Effects of high temperature stress during pollination on plant morphology, leaf photosynthetic characteristics, and yield of summer maize
-
摘要: 针对黄淮海地区花期高温影响夏玉米安全生产的问题, 本研究以热敏感型品种‘先玉335’为试验材料, 以大田常温为对照(CK), 设置授粉期高温处理(HT), 研究授粉期高温胁迫对夏玉米植株形态、叶片光合特性、干物质积累与分配及产量形成的影响。结果表明: 2021年和2022年, HT处理的冠层最高温度超过40 ℃的天数分别为7 d和8 d, 高温处理期间冠层最高温度分别较CK高1.7~6.8 ℃和1.5~4.6 ℃。HT处理显著提高了夏玉米株高和穗位高, 对茎粗和叶面积无显著影响, 但延缓了生育后期叶片衰老, 2021年和2022年成熟期的叶面积较CK分别显著提高34.69%和163.72%。高温处理期间, HT处理的玉米叶片气孔导度、蒸腾速率和胞间CO2浓度显著升高(P<0.05), 叶片羧化效率、气孔限制值和水分利用效率显著降低(P<0.05); 叶片净光合速率随处理温度而变化, 处理温度过高(一般>40 ℃时)则显著降低(P<0.05), 反之则显著升高(P<0.05)或无显著变化, 叶片整体光合性能下降。高温胁迫解除后, HT处理的叶片光合性能相关参数逐渐与CK趋于一致。经授粉期高温胁迫处理后, 玉米茎秆、叶片、苞叶、穗轴和单株干重显著, 其中穗轴干重降幅最大, 而雄穗和花丝干重显著增加, 使得干物质向茎秆、叶片、雄穗、花丝等部位的分配比例增加, 而向穗轴的分配比例显著减少(P<0.05)。至成熟期, HT处理造成玉米籽粒和单株干重显著减少48.32%和16.71% (P<0.05), 而玉米茎秆和叶片干重显著增加35.01%和9.48% (P<0.05)。HT处理的结实率和穗粒数分别显著下降54.43%和53.19% (P<0.05), 百粒重显著提高10.13% (P<0.05), 但籽粒产量显著降低46.82% (P<0.05)。综上, 授粉期高温胁迫增强了玉米叶片气孔蒸腾, 增加了胞间CO2浓度, 降低了叶片羧化效率和水分利用效率, 导致植株整体光合性能下降, 制约了光合同化物积累及向穗部的转移分配, 导致结实率显著下降, 穗粒数显著减少, 制约了花后光合同化物从“源”(茎秆和叶片)向“库”(籽粒)的转运, 最终导致籽粒产量大幅下降。Abstract: High temperatures during the flowering period seriously affect the safe production of summer maize in the Huang-Huai-Hai region. In this experiment, the heat-sensitive variety ‘Xianyu 335’ was used as the test material; the effects of high temperature stress during pollination on plant morphology, leaf photosynthetic characteristics, dry matter accumulation and distribution, and yield of summer maize were studied by setting up normal field temperature treatment (CK) and high temperature treatment during pollination (HT). The results showed that in 2021 and 2022, the number of days with maximum canopy temperatures exceeding 40 ℃ in the HT treatment group was 7 and 8 d, respectively, and the maximum canopy temperatures in the HT treatment group were higher than those in the CK group by 1.7−6.8 ℃ and 1.5−4.6 ℃, respectively. HT treatment significantly increased the plant height and ear height of summer maize but had no significant effect on stem diameter and green leaf area during the high-temperature treatment period. However, HT treatment delayed leaf senescence in the late reproductive stage of maize, and the green leaf area at maturity was 34.69% and 163.72% higher than that in the CK group in 2021 and 2022, respectively. During the high-temperature treatment period, leaf stomatal conductance, transpiration rate, and intercellular CO2 concentration were significantly higher and leaf carboxylation efficiency, stomatal limitation value, and water use efficiency were significantly lower in the HT treatment group than in the CK treatment group. The net photosynthetic rate of maize leaf in the HT treatment group varied with the treatment temperature: it significantly reduced when compared with that in the CK treatment group only when HT treatment temperature was too high (generally >40 ℃). High-temperature stress during pollination led to a decrease in the overall photosynthetic performance of the maize leaves. After exposure to 10 d of high temperature stress during pollination, the dry weights of corn stems, leaves, bracts, cobs, and individual plants decreased significantly. The dry weight of the cobs decreased the most, while those of the male ears and filaments increased significantly. HT treatment resulted in an increase in the partitioning of dry matter to stems, leaves, male ears, and filaments, and a significant decrease in partitioning to the cobs. At maturity, HT treatment significantly reduced the dry weights of corn grains by 48.32%, while those of corn stems and leaves increased by 35.01% and 9.48%. HT treatment resulted in a significant decrease of 54.43% and 53.19% in the seed setting rate and grain number per ear, respectively; a significant increase of 10.13% in 100-grain weight; and a significant decrease of 46.82% in the grain yield. In conclusion, high temperature stress during pollination enhanced the stomatal transpiration of maize leaves, increased intercellular CO2 concentration, and decreased leaf carboxylation efficiency and water use efficiency. It also led to a decline in the overall photosynthetic performance of the plant and restricted the accumulation of photosynthetic products and their transfer and partitioning to the ear, resulting in a significant decrease in seed setting rate and grain number per ear. This decline also restricted the post-flowering transport of photosynthesized assimilated compounds from the “source” (stems and leaves) to the “sink” (grains), which ultimately led to a significant decrease in grain yield.
-
图 1 2021年和2022年高温处理期间不同处理的玉米冠层温度变化
CK: 对照; HT: 授粉期高温处理; CKmax: 对照日最高温度; CKavg: 对照日平均温度; HTmax: 高温处理日最高温度; HTavg: 高温处理日平均温度。CK: control; HT: high temperature treatment during pollination; CKmax: daily maximum temperature under control; CKavg: daily average temperature under control; HTmax: daily maximum temperature under high temperature treatment; HTavg: daily average temperature under high temperature treatment.
Figure 1. Daily temperature at maize canopy under different treatments during high temperature stress in 2020 and 2021
图 2 2021年和2022年高温胁迫对玉米株高、穗位高和茎粗的影响
CK: 对照; HT: 授粉期高温处理。柱上不同小写字母表示同一年份不同处理间P<0.05水平差异显著。CK: control; HT: high temperature treatment during pollination. Different lowercase letters above the bars indicate significant differences between treatments for the same year at P<0.05 level.
Figure 2. Effects of high temperature stress during pollination on plant height, ear height and stem diameter of maize in 2021 and 2022
图 3 2021年和2022年高温胁迫对玉米叶面积的影响
CK: 对照; HT: 授粉期高温处理; VT: 抽雄期。图中虚线表示高温处理结束日。*表示处理间在P<0.05水平差异显著。CK: control; HT: high temperature treatment during pollination; VT: tasseling stage.The dotted line in the figure indicates the end date of high temperature treatment. * indicates significant difference between treatments at P<0.05 level.
Figure 3. Effects of high temperature stress during pollination on maize leaf area in 2021 and 2022
图 5 2021和2022年高温胁迫对玉米穗位叶净光合速率、气孔导度、胞间CO2浓度和蒸腾速率的影响
CK: 对照; HT: 授粉期高温处理; 图中虚线表示高温处理结束日; *和**分别表示处理间在P<0.05和P<0.01水平差异显著, ns表示处理间无显著性差异。CK: control; HT: high temperature treatment during pollination. The dotted line in the figure indicates the end date of high temperature treatment. * and ** indicate significant difference between treatments at P<0.05 and P<0.01 levels, respectively. ns means no significant difference between treatments.
Figure 5. Effects of high temperature stress during pollination on Pn, Gs, Ci and Tr of maize leaves in 2021 and 2022
图 6 2021和2022年高温胁迫对玉米穗位叶羧化效率、气孔限制值、瞬时和内在水分利用效率的影响
CK: 对照; HT: 授粉期高温处理; 图中虚线表示高温处理结束日; *和**分别表示处理间在P<0.05和P<0.01水平差异显著, ns表示处理间无显著性差异。CK: control; HT: high temperature treatment during pollination. The dotted line in the figure indicates the end date of high temperature treatment. * and ** indicate significant difference between treatments at P<0.05 and P<0.01 levels, respectively. ns means no significant difference between treatments.
Figure 6. Effects of high temperature stress during pollination on CE, Ls, WUEt and WUEi of maize leaves in 2021 and 2022
图 7 2021年和2022年高温胁迫对玉米干物质积累的影响
CK: 对照; HT: 授粉期高温处理; 图中虚线表示高温处理结束日。CK: control; HT: high temperature treatment during pollination. The dotted line in the figure indicates the end date of high temperature treatment.
Figure 7. Effects of high temperature stress during pollination on dry matter accumulation in 2021 and 2022
图 8 2021年和2022年高温胁迫对玉米产量构成的影响
CK: 对照; HT: 授粉期高温处理。柱上不同小写字母表示同一年份不同处理间P<0.05水平差异显著。CK: control; HT: high temperature treatment during pollination. Different lowercase letters above the bars indicate significant differences between treatments for the same year at P<0.05 level.
Figure 8. Effects of high temperature stress during pollination on maize yield and yield components in 2021 and 2022
表 1 2021年和2022年高温胁迫对玉米干物质分配的影响
Table 1. Effects of high temperature stress during pollination on dry matter distribution in 2021 and 2022
(%) 时期
Sampling time部位
Maize organ2021 2022 CK HT CK HT 抽雄后10 d 10 days after tasseling 茎秆 Stem 52.65±2.36a 53.39±0.43a 49.49±1.68a 50.13±0.96a 叶片 Leaf 25.41±0.77a 26.49±0.71a 27.62±2.63a 29.15±0.42a 雄穗 Tassel 1.02±0.11a 1.11±0.06a 1.62±0.23a 1.95±0.12a 花丝 Silk 0.93±0.06a 1.11±0.12a 0.87±0.02b 1.28±0.06a 苞叶 Bract 9.68±0.68a 9.12±0.07a 9.78±1.01a 10.30±0.47a 穗轴 Cob 10.32±0.77a 8.79±0.24a 10.61±0.24a 7.19±0.66b 抽雄后50 d 50 days after tasseling 茎秆 Stem 24.23±2.18b 29.79±0.27a 22.82±1.19b 47.41±1.80a 叶片 Leaf 12.34±0.21b 14.74±0.64a 12.29±0.09b 17.99±0.76a 雄穗 Tassel 4.81±0.14a 4.71±0.76a 4.31±1.20a 5.58±0.50a 苞叶 Bract 0.48±0.06a 0.41±0.14a 0.54±0.15a 0.76±0.14a 穗轴 Cob 8.40±0.20a 8.41±0.55a 8.03±0.23a 9.68±0.83a 籽粒 Grain 49.75±1.91a 41.93±1.72b 52.01±0.86a 18.57±2.64b CK: 对照; HT: 授粉期高温处理。同年同行数据后不同小写字母表示处理间差异达P<0.05显著水平。CK: control; HT: high temperature treatment during pollination. Values followed by different letters within the same row in the same year are significantly different at P<0.05. -
[1] 焦艳平, 陈阜, 唐衡, 等. 我国主要农作区粮食产量贡献率分析[J]. 作物杂志, 2006(1): 17−20 doi: 10.3969/j.issn.1001-7283.2006.01.007JIAO Y P, CHEN F, TANG H, et al. Analysis on the contribution rate of grain output in main agricultural areas of China[J]. Crops, 2006(1): 17−20 doi: 10.3969/j.issn.1001-7283.2006.01.007 [2] 霍治国, 张海燕, 李春晖, 等. 中国玉米高温热害研究进展[J]. 应用气象学报, 2023, 34(1): 1−14HUO Z G, ZHANG H Y, LI C H, et al. Review on high temperature heat damage of maize in China[J]. Journal of Applied Meteorological Science, 2023, 34(1): 1−14 [3] 王荣, 王遵娅, 高荣, 等. 1961—2020年中国区域性高温过程的气候特征及变化趋势[J]. 地球物理学报, 2023, 66(2): 494−504 doi: 10.6038/cjg2022P0756WANG R, WANG Z Y, GAO R, et al. Climatology and changing trend of the regional high temperature process in China during 1961−2020[J]. Chinese Journal of Geophysics, 2023, 66(2): 494−504 doi: 10.6038/cjg2022P0756 [4] 刘行, 张晓龙, 王艺璇, 等. 1960—2018年中国玉米生育期及各生育阶段水热条件时空变化特征[J]. 中国生态农业学报(中英文), 2021, 29(8): 1417−1429LIU H, ZHANG X L, WANG Y X, et al. Spatio-temporal characteristics of the hydrothermal conditions in the growth period and various gro wth stages of maize in China from 1960 to 2018[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1417−1429 [5] LI T, ZHANG X P, LIU Q, et al. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: a review[J]. Journal of Integrative Agriculture, 2022, 21(9): 2465−2476 doi: 10.1016/j.jia.2022.07.013 [6] MOORE P D. High hopes for C4 plants[J]. Nature, 1994, 367(6461): 322−323 [7] YAMORI W, HIKOSAKA K, WAY D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1): 101−117 [8] 和骅芸, 胡琦, 潘学标, 等. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析[J]. 中国农业气象, 2020, 41(1): 1−15 doi: 10.3969/j.issn.1000-6362.2020.01.001HE H Y, HU Q, PAN X B, et al. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 1−15 doi: 10.3969/j.issn.1000-6362.2020.01.001 [9] ZHAO C, LIU B, PIAO S L, et al. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences, 2017, 114(35): 9326−9331 doi: 10.1073/pnas.1701762114 [10] HOU P, LIU Y E, LIU W M, et al. Quantifying maize grain yield losses caused by climate change based on extensive field data across China[J]. Resources, Conservation and Recycling, 2021, 174: 105811 doi: 10.1016/j.resconrec.2021.105811 [11] 徐欣莹, 邵长秀, 孙志刚, 等. 高温胁迫对玉米关键生育期生理特性和产量的影响研究进展[J]. 玉米科学, 2021, 29(2): 81−88,96 doi: 10.13597/j.cnki.maize.science.20210213XU X Y, SHAO C X, SUN Z G, et al. Research progress on the effect of heat stress on physiological characteristics of maize at key growth stage and the yield[J]. Journal of Maize Sciences, 2021, 29(2): 81−88,96 doi: 10.13597/j.cnki.maize.science.20210213 [12] 穆心愿, 马智艳, 张兰薰, 等. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应[J]. 中国生态农业学报(中英文), 2022(1): 57−71MU X Y, MA Z Y, ZHANG L X, et al. Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering[J]. Chinese Journal of Eco-Agriculture, 2022(1): 57−71 [13] 张川, 刘栋, 王洪章, 等. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响[J]. 中国农业科学, 2022, 55(19): 3710−3722ZHANG C, LIU D, WANG H Z, et al. Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize[J]. Scientia Agricultura Sinica, 2022, 55(19): 3710−3722 [14] 李小凡, 邵靖宜, 于维祯, 等. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2022, 55(18): 3516−3529LI X F, SHAO J Y, YU W Z, et al. Combined effects of high temperature and drought on yield and photosynthetic characteristics of summer maize[J]. Scientia Agricultura Sinica, 2022, 55(18): 3516−3529 [15] 黄振喜, 王永军, 王空军, 等. 产量15 000 kg·ha−1以上夏玉米灌浆期间的光合特性[J]. 中国农业科学, 2007, 40(9): 1898−1906HUANG Z X, WANG Y J, WANG K J, et al. Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15 000 kg·ha−1[J]. Scientia Agricultura Sinica, 2007, 40(9): 1898−1906 [16] 何海军, 王晓娟. 复合群体中玉米光合特性日变化研究[J]. 玉米科学, 2006, 14(1): 104−106 doi: 10.3969/j.issn.1005-0906.2006.01.032HE H J, WANG X J. Study on the diurnal variation of photosynthetic characteristics in wheat/corn intercropping[J]. Journal of Maize Sciences, 2006, 14(1): 104−106 doi: 10.3969/j.issn.1005-0906.2006.01.032 [17] LI Y T, XU W W, REN B Z, et al. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II[J]. Journal of Agronomy and Crop Science, 2020, 206(5): 548−564 doi: 10.1111/jac.12401 [18] NIU S D, DU X, WEI D J, et al. Heat stress after pollination reduces kernel number in maize by insufficient assimilates[J]. Frontiers in Genetics, 2021, 12: 728166 doi: 10.3389/fgene.2021.728166 [19] 张学鹏, 李腾, 王彪, 等. 玉米叶片“源”的高温胁迫阈值研究[J]. 作物杂志, 2021(2): 62−70 doi: 10.16035/j.issn.1001-7283.2021.02.009ZHANG X P, LI T, WANG B, et al. Study on high temperature stress threshold of maize leaves[J]. Crops, 2021(2): 62−70 doi: 10.16035/j.issn.1001-7283.2021.02.009 [20] ROTUNDO J L, TANG T, MESSINA C D. Response of maize photosynthesis to high temperature: implications for modeling the impact of global warming[J]. Plant Physiology and Biochemistry, 2019, 141: 202−205 doi: 10.1016/j.plaphy.2019.05.035 [21] 郑云普, 徐明, 王建书, 等. 气候变暖对华北平原玉米叶片形态结构和气体交换过程的影响[J]. 生态学报, 2016, 36(6): 1526−1538ZHENG Y P, XU M, WANG J S, et al. Effects of future climate warming on the morphology, structure, and gas exchange of maize leaves in the North China Plain[J]. Acta Ecologica Sinica, 2016, 36(6): 1526−1538 [22] 郑云普, 党承华, 郝立华, 等. 华北平原玉米叶片光合及呼吸过程对实验增温的适应性[J]. 生态学报, 2016, 36(16): 5236−5246ZHENG Y P, DANG C H, HAO L H, et al. Photosynthetic and respiratory acclimation of maize leaves to experimental warming in the North China Plain[J]. Acta Ecologica Sinica, 2016, 36(16): 5236−5246 [23] 王娇, 李萍, 宗毓铮, 等. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响[J]. 中国生态农业学报(中英文), 2023, 31(2): 325−335 doi: 10.12357/cjea.20220395WANG J, LI P, ZONG Y Z, et al. Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 325−335 doi: 10.12357/cjea.20220395 [24] WANG Y Y, SHENG D C, ZHANG P, et al. High temperature sensitivity of kernel formation in different short periods around silking in maize[J]. Environmental and Experimental Botany, 2021, 183: 104343 doi: 10.1016/j.envexpbot.2020.104343 [25] DE SANTANA T A, DA SILVA L D, DE OLIVEIRA P S, et al. Leaf gas exchange and biomass partitioning in Jatropha curcas L. young plants subjected to flooding and drought stresses[J]. Australian Journal of Crop Science, 2017: 792–798 [26] DUAN Q Q, JIANG W, DING M, et al. Light affects the chloroplast ultrastructure and post-storage photosynthetic performance of watermelon (Citrullus lanatus) plug seedlings[J]. PLoS One, 2014, 9(10): e111165 doi: 10.1371/journal.pone.0111165 [27] 张忠学, 陈帅宏, 陈鹏, 等. 基于稳定碳同位素的寒地黑土区玉米水分利用效率研究[J]. 农业机械学报, 2018, 49(8): 265−274 doi: 10.6041/j.issn.1000-1298.2018.08.031ZHANG Z X, CHEN S H, CHEN P, et al. Water use efficiency of maize in black soil of cold regions based on stable carbon isotopes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 265−274 doi: 10.6041/j.issn.1000-1298.2018.08.031 [28] 付景, 孙宁宁, 刘天学, 等. 高温胁迫对玉米形态、叶片结构及其产量的影响[J]. 玉米科学, 2019, 27(1): 46−53 doi: 10.13597/j.cnki.maize.science.20190108FU J, SUN N N, LIU T X, et al. Effect of high temperature stress on morphology, leaf structure and grain yield of maize[J]. Journal of Maize Sciences, 2019, 27(1): 46−53 doi: 10.13597/j.cnki.maize.science.20190108 [29] 孙宁宁. 玉米叶、粒对高温胁迫的响应[D]. 郑州: 河南农业大学, 2017SUN N N. Response of maize leaves and grains to high temperature stress[D]. Zhengzhou: Henan Agricultural University, 2017 [30] HAN L L, JIANG C G, ZHANG W, et al. Morphological characterization and transcriptome analysis of new dwarf and narrow-leaf (dnl2) mutant in maize[J]. International Journal of Molecular Sciences, 2022, 23(2): 795 doi: 10.3390/ijms23020795 [31] RATTALINO EDREIRA J I, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: differences in crop growth, biomass partitioning and reserves use[J]. Field Crops Research, 2012, 130: 87−98 doi: 10.1016/j.fcr.2012.02.009 [32] YANG L, GUO S, CHEN F J, et al. Effects of pollination-prevention on leaf senescence and post-silking nitrogen accumulation and remobilization in maize hybrids released in the past four decades in China[J]. Field Crops Research, 2017, 203: 106−113 doi: 10.1016/j.fcr.2016.12.022 [33] YAMORI W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress[J]. Journal of Plant Research, 2016, 129(3): 379−395 doi: 10.1007/s10265-016-0816-1 [34] SADOK W, LOPEZ J R, SMITH K P. Transpiration increases under high-temperature stress: potential mechanisms, trade-offs and prospects for crop resilience in a warming world[J]. Plant, Cell & Environment, 2021, 44(7): 2102−2116 [35] FENG X L, LIU R, LI C J, et al. Contrasting responses of two C4 desert shrubs to drought but consistent decoupling of photosynthesis and stomatal conductance at high temperature[J]. Environmental and Experimental Botany, 2023, 209: 105295 doi: 10.1016/j.envexpbot.2023.105295 [36] 陈国平. 玉米的干物质生产与分配(综述)[J]. 玉米科学, 1994, 2(1): 48−53 doi: 10.13597/j.cnki.maize.science.1994.01.014CHEN G P. Dry matter production and distribution of maize (review)[J]. Maize Sciences, 1994, 2(1): 48−53 doi: 10.13597/j.cnki.maize.science.1994.01.014 [37] 盛得昌, 王媛媛, 黄收兵, 等. 高温对玉米植株形态与功能、产量构成及子粒养分的影响[J]. 玉米科学, 2020, 28(5): 86−92 doi: 10.13597/j.cnki.maize.science.20200513SHENG D C, WANG Y Y, HUANG S B, et al. Effects of high temperature on morphology and function, yield components and grain nutrients of maize plants[J]. Journal of Maize Sciences, 2020, 28(5): 86−92 doi: 10.13597/j.cnki.maize.science.20200513 -