留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国油料作物能源利用效率与CO2排放

陈丽 刘娟 王末 李牧

陈丽, 刘娟, 王末, 李牧. 中国油料作物能源利用效率与CO2排放[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−13 doi: 10.12357/cjea.20230283
引用本文: 陈丽, 刘娟, 王末, 李牧. 中国油料作物能源利用效率与CO2排放[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−13 doi: 10.12357/cjea.20230283
CHEN L, LIU J, WANG M, LI M. Energy use efficiency and CO2 emissions of oilseed crops in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−13 doi: 10.12357/cjea.20230283
Citation: CHEN L, LIU J, WANG M, LI M. Energy use efficiency and CO2 emissions of oilseed crops in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−13 doi: 10.12357/cjea.20230283

中国油料作物能源利用效率与CO2排放

doi: 10.12357/cjea.20230283
基金项目: 中央级公益性科研院所基本科研业务费专项(Y2021XC17)、天津市哲学社会科学研究规划项目(TJGL21-030)和中国农业科学院创新工程项目(CAAS-ASTIP-2023-AII)资助
详细信息
    作者简介:

    陈丽, 主要从事土地资源利用与农业大数据技术应用研究。E-mail: chenli02@caas.cn

    通讯作者:

    李牧, 主要从事城乡人地关系和土地利用规划研究。E-mail: TJCUlm@tjcu.edu.cn

  • 中图分类号: F323.2; S565

Energy use efficiency and CO2 emissions of oilseed crops in China

Funds: This study was supported by the Central Public-interest Scientific Institution Basal Research Fund of China (Y2021XC17), Tianjin Philosophy and Social Science Research Program (TJGL21-030) and Chinese Academy of Agricultural Sciences innovation project (CAAS-ASTIP-2023-AII).
More Information
  • 摘要: 作物生产中有效利用能源是可持续农业的一个重要目标。中国作为油料生产和消费大国, 在其生产过程中, 减少过度无效能源消耗, 优化能源利用结构, 提高能源利用效率, 对于农民节本增收、降低温室气体排放和环境影响具有重要意义。本文基于生命周期分析(LCA)视角, 采用生命周期评价和数据包络分析(DEA)方法, 对油菜、大豆、花生3种油料作物能源利用效率和温室气体排放进行了测算, 分析了不同省份能源高效和低效利用的原因, 探究了各省能源节约和温室气体减排的可能性与潜力。结果表明: 1) 3种油料作物生产系统单位能量消耗的产出能力相差不大, 但能源利用效率差异明显, 呈现花生>油菜>大豆的特点。2) 3种油料作物中, 花生温室气体排放量最高[874.96 kg(CO2 eq)∙hm−2], 其次为油菜[660.16 kg(CO2 eq)∙hm−2]和大豆[507.07 kg(CO2 eq)∙hm−2]; 不同油料作物物质投入和农事操作温室气体排放贡献差异明显, 油菜与花生种植主要温室气体排放源为化肥, 而大豆种植过程中化肥、柴油、灌溉温室气体排放贡献相对均衡。3)油料作物能源利用优化和温室气体减排潜力较大, 油菜、大豆、花生低效省份能源利用优化后, 分别可节约11.97%、16.38%和15.89%的资源, 实现了20.60~616.32 kg(CO2 eq)∙hm−2的减排。因此, 根据区域实际情况, 优化能源低效利用地区的能源利用结构, 探寻产量与碳排双优的生产模式, 对推动油料种植节本增收与绿色发展将发挥重要作用。
  • 图  1  研究边界

    Figure  1.  Research boundary

    图  2  不同省份油料作物生产系统能源输入贡献占比

    Figure  2.  Percentages of energy inputs of oilseed crop production system in different provinces

    图  3  中国油料作物生产系统能效指标区域差异

    EP、EUE和NE分别表示能源生产率、能源利用效率和净能源。

    Figure  3.  Regional differences in energy efficiency indicators of oilseed crop production system in China

    EP, EUE and NE refer to energy productivity, energy use efficiency and net energy, repectively.

    图  4  油料作物生产系统不同效率值的决策单元(DMU)频数

    Figure  4.  Frequency of decision making unit (DMU) with different efficiency values of oilseed crop production system

    表  1  研究对象与区域

    Table  1.   Research object and area

    研究对象
    Study object
    研究区域
    Research area
    大豆
    Soybean
    河北、山西、内蒙古、辽宁、吉林、黑龙江、江苏、安徽、山东、河南、湖北、四川、陕西
    Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui, Shandong, Henan, Hubei, Sichuan, Shaanxi
    油菜
    Oilseed rape
    内蒙古、江苏、浙江、安徽、江西、河南、湖北、湖南、重庆、四川、贵州、云南、陕西、甘肃、青海
    Inner Mongolia, Jiangsu, Zhejiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai
    花生
    Peanut
    河北、辽宁、吉林、安徽、福建、江西、山东、河南、湖北、湖南、广东、广西、四川
    Hebei, Liaoning, Jilin, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Sichuan
    下载: 导出CSV

    表  2  油料作物生产系统各项能源输入和输出计算公式及相关系数

    Table  2.   Calculation formula and correlation coefficient of energy input and output in oilseed crop production system

    项目 Project公式 Formula描述 Description
    能源输入 Energy input
    种子
    Seed
    $ {e}_{i}^{\mathrm{s}}={q}_{i}^{\mathrm{s}}\times {\varepsilon }_{i}^{\mathrm{s}} $$ {e}_{i}^{\mathrm{s}} $表示作物i (即油菜、大豆和花生)的种子能耗(MJ∙hm−2); $ {q}_{i}^{\mathrm{s}} $表示作物i的种子用量(kg∙hm−2); $ {\varepsilon }_{i}^{\mathrm{s}} $表示作物i的种子能量当量, 油菜、大豆和花生的取值分别为20.9 MJ∙kg−1、16.31 MJ∙kg−1和13.1 MJ∙kg−1[22]
    $ {e}_{i}^{\mathrm{s}} $ refers to energy consumption of seed for crop i (MJ∙hm−2), which includes oilseed rape, soybean and peanut; $ {q}_{i}^{\mathrm{s}} $ refers to usage amount of seed for crop i (kg∙hm−2); $ {\varepsilon }_{i}^{\mathrm{s}} $ refers to seed energy equivalent for crop i, and the corresponding value of oilseed rape, soybean and peanut are 20.9, 16.31 and 13.1 MJ∙kg−1, respectively[22]
    化肥
    Chemical fertilizer
    $ {e}_{ih}^{\mathrm{f}}={q}_{ih}^{\mathrm{f}}\times {\varepsilon }_{h}^{\mathrm{f}} $$ {e}_{ih}^{\mathrm{f}} $表示化肥h (即氮肥、磷肥、钾肥和复混肥)的能耗(MJ∙hm−2); $ {q}_{ih}^{\mathrm{f}} $表示化肥h施用在作物i的用量(kg∙hm−2); $ {\varepsilon }_{h}^{\mathrm{f}} $表示化肥h的能量当量, 氮肥、磷肥、钾肥和复混肥的取值分别为24.0 MJ∙kg−1、8.5 MJ∙kg−1、9.0 MJ∙kg−1和12.8 MJ∙kg−1 [23]
    $ {e}_{ih}^{\mathrm{f}} $ refers to energy consumption of chemical fertilizer h (MJ∙hm−2), which includes nitrogen fertilizer, phosphate fertilizer, potassium fertilizer and compound fertilizer; $ {q}_{ih}^{\mathrm{f}} $ refers to the usage amount of fertilizer h for crop i (kg∙hm−2); $ {\varepsilon }_{h}^{\mathrm{f}} $ refers to energy equivalent for fertilizer h, and the corresponding value of nitrogen fertilizer, phosphate fertilizer, potassium fertilizer and compound fertilizer are 24.0, 8.5, 9.0 and 12.8 MJ∙kg−1, respectively[23]
    柴油
    Diesel fuel
    $ {e}_{i}^{\mathrm{d}}={(q}_{i}^{\mathrm{d}}+{q}_{i}^{\mathrm{m}}\times \phi )/{p}^{\mathrm{d}}\times {\varepsilon }^{\mathrm{d}} $$ {e}_{i}^{\mathrm{d}} $表示作物i的柴油能耗(MJ∙hm−2); $ {q}_{i}^{\mathrm{d}} $表示作物i的燃料动力费(¥∙hm−2); $ {q}_{i}^{\mathrm{m}} $表示作物i的机械作业费(¥∙hm−2); $ \mathrm{\phi } $表示机械作业费中购买燃料费用占比, 取值40%[24]; $ {p}^{\mathrm{d}} $表示柴油价格(¥∙kg−1); $ {\varepsilon }^{\mathrm{d}} $表示柴油能量当量, 取值为43.5 MJ∙kg−1 [23]
    $ {e}_{i}^{\mathrm{d}} $ refers to consumption of diesel fuel for crop i (MJ∙hm−2); $ {q}_{i}^{\mathrm{d}} $ refers to fuel and power cost for crop i (¥∙hm−2); $ {q}_{i}^{\mathrm{m}} $ refers to machinery cost for crop i (¥∙hm−2); $ \mathrm{\phi } $ refers to the proportion of the cost of buying fuel in the total cost of mechanical operation, and the value of $ \mathrm{\phi } $ is 40%[24]; $ {p}^{\mathrm{d}} $ refers to diesel price (¥∙kg−1); $ {\varepsilon }^{\mathrm{d}} $ refers to diesel fuel energy equivalent, and the value of $ {\varepsilon }^{\mathrm{d}} $ is 43.5 MJ∙kg−1 [23]
    电力
    Electricity
    ${e}_{i}^{\mathrm{e} }=\left({q}_{i}^{\mathrm{ir} }-{q}_{i}^{\mathrm{w} }\right)/{p}^{\mathrm{e} }\times {\varepsilon }^{\mathrm{e} }$$ {e}_{i}^{\mathrm{e}} $表示作物i的电力能耗(MJ∙hm−2); ${q}_{i}^{\mathrm{ir} }$表示作物i的灌排费(¥∙hm−2); $ {q}_{i}^{\mathrm{w}} $表示作物i灌排费中的水费(¥∙hm−2); $ {p}^{\mathrm{e}} $表示农业灌溉电费(¥∙kWh−1); $ {\varepsilon }^{\mathrm{e}} $表示电力能量当量, 取值为12.3 MJ∙kWh−1[23]
    $ {e}_{i}^{\mathrm{e}} $ refers to energy consumption of electricity for crop i (MJ∙hm−2); ${q}_{i}^{\mathrm{ir} }$ refers to irrigation and drainage fee for crop i (¥∙hm−2); $ {q}_{i}^{\mathrm{w}} $ refers to water charges in irrigation and drainage fees for crop i (¥∙hm−2); $ {p}^{\mathrm{e}} $ refers to electricity costs for agricultural irrigation (¥∙kWh−1); $ {\varepsilon }^{\mathrm{e}} $ refers to electricity energy equivalent, which is 12.3 MJ∙kWh−1[23]
    人工
    Labor
    $ {e}_{i}^{\mathrm{p}}={q}_{i}^{\mathrm{p}}\times {\varepsilon }^{\mathrm{p}}/24\times 8 $$ {e}_{i}^{\mathrm{p}} $表示作物i人工能耗(MJ∙hm−2); $ {q}_{i}^{\mathrm{p}} $表示作物i家庭用工天数; $ {\varepsilon }^{\mathrm{p}} $表示男社员劳动力全日(24小时)能量消耗, 取值11.1 MJ∙d−1[25]; 每天工作时长按8 h计
    $ {e}_{i}^{\mathrm{p}} $ refers to energy consumption of human consumption for crop i (MJ∙hm−2); $ {q}_{i}^{\mathrm{p}} $ refers to househould employment days for crop i; $ {\varepsilon }^{\mathrm{p}} $ refers to full day (24 hours) energy consumption of male member labor force, which is 11.1 MJ∙d−1[25]; the working time is assumed as 8 hours per day
    能源输出 Energy output
    主产品
    Main product
    $ {e}_{i}^{\mathrm{o}}={q}_{i}^{\mathrm{G}}\times {\varepsilon }_{i}^{\mathrm{o}} $$ {e}_{i}^{\mathrm{o}} $表示作物i每公顷主产品能源输出量(MJ∙hm−2); $ {q}_{i}^{\mathrm{G}} $表示作物i每公顷主产品产量(kg∙hm−2); $ {\varepsilon }_{i}^{\mathrm{o}} $表示作物i主产品能量当量, 油菜、大豆和花生的取值分别为20.9 MJ∙kg−1、16.31 MJ∙kg−1和27.7 MJ∙kg−1 [22];
    $ {e}_{i}^{\mathrm{o}} $ refers to the energy output per hectare of the main product for crop i (MJ∙hm−2); $ {q}_{i}^{\mathrm{G}} $ refers to the yield of main product per hectare for crop i (kg∙hm−2); $ {\varepsilon }_{i}^{\mathrm{o}} $ refers to the energy equivalent of the main product for crop i, and the corresponding value for oilseed rape, soybean and peanut are 20.9, 16.31 and 27.7 MJ∙kg−1, respectively[22]
    副产品
    By-product
    $ {e}_{i}^{\mathrm{b}}={q}_{i}^{\mathrm{G}}\times {\theta }_{i}\times {\varepsilon }_{i}^{\mathrm{b}} $$ {e}_{i}^{\mathrm{b}} $表示作物i每公顷秸秆能源输出量(MJ∙hm−2); $ {\theta }_{i} $表示作物i的草谷比, 不同省份油菜的取值分别为2.05①⑩⑪⑬⑭㉓、2.0⑥㉑㉒㉔、2.67③⑧⑯⑰⑳, 不同省份大豆的取值分别为1.57⑦⑧⑯⑱⑲、1.7⑨⑫⑮、1.68①⑩⑬、1.07、1.05, 不同省份花生的取值分别为1.22⑦⑧⑫⑮⑱、1.5①⑩⑪⑭、1.65②④⑤㉑ [26-27], 上标数字表示不同省份, 见表注; $ {\varepsilon }_{i}^{\mathrm{b}} $表示作物i的副产品能量当量, 油菜、大豆和花生的取值分别为14.14 MJ∙kg−1、15.15 MJ∙kg−1和27.7 MJ∙kg−1 [23,28]
    $ {e}_{i}^{\mathrm{b}} $ refers to energy output per hectare of straw for crop i (MJ∙hm−2); $ {\theta }_{i} $ refers to ratio of grass to grain for crop i; $ {\theta }_{i} $ for oilseed rape in different provinces are 2.05①⑩⑪⑬⑭㉓, 2.0⑥㉑㉒㉔ and 2.67③⑧⑯⑰⑳, $ {\theta }_{i} $ for soybean in different provinces are 1.57⑦⑧⑯⑱⑲, 1.7⑨⑫⑮, 1.68①⑩⑬, 1.07 and 1.05, $ {\theta }_{i} $ for peanut in different provinces are 1.22⑦⑧⑫⑮⑱, 1.5①⑩⑪⑭ and 1.65②④⑤㉑ [26-27], and the superscript refers to different provinces as shown in the notes of the table; $ {\varepsilon }_{i}^{\mathrm{b}} $ refers to by-product energy equivalent for crop i, and the corresponding values for oilseed rape, soybean and peanut are 14.14, 15.15 and 27.7 MJ∙kg−1, respectively [23,28]
      ①: 安徽; ②: 福建; ③: 甘肃; ④: 广东; ⑤: 广西; ⑥: 贵州; ⑦: 河北; ⑧: 河南; ⑨: 黑龙江; ⑩: 湖北; ⑪: 湖南; ⑫: 吉林; ⑬: 江苏; ⑭: 江西; ⑮: 辽宁; ⑯: 内蒙古; ⑰: 青海; ⑱: 山东; ⑲: 山西; ⑳: 陕西; ㉑: 四川; ㉒: 云南; ㉓: 浙江; ㉔: 重庆。草谷比指农作物单位面积地上部秸秆产量与籽粒产量的比值。①: Anhui; ②: Fujian; ③: Gansu; ④: Guangdong; ⑤: Guangxi; ⑥: Guizhou; ⑦: Hebei; ⑧: Henan; ⑨: Heilongjiang; ⑩: Hubei; ⑪: Hunan; ⑫: Jilin; ⑬: Jiangsu; ⑭: Jiangxi; ⑮: Liaoning; ⑯: Inner Mongolia; ⑰: Qinghai; ⑱: Shandong; ⑲: Shanxi; ⑳: Shaanxi; ㉑: Sichuan; ㉒: Yunnan; ㉓: Zhejiang; ㉔: Chongqing. Grass-grain ratio refers to the ratio of straw yield to grain yield per unit area of the crop.
    下载: 导出CSV

    表  3  油料作物生产系统平均能源输入与输出

    Table  3.   Average energy inputs and outputs of oilseed crop production system

    项目
    Project
    油菜
    Oilseed rape
    大豆
    Soybean
    花生
    Peanut
    能源输入
    Energy input (MJ∙hm−2)
    8647.94 8125.84 13 931.01
    种子 Seed 116.62 1279.71 2838.52
    化学肥料
    Chemical fertilizer
    4170.71 1821.05 3997.82
    氮肥
    Nitrogen fertilizer
    2098.56 472.43 870.65
    磷肥
    Phosphate fertilizer
    72.17 48.84 196.06
    钾肥
    Potassium fertilizer
    31.86 14.85 14.64
    复合肥
    Compound fertilizer
    1968.13 1284.92 2916.48
    柴油 Diesel fuel 2675.69 2594.70 3463.48
    电力 Electricity 695.13 1846.61 2302.39
    人工 Labor 989.79 583.77 1328.80
    能源输出
    Energy output (GJ∙hm−2)
    112.87 132.21 188.79
    主产品
    Main-product
    45.06 34.64 50.33
    副产品
    By-product
    67.81 97.57 138.46
    能源效率
    Energy efficiency
    净能源
    Net energy (GJ∙hm−2)
    104.22
    36.41*
    76.84
    26.51*
    222.10
    83.64*
    能源生产力
    Energy productivity
    (kg∙MJ−1)
    0.80
    0.25*
    0.67
    0.26*
    0.61
    0.25*
    能源利用效率
    Energy use efficiency
    13.05
    5.21*
    10.46
    4.26*
    16.94
    7.00*
      *表示仅考虑了主产品能源输出。* refers to the data only involving the energy output of the main product.
    下载: 导出CSV

    表  4  中国油料作物生产不同排放源的温室气体排放量

    Table  4.   GHG emissions from different sources of oilseed crop production in China

    kg(CO2 eq)∙hm−2 
    排放源 Emission source油菜 Oilseed rape大豆 Soybean花生 Peanut
    柴油 Diesel fuel203.72197.55263.70
    电力 Electricity34.3691.28113.81
    化肥 Chemical fertilizer422.08218.24497.45
    合计 Total660.16507.07874.96
    下载: 导出CSV

    表  5  油料作物种植低效省份的能源节约

    Table  5.   Energy saving in provinces where oilseed crops are planted inefficiently

    MJ∙hm−2 
    类型
    Types
    决策单元
    Decision making unit
    柴油
    Diesel fuel
    电力
    Electricity
    化肥
    Chemical fertilizer
    人工
    Labor
    种子
    Seed
    总能源节约
    Total energy saving
    油菜
    Oilseed rape
    甘肃 Gansu3116.82763.212134.090.0097.356111.46
    河南 Henan157.10174.840.000.0012.07344.02
    陕西 Shaanxi1445.931181.502079.26335.7382.325124.73
    云南 Yunnan1551.51456.171775.770.34164.333948.12
    大豆
    Soybean
    湖北 Hubei1071.470.00422.830.0066.221560.52
    山西 Shanxi1588.063677.712126.48416.89114.187923.32
    陕西 Shaanxi1789.283001.972643.75224.05165.517824.56
    花生
    Peanut
    河北 Hebei0.0010 408.32990.90516.581241.41 13 157.21
    河南 Henan0.005911.782685.823.601024.429625.63
    山东 Shandong0.002020.612472.59856.69646.835996.73
    下载: 导出CSV

    表  6  能源节约省份温室气体减排潜力

    Table  6.   GHG emission reduction potential in energy-saving provinces

     
    类型
    Types
    决策单元
    Decision making unit
    柴油
    Diesel fuel
    [kg(CO2 eq)∙hm−2]
    电力
    Electricity
    [kg(CO2 eq)∙hm−2]
    化肥
    Chemical fertilizer
    [kg(CO2 eq)∙hm−2]
    总计
    Total
    [kg(CO2 eq)∙hm−2]
    减排潜力
    Reduction potential
    (%)
    油菜
    Oilseed rape
    甘肃 Gansu237.3137.73219.30494.3451.15
    河南 Henan11.968.640.0020.603.20
    陕西 Shaanxi110.0958.40213.67382.1653.00
    云南 Yunnan118.1322.55182.48323.1651.25
    大豆
    Soybean
    湖北 Hubei81.580.0043.45125.0326.42
    山西 Shanxi120.91181.79218.52521.2367.92
    陕西 Shaanxi136.23148.39271.68556.3092.69
    花生
    Peanut
    河北 Hebei0.00514.49101.83616.3248.54
    河南 Henan0.00292.22276.00568.2347.09
    山东 Shandong0.0099.88254.09353.9730.33
    下载: 导出CSV
  • [1] HONMA S, HU J L. Industry-level total-factor energy efficiency in developed countries: a Japan-centered analysis[J]. Applied Energy, 2014, 119: 67−78 doi: 10.1016/j.apenergy.2013.12.049
    [2] ZHU L, WANG Y, SHANG P P, et al. Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: based on an improved nonradial multidirectional efficiency analysis[J]. Energy Policy, 2019, 133: 110883 doi: 10.1016/j.enpol.2019.110883
    [3] MOHSENI P, BORGHEI A M, KHANALI M. Coupled life cycle assessment and data envelopment analysis for mitigation of environmental impacts and enhancement of energy efficiency in grape production[J]. Journal of Cleaner Production, 2018, 197: 937−947 doi: 10.1016/j.jclepro.2018.06.243
    [4] WU H J, YUAN Z W, GENG Y, et al. Temporal trends and spatial patterns of energy use efficiency and greenhouse gas emissions in crop production of Anhui Province, China[J]. Energy, 2017, 133: 955−968 doi: 10.1016/j.energy.2017.05.173
    [5] 谢淑娟, 匡耀求, 黄宁生. 中国发展碳汇农业的主要路径与政策建议[J]. 中国人口·资源与环境, 2010, 20(12): 46−51 doi: 10.3969/j.issn.1002-2104.2010.12.010

    XIE S J, KUANG Y Q, HUANG N S. Main paths and policy proposals for the development of carbon-sinking agriculture in China[J]. China Population, Resources and Environment, 2010, 20(12): 46−51 doi: 10.3969/j.issn.1002-2104.2010.12.010
    [6] NEMECEK T, DUBOIS D, HUGUENIN-ELIE O, et al. Life cycle assessment of Swiss farming systems: Ⅰ. integrated and organic farming[J]. Agricultural Systems, 2011, 104(3): 217−232 doi: 10.1016/j.agsy.2010.10.002
    [7] 朱永彬, 马晓哲, 史雅娟. 县级尺度下河南省农业投入产出效率与减排潜力分析[J]. 中国生态农业学报(中英文), 2022, 30(11): 1852−1861 doi: 10.12357/cjea.20220219

    ZHU Y B, MA X Z, SHI Y J. Analysis of agricultural input-output efficiency and emission reduction potential in Henan Province at County level[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1852−1861 doi: 10.12357/cjea.20220219
    [8] 刘杨, 刘鸿斌. 山东省农业碳排放特征、影响因素及达峰分析[J]. 中国生态农业学报(中英文), 2022, 30(4): 558−569 doi: 10.12357/cjea.20210582

    LIU Y, LIU H B. Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 558−569 doi: 10.12357/cjea.20210582
    [9] YUAN S, PENG S B. Input-output energy analysis of rice production in different crop management practices in central China[J]. Energy, 2017, 141: 1124−1132 doi: 10.1016/j.energy.2017.10.007
    [10] BUDZYŃSKI W S, JANKOWSKI K J, JAROCKI M. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland[J]. Energy, 2015, 90: 1272−1279 doi: 10.1016/j.energy.2015.06.087
    [11] LEWANDOWSKA-CZARNECKA A, BULLER L S, NIENARTOWICZ A, et al. Energy and emergy analysis for assessing changes in Polish agriculture since the accession to the European Union[J]. Ecological Modelling, 2019, 412: 108819 doi: 10.1016/j.ecolmodel.2019.108819
    [12] SINGH P, SINGH G, SODHI G P S. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India[J]. Energy, 2019, 174: 269−279 doi: 10.1016/j.energy.2019.02.169
    [13] MOHAMMADI A, RAFIEE S, JAFARI A, et al. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 724−733 doi: 10.1016/j.rser.2013.11.012
    [14] ARRIETA E M, CUCHIETTI A, CABROL D, et al. Greenhouse gas emissions and energy efficiencies for soybeans and maize cultivated in different agronomic zones: a case study of Argentina[J]. Science of the Total Environment, 2018, 625: 199−208 doi: 10.1016/j.scitotenv.2017.12.286
    [15] RABIEE M, MAJIDIAN M, ALIZADEH M R, et al. Evaluation of energy use efficiency and greenhouse gas emission in rapeseed (Brassica napus L.) production in paddy fields of Guilan province of Iran[J]. Energy, 2021, 217: 119411 doi: 10.1016/j.energy.2020.119411
    [16] 杨欢, 乔远, 王兴邦, 等. 黄淮海玉米生产能源利用效率和净生态系统碳平衡时空特征[J]. 生态学报, 2022, 42(15): 6184−6195

    YANG H, QIAO Y, WANG X B, et al. Spatio-temporal characteristics of energy use efficiency and net ecosystem carbon budget of maize production in Huang-Huai-Hai region[J]. Acta Ecologica Sinica, 2022, 42(15): 6184−6195
    [17] 王玉涛, 王丰川, 洪静兰, 等. 中国生命周期评价理论与实践研究进展及对策分析[J]. 生态学报, 2016, 36(22): 7179−7184

    WANG Y T, WANG F C, HONG J L, et al. The development of life cycle assessment theory research in China and analysis of countermeasures[J]. Acta Ecologica Sinica, 2016, 36(22): 7179−7184
    [18] Food and Agriculture Organization of the United Nations. Crops and livestock products dataset of Food and Agriculture Organization of the United Nations[DB/OL], https://www.fao.org/faostat/en/#data/QCL, 2023-3-24/2023-10-16
    [19] 范紫月, 齐晓波, 曾麟岚, 等. 中国农业系统近40年温室气体排放核算[J]. 生态学报, 2022, 42(23): 9470−9482

    FAN Z Y, QI X B, ZENG L L, et al. Accounting of greenhouse gas emissions in the Chinese agricultural system from 1980 to 2020[J]. Acta Ecologica Sinica, 2022, 42(23): 9470−9482
    [20] 秦萌, 任宗杰, 张帅, 等. 从“农药零增长行动”看“农药减量化”发展[J]. 中国植保导刊, 2021, 41(11): 89−94 doi: 10.3969/j.issn.1672-6820.2021.11.025

    QIN M, REN Z J, ZHANG S, et al. Development of “pesticide reduction” viewed from “pesticide zero growth action”[J]. China Plant Protection, 2021, 41(11): 89−94 doi: 10.3969/j.issn.1672-6820.2021.11.025
    [21] MOUSAVI-AVVAL S H, RAFIEE S, JAFARI A, et al. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran[J]. Journal of Cleaner Production, 2011, 19(13): 1464−1470 doi: 10.1016/j.jclepro.2011.04.013
    [22] 中国疾病预防控制中心营养与健康所. 中国食物成分表[M]. 6版. 北京: 北京大学医学出版社, 2018

    National Institute for Nutrition and Health Chinese Center for Disease Control and Prevention. China Food Composition Table[M]. 6th. Beijing: Peking University Medical Press, 2018
    [23] 牛若峰, 刘天福. 农业技术经济手册[M]. 2版. 北京: 农业出版社, 1984

    NIU R F, LIU T F. Handbook of Agricultural Technology and Economy[M]. 2nd. Beijing: Chinese Agricultural Press, 1984
    [24] 徐键辉. 粮食生产的能源消耗及其效率研究——基于DEA方法的实证分析[D]. 杭州: 浙江大学, 2010.

    XU J H. Study on energy consumption and efficiency of grain production—An empirical analysis based on DEA method[D]. Hangzhou: Zhejiang University, 2010
    [25] 于永中, 李天麟, 任建方, 等. 农业劳动强度及劳动能量消耗的调查研究[J]. 卫生研究, 1979, 8(1): 91−97

    YU Y Z, LI T L, REN J F, et al. Investigation and study on agricultural labor intensity and labor energy consumption[J]. Journal of Hygiene Research, 1979, 8(1): 91−97
    [26] 农业农村部办公厅. 农业农村部办公厅关于做好农作物秸秆资源台账建设工作的通知[EB/OL]. 中华人民共和国农业农村部. [2019-01-14]. http://www.moa.gov.cn/gk/tzgg_1/tfw/201901/t20190129_6170842.htm

    General Office of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of the General Office of the Ministry of Agriculture and Rural Affairs on the construction of the ledger of crop straw resources[EB/OL]. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. [2019-01-14]. http://www.moa.gov.cn/gk/tzgg_1/tfw/201901/t20190129_6170842.htm
    [27] 王亚静, 高春雨, 王红彦, 等. 中国油菜秸秆资源量估算及其资源化利用[C]//2015年中国农业资源与区划学会学术年会论文集. 西宁, 2015: 458–466

    WANG Y J, GAO C Y, WANG H Y, et al. Estimation and utilization of rape straw resources in China [C]//Proceedings of the 2015 Annual Conference of Chinese Society of Agricultural Resources and Regionalization. Xining, 2015: 458–466
    [28] 韦茂贵, 王晓玉, 谢光辉. 中国各大田作物田间秸秆资源量及其时间分布[J]. 中国农业大学学报, 2012, 17(6): 32−44 doi: 10.11841/j.issn.1007-4333.2012.06.003

    WEI M G, WANG X Y, XIE G H. Field residue of field crops and its temporal distribution among thirty-one provinces of China[J]. Journal of China Agricultural University, 2012, 17(6): 32−44 doi: 10.11841/j.issn.1007-4333.2012.06.003
    [29] MARDANI A, ZAVADSKAS E K, STREIMIKIENE D, et al. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1298−1322 doi: 10.1016/j.rser.2016.12.030
    [30] TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498−509 doi: 10.1016/S0377-2217(99)00407-5
    [31] 姜秋香, 王天, 王子龙, 等. 基于EBM的水资源失衡风险导致的社会经济损失模型及应用[J]. 农业工程学报, 2018, 34(19): 104−113 doi: 10.11975/j.issn.1002-6819.2018.19.014

    JIANG Q X, WANG T, WANG Z L, et al. EBM-based social economic loss model of water resources imbalance risk and its application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(19): 104−113 doi: 10.11975/j.issn.1002-6819.2018.19.014
    [32] UNAKITAN G, HURMA H, YILMAZ F. An analysis of energy use efficiency of canola production in Turkey[J]. Energy, 2010, 35(9): 3623−3627 doi: 10.1016/j.energy.2010.05.005
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  15
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 录用日期:  2023-10-24
  • 修回日期:  2023-11-06
  • 网络出版日期:  2023-11-09

目录

    /

    返回文章
    返回