. Food Chemistry, 2022, 382: 132312 doi: 10.1016/j.foodchem.2022.132312 [9] 朱永兴, 王艳红, 尹军良, 等. 生姜杀虫活性成分在植物源杀虫剂中的研究现状[J]. 应用生态学报, 2023, 34(3): 825−834ZHU Y X, WANG Y H, YIN J L, et al. Research status of ginger insecticidal components in botanical insecticides[J]. Chinese Journal of Applied Ecology, 2023, 34(3): 825−834 [10] 孙迪, 贺依琳, 沈丹宇, 等. 芥菜生物熏蒸对烟草疫霉菌的抑制作用[J]. 中国生态农业学报(中英文), 2023, 31(4): 567−576SUN D, HE Y L, SHEN D Y, et al. Inhibiting effect of biological fumigation of mustard against Phytophthora nicotianae[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 567−576 [11] 王启方, 王晓云, 李浩森, 等. 芳樟醇对灰葡萄孢生长的影响及对番茄灰霉病的防控效果[J]. 应用生态学报, 2023, 34(1): 213−220WANG Q F, WANG X Y, LI H S, et al. Effects of linalool on Botrytis cinerea growth and control of tomato gray mold[J]. Chinese Journal of Applied Ecology, 2023, 34(1): 213−220 [12] MAHBOUBI M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity[J]. Clinical Phytoscience, 2019, 5(1): 1−12 doi: 10.1186/s40816-018-0096-5 [13] 黄亚茹, 高芳, 迟韵阳, 等. 天然柠檬醛提取方法与生物活性研究进展[J]. 南方农业学报, 2022, 53(11): 3217−3228HUANG Y R, GAO F, CHI Y Y, et al. Research progress of extraction method and biological activity of natural citral[J]. Journal of Southern Agriculture, 2022, 53(11): 3217−3228 [14] 高强, 李明, 李荣玉, 等. 31%柠檬醛羟丙基-β-环糊精水剂制备及其对稻瘟病菌的抑制作用[J]. 山地农业生物学报, 2016(2): 29−33GAO Q, LI M, LI R Y, et al. Preparation of citral HP-β-CD 31% AS and its biological activity of Magnaporthe grisea[J]. Journal of Mountain Agriculture and Biology, 2016(2): 29−33 [15] 陈雨然, 罗黎明, 刘志勇. 不同产地生姜挥发油化学成分比较与分析[J]. 江西中医药, 2022, 53(4): 67−70CHEN Y R, LUO L M, LIU Z Y. Comparison and analysis of chemical constituents of volatile oil from ginger from different habitats[J]. Jiangxi Journal of Traditional Chinese Medicine, 2022, 53(4): 67−70 [16] XI K Y, XIONG S J, LI G, et al. Antifungal activity of ginger rhizome extract against Fusarium solani[J]. Horticulturae, 2022, 8(11): 983 doi: 10.3390/horticulturae8110983 [17] 周洁, 王艳红, 刘德麒, 等. 生姜主栽品种枯萎病抗性评价及抗病性鉴定指标筛选[J]. 南方农业学报, 2022, 53(9): 2557−2567ZHOU J, WANG Y H, LIU D Q, et al. Identification and evaluation of resistance to Fusarium wilt of ginger varieties and screening of resistance indexes[J]. Journal of Southern Agriculture, 2022, 53(9): 2557−2567 [18] 王江来, 张锦锋, 马金秀, 等. 香芹酚和丁香酚对腐皮镰刀菌的抑菌活性及抑菌机理[J]. 微生物学通报, 2022, 49(5): 1638−1650WANG J L, ZHANG J F, MA J X, et al. Antagonistic activity and defense mechanism of carvacrol and eugenol against Fusarium solani[J]. Microbiology China, 2022, 49(5): 1638−1650 [19] 马潇洋, 于存. 8种杀菌剂对尖孢镰刀菌的抑菌能力和田间防治效果[J]. 西部林业科学, 2023, 52(02): 69−74MA X Y, YU C. Bacteriostatic ability and field control effect of eight fungicides against Fusarium oxysporum[J]. Journal of West China Forestry Science, 2023, 52(02): 69−74 [20] YU D, WANG J, SHAO X, et al. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea[J]. Journal of Applied Microbiology, 2015, 119(5): 1253−1262 doi: 10.1111/jam.12939 [21] 翁甜, 王昱晴, 龙超安. 香叶醇对柑橘酸腐病菌的抑菌机制[J]. 食品科学, 2023, 44(1): 14−21WENG T, WANG Y Q, LONG C A. Inhibitory mechanism of geraniol against Geotrichum citri-aurantii in Citrus[J]. Food Science, 2023, 44(1): 14−21 [22] ZHANG L L, QIN M L, YIN J L, et al. Antibacterial activity and mechanism of ginger extract against Ralstonia solanacearum[J]. Journal of Applied Microbiology, 2022, 133(4): 2642−2654 doi: 10.1111/jam.15733 [23] 潘汝浩, 王继琛, 王磊, 等. 生姜枯萎病病原菌的分离鉴定及其接种浓度对生姜枯萎病发生程度的影响[J]. 南京农业大学学报, 2014, 37(1): 94−100PAN R H, WANG J C, WANG L, et al. Isolation and identification of ginger Fusarium wilt pathogen and the effect of spore suspension concentration on the extent of disease[J]. Journal of Nanjing Agricultural University, 2014, 37(1): 94−100 [24] GUO Y X, CHEN X F, GONG P, et al. Advances in the role and mechanisms of essential oils and plant extracts as natural preservatives to extend the postharvest shelf life of edible mushrooms[J]. Foods, 2023, 12(4): 801 doi: 10.3390/foods12040801 [25] MATHERON M E, PORCHAS M. Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of Three phytophthora spp[J]. Plant Disease, 2000, 84(4): 454−458 doi: 10.1094/PDIS.2000.84.4.454 [26] 王刘庆, 王多, 姜冬梅等. 柠檬醛熏蒸对互隔交链孢生长及其产毒的抑制作用[J]. 菌物学报, 2020, 39(10): 1866−1783WANG L Q, WANG D, JIANG D M et al. Effects of citral fumigation on suppressing the growth and mycotoxin production of Alternaria alternata[J]. Mycosystema, 2020, 39(10): 1866−1783 [27] REIS‐TEIXEIRA F B, SOUSA I P, ALVES V F, et al. Evaluation of lemongrass and ginger essential oils to inhibit Listeria monocytogenes in biofilms[J]. Journal of Food Safety, 2019, 39(4): e12627 doi: 10.1111/jfs.12627 [28] JU J, XIE Y, YU H, et al. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation[J]. Food Chemistry, 2020, 310: 125974 doi: 10.1016/j.foodchem.2019.125974 [29] GUNASENA M T, RAFI A, MOHD ZOBIR S A, et al. Phytochemicals profiling, antimicrobial activity and mechanism of action of essential oil extracted from ginger (Zingiber officinale roscoe cv. Bentong) against Burkholderia glumae causative agent of bacterial panicle blight disease of rice[J]. Plants, 2022, 11(11): 1466 doi: 10.3390/plants11111466 [30] 张晶晶, 彭锐, 杜春贵等. 柠檬醛抑制真菌作用的研究进展及其在食品防霉中的应用前景[J]. 中国调味品, 2020, 45(7): 186−190,200ZHANG J J, PENG R, DU C G, et al. Research progress of antifungal action of citral and its application prospect in food mildew prevention[J]. China Condiment, 2020, 45(7): 186−190,200 [31] GESSNER M O. Ergosterol as a measure of fungal biomass[M]// Methods to Study Litter Decomposition. Cham: Springer, 2020: 247−255 [32] WEI J, BI Y, XUE H, et al. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves inhibition of ergosterol biosynthesis[J]. Journal of Applied Microbiology, 2020, 129(2): 256−265 doi: 10.1111/jam.14601 [33] XIN Z T, OUYANG Q L, WAN C P, et al. Isolation of antofine from Cynanchum atratum BUNGE (Asclepiadaceae) and its antifungal activity against Penicillium digitatum[J]. Postharvest Biology and Technology, 2019, 157: 110961 doi: 10.1016/j.postharvbio.2019.110961 [34] KUMAR P S, NATTUDURAI G, ISLAM V I H, et al. The effects of some essential oils on Alternaria alternata, a post-harvest phyto-pathogenic fungus in wheat by disrupting ergosterol biosynthesis[J]. Phytoparasitica, 2022, 50(2): 513−525 doi: 10.1007/s12600-021-00970-4 [35] FERREIRA F M D, HIROOKA E Y, FERREIRA F D, et al. Effect of Zingiber officinale Roscoe essential oil in fungus control and deoxynivalenol production of Fusarium graminearum Schwabe in vitro[J]. Food Additives & Contaminants:Part A, 2018, 35(11): 2168−2174 [36] WEI L, CHEN C, CHEN J, et al. Possible fungicidal effect of citral on kiwifruit pathogens and their mechanisms of actions[J]. Physiological and Molecular Plant Pathology, 2021, 114: 101631 doi: 10.1016/j.pmpp.2021.101631 [37] 包华, 李康, 钟睦琪, 等. 胡椒碱对番茄灰霉病菌抑制作用及其机理研究[J]. 中国农业大学学报, 2022, 27(9): 117−124BAO H, LI K, ZHONG M Q, et al. Inhibitory effect of piperine on Botrytis cinerea and its mechanism[J]. Journal of China Agricultural University, 2022, 27(9): 117−124 [38] WANG Y C, LIU M H, HAN X B, et al. Prickly ash seed kernel: a new bio-fumigation material against tobacco black shank[J]. Agronomy, 2020, 10(6): 770 doi: 10.3390/agronomy10060770 -