留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

养殖场外排氨气及温室气体末端处理技术研究

李思 张晓航 王选 马林

李思, 张晓航, 王选, 马林. 养殖场外排氨气及温室气体末端处理技术研究[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1821−1838 doi: 10.12357/cjea.20230238
引用本文: 李思, 张晓航, 王选, 马林. 养殖场外排氨气及温室气体末端处理技术研究[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1821−1838 doi: 10.12357/cjea.20230238
LI S, ZHANG X H, WANG X, MA L. Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1821−1838 doi: 10.12357/cjea.20230238
Citation: LI S, ZHANG X H, WANG X, MA L. Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1821−1838 doi: 10.12357/cjea.20230238

养殖场外排氨气及温室气体末端处理技术研究

doi: 10.12357/cjea.20230238
基金项目: 河北省重点研发计划项目(20327305D, 20327301D)、中国科学院青年创新促进会(2021095)和河北省现代农业产业技术体系奶牛产业创新团队项目(HBCT2018120206)资助
详细信息
    作者简介:

    李思, 主要从事农业生态学研究, E-mail: 84527452f@qq.com

    张晓航, 主要从事养殖废弃物处理与资源化利用技术研究, E-mail: zhangxiaohang@ms.sjziam.ac.cn

    通讯作者:

    马林, 主要从事农业生态学和养分管理研究。E-mail: malin1979@sjziam.ac.cn

  • 中图分类号: X51; X713

Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms

Funds: This study was supported by the Key Research and Development Program of Hebei Province (20327305D, 20327301D), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021095), and Hebei Province Modern Agricultural Industrial Technology System Dairy Cow Industry Innovation Team Project (HBCT2018120206).
More Information
  • 摘要: 养殖场排放氨气及温室气体(NH3、N2O、CH4)末端处理技术近年来获得了国内外学者的广泛关注与持续研究, 但不同畜种粪污管理各环节气体排放规律和阻控优先序尚不清楚, 不同处理技术的处理效果、处理成本和适用场景尚不明确, 缺乏多气体协同处理的技术体系。因此, 本研究通过系统梳理已发表的文献, 采用数据挖掘(data mining)的方法分析了猪、鸡、牛、羊4种畜种不同粪污管理环节(圈舍环节、固体粪污贮藏环节、液体粪污贮藏环节和固体粪污堆肥环节)气体排放和优先序特征, 总结了与气体排放相匹配的减排技术特点, 梳理了针对NH3、N2O、CH4减排的各种技术原理与减排效果, 探讨了粪污管理过程各环节气体阻控的优先序及潜在技术途径, 可以为养殖场外排尾气处理不同类型技术组合和设计提供支撑, 以实现养殖场氨气及温室气体减排的目标。指出现有NH3、N2O、CH4末端处理技术的不足, 展望了NH3、N2O、CH4末端协同处理技术的研究方向, 旨在为养殖场外排尾气未来技术研发提供依据。
  • 图  1  养殖粪污全链条管理有组织排放氨气和温室气体产排原理

    POLL: 污染物; OC: 有机碳; OA: 有机酸; ON: 有机氮。

    Figure  1.  Principles of organized emissions of ammonia and greenhouse gases in the whole chain management of livestock manure pollution

    POLL: pollutants; OC: organic carbon; OA: organic acids; ON: organic nitrogen.

    图  2  不同动物粪污管理过程各环节NH3、N2O和CH4排放特征

    Figure  2.  Characteristics of NH3, N2O, and CH4 emissions from various stages of manure management process of different animals

    图  3  氨气和温室气体末端处理技术原理与设备

    Figure  3.  Principle and equipment of terminal treatment technology for ammonia and greenhouse gases

    图  4  养殖粪污管理过程各环节氨气和温室气体末端减排潜在技术路线

    Figure  4.  Potential technology routes for terminal emission reduction of ammionia and greenhouse gases at different stages of aquaculture manure management process

    表  1  养殖场粪污全链条管理过程NH3和温室气体排放速率和优先序规律

    Table  1.   NH3 and greenhouse gases emission rates and priorties in the whole-chain management process of livestock manure pollution

    粪污管理环节
    Manure management stage
    畜种
    Species
    排放浓度/排放速率
    Emission concentration/Emission rate
    排放规律
    Emission pattern
    优先序
    Priority order
    参考文献
    Reference
    NH3CH4N2ONH3CH4, N2O
    圈舍环节
    Housing stage (mg∙m−3)

    Pig
    0.7~26.5 1.6~9.8 0.47~0.9 日内受清粪频率影响, 夏季排放
    通量大, 冬季排放通量小
    Daily ammonia emissions are influenced by manure removal frequency, with higher emission rates in summer and lower emission rates in winter
    夏季排放通量大, 冬季排放通量小
    Methane and nitrous oxide emissions exhibit higher emission rates in summer and lower emission rates in winter
    气体排放无明显优先序
    Gas emissions show no discernible priority order
    [1-2]

    Chicken
    3~19 2.5~32.4 [3-4]

    Cattle
    11~79 0.2~11.3 1.43~1.63 [5-6]

    Sheep
    0.71~1.35 7.05~250.62 [7]
    贮藏环节
    Storage stage (g∙m−2∙d−1)

    Pig
    0~6.48 0~5.5 0~144 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    CH4排放较为均匀; N2O夏天排放量大, 冬天排放量小
    Methane emissions are relatively uniform (consistent or evenly distributed), while nitrous oxide emissions are higher in summer and lower in winter
    贮存前期以NH3、N2O和CH4
    排放为主, 贮存中后期以N2O和
    CH4排放为主
    During the early stage of storage, ammonia, nitrous oxide, and methane emissions are predominant, while in the mid to late storage period, nitrous oxide and methane emissions take precedence
    [8-10]

    Chicken
    6.00~85.92 0~30.08 CH4夏天排放量大, 冬天排放量小
    Methane emissions are higher in summer and lower in winter
    [11-13]

    Cattle
    0~5.0 0~25 0~2.3 CH4夏天排放量大, 冬天排放量小; N2O夏天排放量小, 冬天排放量大
    Methane emissions are higher in summer and lower in winter, whereas nitrous oxide emissions are lower in summer and higher in winter
    [9,14]

    Sheep
    0~8 0.30~11.86 0~1.1 夏天排放量大, 冬天排放量小
    Methane and nitrous oxide emissions are higher in summer and lower in winter
    [15-17]
    液体粪污贮存环节
    Liquid manure storage stage
    (g∙m−2∙d−1)

    Pig
    0~19.9 0~35 79~91 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    夏天排放量大, 冬天排放量小
    Methane and nitrous oxide emissions are higher in summer and lower in winter
    气体排放无明显优先序
    Gas emissions show no clear priority order
    [18-21]
    液体粪污贮存环节
    Liquid manure storage stage
    (g∙m−2∙d−1)

    Cattle
    0~13.69 0~80 0~1 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    CH4夏天排放量大, 冬天排放量小; N2O冬夏排放量大
    Methane emissions are higher in summer and lower in winter, while nitrous oxide emissions are substantial during both summer and winter
    气体排放无明显优先序
    Gas emissions show no clear priority order
    [21-24]
    固体粪污堆肥环节
    Solid manure composting stage
    (mg∙d−1)

    Pig
    100~980 80.60~807.61 57.25~71.7 氨气排放集中在高温期
    Ammonia gas emissions are concentrated during the high-temperature period
    CH4排放集中在升温期, N2O排放集中在降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the cooling and decomposition periods
    CH4排放集中在堆肥前期,
    NH3排放集中在堆肥前期和中期,
    N2O排放集中在堆肥后期
    Methane emissions are
    concentrated during the early
    phase of composting, ammonia emissions are concentrated during both the early and middle phases of composting, and nitrous oxide emissions are concentrated during the later phase of composting
    [25-26]

    Chicken
    800~840 65.00~842.48 7.5~39.50 CH4排放集中在升温期, N2O排放集中在升温期、降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the warming, cooling, and decomposition periods
    [26-27]

    Cattle
    0~980 140~3522 4.5~267 CH4排放集中在升温期, N2O排放集中在升温期、降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the warming, cooling, and decomposition periods
    [26-28]

    Sheep
    2600~5400 7.05~290.00 2.6 CH4排放集中在降温期, N2O排放集中在降温期
    Methane emissions are concentrated during the cooling period, while nitrous oxide emissions are concentrated during the cooling period
    [29-30]
    下载: 导出CSV

    表  2  不同氨气和温室气体末端处理技术比较

    Table  2.   Comparison of different treatment technologies for ammonia and greenhouse gases

    气体类型
    Gas type
    处理方法
    Processing method
    处理效果
    Processing effect
    处理成本
    Processing cost
    [¥·kg−1(NH3) or (CO2eq)]
    文献来源
    Literature source
    氨气
    Ammonia
    物理化学法
    Physicochemical method
    吸附法
    Adsorption
    活性炭/生物炭
    Activated carbon/biochar:
    4~75 mg·g−1;
    硅胶 Silica gel: 5~45 mg·g−1;
    沸石 Zeolite: 24~38 mg·g−1
    活性炭/生物炭
    Activated carbon/biochar: 52~800
    硅胶 Silica gel: 220~2000
    沸石 Zeolite: 105.2~333.6
    [52, 90-93]
    空气洗涤法
    Air washing method
    水洗法去除率 Reduction rate
    of water washing method −20%~80%
    酸洗法去除率 Reduction rate
    of acid washing method 29.83%~90.88%
    水洗法 Water washing method: 4.2~5.2

    酸洗法 Acid washing method: 5.24~6.24
    [55, 94-97]
    生物法
    Biological method
    生物洗涤法
    Biological washing method
    去除率 Reduction rate: 79%~98%20.82~90.60[96]
    生物过滤法
    Biofiltration
    去除率 Reduction rate: 30%~92%65.18~181.08[39, 98-99]
    生物滴滤法
    Bio-trickling filtration
    去除率 Reduction rate: 70%~98.5%69.49~362.15[100-102]
    温室气体
    Greenhouse gases
    CH4处理方法
    Processing method of CH4
    微生物氧化法
    Microbial oxidation method
    去除率 Reduction rate: 25%~43%1.04~6.93[71-72,
    103-105]
    催化转化法
    Catalytic conversion
    转化率 Conversion rate: 9%~97%11.19~16.84 [75, 106-107]
    热氧化技术
    Thermal oxidation technology
    分解率 Decomposition rate: 2%~100%5~5.8 [105-106]
    富集回收法
    Enrichment and recovery method
    回收率 Recovery rate: 70%~95%1.21~2.21[79, 80, 107]
    N2O处理方法
    Processing method of N2O
    氧化分解法
    Oxidative decomposition method
    去除率 Reduction rate: 8.9%~93.3%[108-111]
    生物法
    Biological method
    去除率 Reduction rate: 40%~60%[88-89]
    下载: 导出CSV

    表  3  养殖粪污管理过程各环节NH3、N2O和CH4潜在污染控制技术列单

    Table  3.   List of potential pollution control technologies of NH3, N2O and CH4 at different stages of aquaculture manure management process

    场景 Application scenarioNH3N2OCH4
    圈舍环节
    Housing stage
    空气洗涤/生物洗涤
    Air / biological washing method
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化
    Biological oxidation / catalytic conversion
    固体粪污贮藏环节
    Storage of solid manure
    生物洗涤/生物过滤
    Biological washing method / biofiltration
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化/富集回收
    Biological oxidation / catalytic conversion /
    enrichment and recovery method
    液体粪污储存
    Storage of liquid manure
    空气洗涤/生物洗涤/生物过滤/生物滴滤
    Air washing / biological washing / biofilter /
    bio-trickling filtration
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化/富集回收
    Biological oxidation / catalytic conversion /
    enrichment and recovery method
    固体废物堆肥
    Compost of solid manure
    生物洗涤/生物过滤
    Biological washing / biofilter
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化氧化
    Biological oxidation / catalytic conversion
    下载: 导出CSV
  • [1] ZHUANG M H, LU X, CARO D, et al. Emissions of non-CO2 greenhouse gases from livestock in China during 2000–2015: magnitude, trends and spatiotemporal patterns[J]. Journal of Environmental Management, 2019, 242: 40−45
    [2] WANG Y C, HAN M F, JIA T P, et al. Emissions, measurement, and control of odor in livestock farms: a review[J]. Science of the Total Environment, 2021, 776: 145735 doi: 10.1016/j.scitotenv.2021.145735
    [3] 邓隆华. 好氧堆肥恶臭气体排放特征及其生物法去除应用研究[D]. 广州: 广东工业大学, 2022

    DENG L H. Study on emission characteristics of malodorous gases from aerobic composting and its biological removal application[D]. Guangzhou: Guangdong University of Technology, 2022
    [4] HOU Y, VELTHOF G L, OENEMA O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment[J]. Global Change Biology, 2015, 21(3): 1293−1312 doi: 10.1111/gcb.12767
    [5] 王悦, 赵同科, 邹国元, 等. 畜禽养殖舍氨气排放特性及减排技术研究进展[J]. 动物营养学报, 2017, 29(12): 4249−4259

    WANG Y, ZHAO T K, ZOU G Y, et al. Research statues of ammonia emission characteristics and mitigation technologies from livestock houses[J]. Chinese Journal of Animal Nutrition, 2017, 29(12): 4249−4259
    [6] 梅林德, 陈军辉, 熊文朋, 等. 基于实测法的畜禽养殖氨排放特征研究[C]. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场, 2021, 10

    MEI L D, CHEN J H, XIONG W P, et al. Study on ammonia emission characteristics of livestock and poultry breeding based on measurement method[C]. 2021 Annual Conference of Science and Technology of Chinese Society For Environmental Sciences— Environmental Engineering Technology Innovation and Application Sub Venue, 2021, 10
    [7] 王悦, 杨金凤, 薛文涛, 等. 规模化笼养蛋鸡舍冬季氨气和颗粒物排放特征研究[J]. 农业工程学报, 2018, 34(23): 170−178

    WANG Y, YANG J F, XUE W T, et al. Study of ammonia and particulate matter emission characteristics from large-scale cage layer house in winter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 170−178
    [8] 周忠凯, 杨殿林, 张海芳, 等. 冬季侧窗通风猪舍氨气和温室气体排放特征[J]. 农业环境科学学报, 2020, 39(6): 1359−1367

    ZHOU Z K, YANG D L, ZHANG H F, et al. Ammonia and greenhouse gas emissions from enclosed pig house with side-vent ventilation in winter season[J]. Journal of Agro-Environment Science, 2020, 39(6): 1359−1367
    [9] 赵婉莹, 许立新, 王朝元, 等. 不同地面形式自然通风奶牛舍冬季温室气体和氨气排放量[J]. 中国农业大学学报, 2020, 25(1): 142−151

    ZHAO W Y, XU L X, WANG C Y, et al. Greenhouse gas and ammonia emissions of naturally ventilated cowsheds with different floor types in winter[J]. Journal of China Agricultural University, 2020, 25(1): 142−151
    [10] 赵彦超, 王瑞宁, 李祥龙, 等. 不同季节不同类型羊舍空气质量分析[J]. 家畜生态学报, 2020, 41(3): 57−61

    ZHAO Y C, WANG R N, LI X L, et al. Analysis on air quality in sheep shed in different seasons[J]. Acta Ecologae Animalis Domastici, 2020, 41(3): 57−61
    [11] 周忠凯, 朱志平, 董红敏, 等. 笼养肉鸡生长过程NH3、N2O、CH4和CO2的排放[J]. 环境科学, 2013, 34(6): 2098−2106

    ZHOU Z K, ZHU Z P, DONG H M, et al. NH3, N2O, CH4 and CO2 emissions from growing process of caged broilers[J]. Environmental Science, 2013, 34(6): 2098−2106
    [12] 朱伟, 冯培功, 马君军, 等. 环境温度对肉羊有害气体排放、环境微生物和血清生化指标的影响[J]. 动物营养学报, 2018, 30(11): 4460−4469

    ZHU W, FENG P G, MA J J, et al. Effects of ambient temperature on harmful gas emission, environmental microorganism and serum biochemical indexes of mutton sheep[J]. Chinese Journal of Animal Nutrition, 2018, 30(11): 4460−4469
    [13] 朱志平, 康国虎, 董红敏, 等. 垫料型猪舍春夏育肥季节的氨气和温室气体状况测试[J]. 中国农业气象, 2011, 32(3): 356−361

    ZHU Z P, KANG G H, DONG H M, et al. Measurement of ammonia and GHGs concentration of hoop structure barn for finishing pigs in summer and spring season[J]. Chinese Journal of Agrometeorology, 2011, 32(3): 356−361
    [14] 焦伟娜. 新疆南北疆地区两集约化羊场羊舍四季环境变化及羔羊健康比较研究[D]. 乌鲁木齐: 新疆农业大学, 2019

    JIAO W N. Comparative study on four seasons environmental changes and lamb health in two intensive sheep farms and sheds in northern and southern Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2019
    [15] AMON B, KRYVORUCHKO V, AMON T, et al. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment[J]. Agriculture, Ecosystems & Environment, 2006, 112(2/3): 153−162
    [16] ZHUANG M H, SHAN N, WANG Y C, et al. Different characteristics of greenhouse gases and ammonia emissions from conventional stored dairy cattle and swine manure in China[J]. Science of the Total Environment, 2020, 722: 137693 doi: 10.1016/j.scitotenv.2020.137693
    [17] MISSELBROOK T, HUNT J, PERAZZOLO F, et al. Greenhouse gas and ammonia emissions from slurry storage: impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry)[J]. Journal of Environmental Quality, 2016, 45(5): 1520−1530 doi: 10.2134/jeq2015.12.0618
    [18] MISSELBROOK T H, VAN DER WEERDEN T J, PAIN B F, et al. Ammonia emission factors for UK agriculture[J]. Atmospheric Environment, 2000, 34(6): 871−880 doi: 10.1016/S1352-2310(99)00350-7
    [19] LI H, XIN H. Lab-scale assessment of gaseous emissions from laying-hen manure storage as affected by physical and environmental factors[J]. Transactions of the ASABE, 2010, 53(2): 593−604 doi: 10.13031/2013.29574
    [20] 袁玉玲, 王立刚, 李虎, 等. 猪粪固体自然堆放方式下含氮气体排放规律及其影响因素研究[J]. 农业环境科学学报, 2014, 33(7): 1422−1428

    YUAN Y L, WANG L G, LI H, et al. Nitrogenous gas emissions from solid swine manure under natural composting conditions[J]. Journal of Agro-Environment Science, 2014, 33(7): 1422−1428
    [21] ZHU Z P, LI L L, DONG H M, et al. Ammonia and greenhouse gas emissions of different types of livestock and poultry manure during storage[J]. Transactions of the ASABE, 2020, 63: 1723−1733 doi: 10.13031/trans.14079
    [22] 朱海生, 左福元, 董红敏, 等. 堆体规模对牛粪堆肥氨气和温室气体排放的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(5): 77−84

    ZHU H S, ZUO F Y, DONG H M, et al. Effect of pile scale on emissions of ammonia and greenhouse gas during cattle manure composting[J]. Journal of Northwest A& F University (Natural Science Edition), 2018, 46(5): 77−84
    [23] CHEN B T, KOZIEL J A, BANIK C, et al. Emissions from swine manure treated with current products for mitigation of odors and reduction of NH3, H2S, VOC, and GHG emissions[J]. Data, 2020, 5(2): 54 doi: 10.3390/data5020054
    [24] VELASCO-VELASCO J, PARKINSON R, KURI V. Ammonia emissions during vermicomposting of sheep manure[J]. Bioresource Technology, 2011, 102(23): 10959−10964 doi: 10.1016/j.biortech.2011.09.047
    [25] 周海宾, 丁京涛, 孟海波, 等. 中国畜禽粪污资源化利用技术应用调研与发展分析[J]. 农业工程学报, 2022, 38(9): 237−246

    ZHOU H B, DING J T, MENG H B, et al. Survey and development analysis of resource utilization technology of livestock and poultry wastes in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 237−246
    [26] 张克强, 杜连柱, 杜会英, 等. 国内外畜禽养殖粪肥还田利用研究进展[J]. 农业环境科学学报, 2021, 40(11): 2472−2481

    ZHANG K Q, DU L Z, DU H Y, et al. Application of livestock and poultry waste to agricultural land: a review[J]. Journal of Agro-Environment Science, 2021, 40(11): 2472−2481
    [27] VANDERZAAG A C, GORDON R J, JAMIESON R C, et al. Permeable synthetic covers for controlling emissions from liquid dairy manure[J]. Applied Engineering in Agriculture, 2010, 26(2): 287−297 doi: 10.13031/2013.29544
    [28] MCGINN S M, COATES T, FLESCH T K, et al. Ammonia emission from dairy cow manure stored in a lagoon over summer[J]. Canadian Journal of Soil Science, 2008, 88(4): 611−615 doi: 10.4141/CJSS08002
    [29] LOHITA SARI B, RURIANTI W, SIMANJUNTAK P. Toksisitas, aktivitas antioksidan Dan antibakteri ekstrak air kulit kayu massoi (Cryptocarpa Massoy (lauraceae))[J]. FITOFARMAKA: Jurnal Ilmiah Farmasi, 2015, 4(1): 18−26 doi: 10.33751/jf.v4i1.183
    [30] AROGO J, WESTERMAN P W, HEBER A J. A review of ammonia emissions from confined swine feeding operations[J]. Transactions of the ASAE, 2003, 46(3): 805−817
    [31] LEYTEM A B, DUNGAN R S, BJORNEBERG D L, et al. Greenhouse gas and ammonia emissions from an open-freestall dairy in southern Idaho[J]. Journal of Environmental Quality, 2013, 42(1): 10−20 doi: 10.2134/jeq2012.0106
    [32] NI J Q, HEBER A J, SUTTON A L, et al. Mechanisms of gas releases from swine wastes[J]. Transactions of the ASABE, 2009, 52(6): 2013−2025 doi: 10.13031/2013.29203
    [33] 王悦. 猪场沼液贮存过程碳氮气体排放及机理研究[D]. 北京: 中国农业科学院, 2016

    WANG Y. Study on carbon and nitrogen gas emission and mechanism during storage of biogas slurry in pig farm[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016
    [34] HANSEN M N, SOMMER S G, HENRIKSEN K. Methane emissions from livestock manure-effects of storage conditions and climate[R]//GHG inventories for agriculture in the nordic countries. Helsingor, Denmark: DIAS (Danish Institute of Agricultural Science), 2002: 45–53
    [35] FUNK T L, HUSSEY R, ZHANG Y, et al. Synthetic covers for emissions control from earthen embanked swine lagoons partⅠ: positive pressure lagoon cover[J]. Applied Engineering in Agriculture, 2004, 20(2): 233−238 doi: 10.13031/2013.15889
    [36] FUNK T L, MUTLU A, ZHANG Y, et al. Synthetic covers for emissions control from earthen embanked swine lagoons partⅡ: negative pressure lagoon cover[J]. Applied Engineering in Agriculture, 2004, 20(2): 239−242 doi: 10.13031/2013.15890
    [37] AYILARA M, OLANREWAJU O, BABALOLA O, et al. Waste management through composting: challenges and potentials[J]. Sustainability, 2020, 12(11): 4456 doi: 10.3390/su12114456
    [38] NGUYEN M K, LIN C, HOANG H G, et al. Evaluate the role of biochar during the organic waste composting process: a critical review[J]. Chemosphere, 2022, 299: 134488 doi: 10.1016/j.chemosphere.2022.134488
    [39] 余鑫. 腐熟堆肥基料生物滤池对猪粪沼渣堆肥过程氨气减排效果研究[D]. 北京: 中国农业科学院, 2020

    YU X. Study on ammonia emission reduction effect of bio-filter based on decomposed compost during composting of pig manure and biogas residue[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020
    [40] 董春欣, 王玉军. 鸡粪堆肥过程中的挥发性气体控制效果分析[J]. 吉林农业大学学报, 2014, 36(6): 680−684

    DONG C X, WANG Y J. Analysis of the control effect of volatile gas during chicken manure composting[J]. Journal of Jilin Agricultural University, 2014, 36(6): 680−684
    [41] LIU T, KUMAR AWASTHI M, VERMA S, et al. Evaluation of cornstalk as bulking agent on greenhouse gases emission and bacterial community during further composting[J]. Bioresource Technology, 2021, 340: 125713 doi: 10.1016/j.biortech.2021.125713
    [42] AWASTHI M K, DUAN Y M, AWASTHI S K, et al. Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing[J]. Renewable Energy, 2020, 152: 421−429 doi: 10.1016/j.renene.2020.01.065
    [43] PAGANS E, BARRENA R, FONT X, et al. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature[J]. Chemosphere, 2006, 62(9): 1534−1542 doi: 10.1016/j.chemosphere.2005.06.044
    [44] 李顺义, 张红娟, 郭夏丽, 等. 畜禽粪便堆肥过程中氨挥发及调控措施[J]. 农机化研究, 2010, 32(1): 13−17 doi: 10.3969/j.issn.1003-188X.2010.01.004

    LI S Y, ZHANG H J, GUO X L, et al. Ammonia volatilization and the regulation measures in the livestock manure compost[J]. Journal of Agricultural Mechanization Research, 2010, 32(1): 13−17 doi: 10.3969/j.issn.1003-188X.2010.01.004
    [45] OSADA T, KURODA K, YONAGA M. Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process[J]. Journal of Material Cycles and Waste Management, 2000, 2(1): 51−56
    [46] 万合锋. 猪粪堆肥及其在蔬菜地利用全过程中温室气体(N2O、CH4)和NH3排放特征研究[D]. 南昌: 南昌大学, 2012: 27–40

    WAN H F. Study on emission characteristics of greenhouse gases (N2O, CH4) and NH3 during pig manure composting and its utilization in vegetable fields[D]. Nanchang: Nanchang University, 2012: 27–40
    [47] SEREDYCH M, PETIT C, TAMASHAUSKY A V, et al. Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents[J]. Carbon, 2009, 47(2): 445−456 doi: 10.1016/j.carbon.2008.10.020
    [48] MOCHIZUKI T, KUBOTA M, MATSUDA H, et al. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation[J]. Fuel Processing Technology, 2016, 144: 164−169 doi: 10.1016/j.fuproc.2015.12.012
    [49] YU Q Q, XIA D, LI H, et al. Effectiveness and mechanisms of ammonium adsorption on biochars derived from biogas residues[J]. RSC Advances, 2016, 6(91): 88373−88381 doi: 10.1039/C6RA16913A
    [50] LIU Y, YAN C J, ZHAO J J, et al. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water[J]. Journal of Cleaner Production, 2018, 202: 11−22 doi: 10.1016/j.jclepro.2018.08.128
    [51] ZENG S J, WANG J L, LI P F, et al. Efficient adsorption of ammonia by incorporation of metal ionic liquids into silica gels as mesoporous composites[J]. Chemical Engineering Journal, 2019, 370: 81−88 doi: 10.1016/j.cej.2019.03.180
    [52] MARTINS T H, SOUZA T S O, FORESTI E. Ammonium removal from landfill leachate by clinoptilolite adsorption followed by bioregeneration[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 63−68 doi: 10.1016/j.jece.2016.11.024
    [53] ROH H, KIM D, SHIN J, et al. Effect of scrubbing liquid type on ammonia removal efficiency of wet scrubber[J]. Journal of Animal Environmental Science, 2021, 23(1): 14−20 doi: 10.11109/JAES.2021.23.1.014
    [54] VAN DER HEYDEN C, BRUSSELMAN E, VOLCKE E I P, et al. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities[J]. Journal of Environmental Management, 2016, 181: 163−171 doi: 10.1016/j.jenvman.2016.06.006
    [55] MELSE R W, MOSQUERA J. Nitrous oxide (N2O) emissions from biotrickling filters used for ammonia removal at livestock facilities[J]. Water Science and Technology, 2014, 69(5): 994−1003 doi: 10.2166/wst.2013.826
    [56] MELSE R W, OGINK N W M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: review of on-farm research in the Netherlands[J]. Transactions of the ASAE, 2005, 48(6): 2303−2313 doi: 10.13031/2013.20094
    [57] BRAVO D, FERRERO P, PENYA-ROJA J M, et al. Control of VOCs from printing press air emissions by anaerobic bioscrubber: performance and microbial community of an on-site pilot unit[J]. Journal of Environmental Management, 2017, 197: 287−295
    [58] BARBUSINSKI K, KALEMBA K, KASPERCZYK D, et al. Biological methods for odor treatment: a review[J]. Journal of Cleaner Production, 2017, 152: 223−241 doi: 10.1016/j.jclepro.2017.03.093
    [59] KANG J, WANG T, XIN H W, et al. A laboratory study of microalgae-based ammonia gas mitigation with potential application for improving air quality in animal production operations[J]. Journal of the Air & Waste Management Association, 2014, 64(3): 330−339
    [60] LIU F, FIENCKE C, GUO J B, et al. Performance evaluation and optimization of field-scale bioscrubbers for intensive pig house exhaust air treatment in northern Germany[J]. Science of the Total Environment, 2017, 579: 694−701 doi: 10.1016/j.scitotenv.2016.11.039
    [61] NISOLA G M, CHO E, ORATA J D, et al. NH3 gas absorption and bio-oxidation in a single bioscrubber system[J]. Process Biochemistry, 2009, 44(2): 161−167 doi: 10.1016/j.procbio.2008.10.004
    [62] BAQUERIZO G, GAMISANS X, GABRIEL D, et al. A dynamic model for ammonia abatement by gas-phase biofiltration including pH and leachate modelling[J]. Biosystems Engineering, 2007, 97(4): 431−440 doi: 10.1016/j.biosystemseng.2007.03.031
    [63] MELSE R W, HOL J M G. Biofiltration of exhaust air from animal houses: evaluation of removal efficiencies and practical experiences with biobeds at three field sites[J]. Biosystems Engineering, 2017, 159: 59−69 doi: 10.1016/j.biosystemseng.2017.04.007
    [64] DEMEESTERE K, VAN LANGENHOVE H, SMET E. Regeneration of a compost biofilter degrading high loads of ammonia by addition of gaseous methanol[J]. Journal of the Air & Waste Management Association, 2002, 52(7): 796−804
    [65] MORRAL E, GABRIEL D, DORADO A D, et al. A review of biotechnologies for the abatement of ammonia emissions[J]. Chemosphere, 2021, 273: 128606 doi: 10.1016/j.chemosphere.2020.128606
    [66] AKDENIZ N, JANNI K A. Full-scale biofilter reduction efficiencies assessed using portable 24-hour sampling units[J]. Journal of the Air & Waste Management Association, 2012, 62(2): 170−182
    [67] MUDLIAR S, GIRI B, PADOLEY K, et al. Bioreactors for treatment of VOCs and odours−A review[J]. Journal of Environmental Management, 2010, 91(5): 1039−1054 doi: 10.1016/j.jenvman.2010.01.006
    [68] ANDREASEN R R, RIIS A L, MORTENSE K. Removal efficiencies in full-scale biotrickling filters used to clean pig house exhaust air[J]. Agricultural Engineering International: CIGR Journal, 2015, 17(3): 33−42
    [69] TSANG Y F, WANG L, CHUA H. Effects of high ammonia loads on nitrogen mass balance and treatment performance of a biotrickling filter[J]. Process Safety and Environmental Protection, 2015, 98: 253−260 doi: 10.1016/j.psep.2015.08.008
    [70] GIRARD M, RAMIREZ A A, BUELNA G, et al. Biofiltration of methane at low concentrations representative of the piggery industry−influence of the methane and nitrogen concentrations[J]. Chemical Engineering Journal, 2011, 168(1): 151−158 doi: 10.1016/j.cej.2010.12.054
    [71] LIU F, FIENCKE C, GUO J B, et al. Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms[J]. Environmental Science and Pollution Research, 2019, 26(16): 15847−15856 doi: 10.1007/s11356-019-04924-6
    [72] PAN K L, PAN G T, CHONG S, et al. Removal of VOCs from gas streams with double perovskite-type catalysts[J]. Journal of Environmental Sciences, 2018, 69: 205−216 doi: 10.1016/j.jes.2017.10.012
    [73] TANG P, ZHU Q J, WU Z X, et al. Methane activation: the past and future[J]. Energy & Environmental Science, 2014, 7(8): 2580−2591
    [74] LI S N, ZHANG Y G, WANG Z N, et al. Morphological effect of CeO2 catalysts on their catalytic performance in lean methane combustion[J]. Chemistry Letters, 2020, 49(5): 461−464 doi: 10.1246/cl.200049
    [75] PERIANA R A, TAUBE D J, EVITT E R, et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol[J]. Science, 1993, 259(5093): 340−343 doi: 10.1126/science.259.5093.340
    [76] 曹敏敏, 王雪峰, 王荀, 等. 煤矿低浓度甲烷利用技术研究进展[J]. 煤炭技术, 2022, 41(1): 101−105

    CAO M M, WANG X F, WANG X, et al. Research progress on utilization technology of low concentration methane in coal mine[J]. Coal Technology, 2022, 41(1): 101−105
    [77] KVIST T, ARYAL N. Methane loss from commercially operating biogas upgrading plants[J]. Waste Management, 2019, 87: 295−300 doi: 10.1016/j.wasman.2019.02.023
    [78] 曲思建, 董卫国, 李雪飞, 等. 低浓度煤层气脱氧浓缩工艺技术开发与应用[J]. 煤炭学报, 2014, 39(8): 1539−1544

    QU S J, DONG W G, LI X F, et al. Research and application of the low concentrated coal bed methane upgrading technique[J]. Journal of China Coal Society, 2014, 39(8): 1539−1544
    [79] MARÍN P, YANG Z X, XIA Y D, et al. Concentration of unconventional methane resources using microporous membranes: process assessment and scale-up[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103420 doi: 10.1016/j.jngse.2020.103420
    [80] JI Z M, FAN Q H, LIU X D. Simulation and analysis of low-temperature liquefaction and distillation process of low-concentration CBM[J]. Coal Technology, 2010, 29(6): 11−13
    [81] 鲁长海. N2O催化分解技术在处理己二酸尾气中的应用[J]. 河北化工, 2009(9): 20−21

    LU C H. The application of N2O catalytic technology in abatement adipic acid off-gas[J]. Hebei Chemical Engineering and Industry, 2009(9): 20−21
    [82] ZHANG X Y, SHEN Q, HE C, et al. N2O catalytic reduction by NH3 over Fe-zeolites: effective removal and active site[J]. Catalysis Communications, 2012, 18: 151−155 doi: 10.1016/j.catcom.2011.11.029
    [83] ZHANG C, ZHANG Z P, SUI C, et al. Inside cover: catalytic decomposition of N2O over Co-Ti oxide catalysts: interaction between Co and Ti oxide (ChemCatChem 12/2016)[J]. ChemCatChem, 2016, 8(12): 1992 doi: 10.1002/cctc.201600683
    [84] 于泳, 王亚涛. 己二酸尾气中N2O处理技术进展[J]. 工业催化, 2016, 24(7): 17−20 doi: 10.3969/j.issn.1008-1143.2016.07.003

    YU Y, WANG Y T. Advance in treatment technology of N2O in exhaust gas of adipic acid production[J]. Industrial Catalysis, 2016, 24(7): 17−20 doi: 10.3969/j.issn.1008-1143.2016.07.003
    [85] 孙浩杰, 施耀华, 杨益江. N2O的工业分解方法[J]. 内江科技, 2009, 30(6): 84

    SUN H J, SHI Y H, YANG Y J. Industrial decomposition method of N2O[J]. Neijiang Keji, 2009, 30(6): 84
    [86] HUANG C Y, MA Z, MIAO C X, et al. Catalytic decomposition of N2O over Rh/Zn-Al2O3 catalysts[J]. RSC Advances, 2017, 7(8): 4243−4252 doi: 10.1039/C6RA25388A
    [87] ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews: MMBR, 1997, 61(4): 533−616
    [88] FRUTOS O D, ARVELO I A, PÉREZ R, et al. Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber[J]. Applied Microbiology and Biotechnology, 2015, 99(8): 3695−3706 doi: 10.1007/s00253-014-6329-8
    [89] RAMEZANI M, ZAMIR S M. Treatment of nitrous oxide in a trickling bioreactor in the presence of glucose or phenol as the carbon source: performance, kinetic study, and characterization of microbial community shift[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108763 doi: 10.1016/j.jece.2022.108763
    [90] KUO S, PEDRAM E O, HINES A L. Analysis of ammonia adsorption on silica gel using the modified potential theory[J]. Journal of Chemical & Engineering Data, 1985, 30(3): 330−332
    [91] ASILIAN H, MORTAZAVI S, KAZEMIAN H, et al. Removal of ammonia from air, using three Iranian natural zeolites[J]. Iranian Journal of Public Health, 2004, 33: 45−51
    [92] BERNAL M P, LOPEZ-REAL J M. Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials[J]. Bioresource Technology, 1993, 43(1): 27−33 doi: 10.1016/0960-8524(93)90078-P
    [93] GABRIEL D, DESHUSSES M A. Technical and economical analysis of the conversion of a full-scale scrubber to a biotrickling filter for odor control[J]. Water Science and Technology, 2004, 50(4): 309−318 doi: 10.2166/wst.2004.0292
    [94] ESTRADA J M, KRAAKMAN N J R B, MUÑOZ R, et al. A comparative analysis of odour treatment technologies in wastewater treatment plants[J]. Environmental Science & Technology, 2011, 45(3): 1100−1106
    [95] HADLOCON L J, ZHAO L Y. Production of ammonium sulfate fertilizer using acid spray wet scrubbers[J]. Agricultural Engineering International: The CIGR Journal, 2015, 14: 41−51
    [96] JAMALUDIN Z, ROLLINGS-SCATTERGOOD S, LUTES K, et al. Evaluation of sustainable scrubbing agents for ammonia recovery from anaerobic digestate[J]. Bioresource Technology, 2018, 270: 596−602 doi: 10.1016/j.biortech.2018.09.007
    [97] ALINEZHAD E, HAGHIGHI M, RAHMANI F, et al. Technical and economic investigation of chemical scrubber and bio-filtration in removal of H2S and NH3 from wastewater treatment plant[J]. Journal of Environmental Management, 2019, 241: 32−43 doi: 10.1016/j.jenvman.2019.04.003
    [98] 谢珊珊. 低湿度生物滤池去除NH3及H2S的实验研究[D]. 扬州: 扬州大学, 2019

    XIE S S. Experimental study on removal of NH3 and H2S by low humidity biofilter[D]. Yangzhou: Yangzhou University, 2019
    [99] DOBSLAW D, SCHULZ A, HELBICH S, et al. VOC removal and odor abatement by a low-cost plasma enhanced biotrickling filter process[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5501−5511 doi: 10.1016/j.jece.2017.10.015
    [100] HERNÁNDEZ J, LAFUENTE J, PRADO Ó J, et al. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3[J]. Journal of the Air & Waste Management Association, 2013, 63(4): 462−471
    [101] MOUSSAVI G, KHAVANIN A, SHARIFI A. Ammonia removal from a waste air stream using a biotrickling filter packed with polyurethane foam through the SND process[J]. Bioresource Technology, 2011, 102(3): 2517−2522 doi: 10.1016/j.biortech.2010.11.047
    [102] GEBERT J, GRÖNGRÖFT A. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane[J]. Waste Management, 2006, 26(4): 399−407 doi: 10.1016/j.wasman.2005.11.007
    [103] STREESE J, STEGMANN R. Microbial oxidation of methane from old landfills in biofilters[J]. Waste Management, 2003, 23(7): 573−580 doi: 10.1016/S0956-053X(03)00097-7
    [104] YOON S, CAREY J N, SEMRAU J D. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters[J]. Applied Microbiology and Biotechnology, 2009, 83(5): 949−956 doi: 10.1007/s00253-009-1977-9
    [105] CAI X J, HU Y H. Advances in catalytic conversion of methane and carbon dioxide to highly valuable products[J]. Energy Science & Engineering, 2019, 7(1): 4−29
    [106] HEO J, LEE B, LIM H. Techno-economic analysis for CO2 reforming of a medium-grade landfill gas in a membrane reactor for H2 production[J]. Journal of Cleaner Production, 2018, 172: 2585−2593 doi: 10.1016/j.jclepro.2017.11.151
    [107] LEE J H, TRIMM D L. Catalytic combustion of methane[J]. Fuel Processing Technology, 1995, 42(2/3): 339−359
    [108] KEIPI T, HANKALIN V, NUMMELIN J, et al. Techno-economic analysis of four concepts for thermal decomposition of methane: reduction of CO2 emissions in natural gas combustion[J]. Energy Conversion and Management, 2016, 110: 1−12 doi: 10.1016/j.enconman.2015.11.057
    [109] LOKHANDWALA K A, PINNAU I, HE Z J, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment[J]. Journal of Membrane Science, 2010, 346(2): 270−279 doi: 10.1016/j.memsci.2009.09.046
    [110] 曹雨来. 氧化亚氮催化分解催化剂的制备及中试实验研究[D]. 北京: 北京石油化工学院, 2017

    CAO Y L. Preparation and pilot test of catalyst for catalytic decomposition of nitrous oxide[D]. Beijing: Beijing Institute of Petrochemical Technology, 2017
    [111] 黄思齐, 王新承, 于泳, 等. 负载型铜铁催化剂直接催化分解N2O的研究[J]. 现代化工, 2019, 39(8): 124−128, 133

    HUANG S Q, WANG X C, YU Y, et al. Study on direct catalytic decomposition of N2O by supported copper-iron catalyst[J]. Modern Chemical Industry, 2019, 39(8): 124−128, 133
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  133
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 录用日期:  2023-05-21
  • 修回日期:  2023-05-21
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-11-10

目录

    /

    返回文章
    返回