-
摘要: 作物生产中有效利用能源是可持续农业的一个重要目标。中国作为油料生产和消费大国, 在其生产过程中, 减少过度无效能源消耗, 优化能源利用结构, 提高能源利用效率, 对于农民节本增收、降低温室气体排放和环境影响具有重要意义。本文基于生命周期分析(LCA)视角, 采用生命周期评价和数据包络分析(DEA)方法, 对油菜、大豆、花生3种油料作物能源利用效率和温室气体排放进行了测算, 分析了不同省份能源高效和低效利用的原因, 探究了各省能源节约和温室气体减排的可能性与潜力。结果表明: 1) 3种油料作物生产系统单位能量消耗的产出能力相差不大, 但能源利用效率差异明显, 呈现花生>油菜>大豆的特点。2) 3种油料作物中, 花生温室气体排放量最高[874.96 kg(CO2 eq)∙hm−2], 其次为油菜[660.16 kg(CO2 eq)∙hm−2]和大豆[507.07 kg(CO2 eq)∙hm−2]; 不同油料作物物质投入和农事操作温室气体排放贡献差异明显, 油菜与花生种植主要温室气体排放源为化肥, 而大豆种植过程中化肥、柴油、灌溉温室气体排放贡献相对均衡。3)油料作物能源利用优化和温室气体减排潜力较大, 油菜、大豆、花生低效省份能源利用优化后, 分别可节约11.97%、16.38%和15.89%的资源, 实现了20.60~616.32 kg(CO2 eq)∙hm−2的减排。因此, 根据区域实际情况, 优化能源低效利用地区的能源利用结构, 探寻产量与碳排双优的生产模式, 对推动油料种植节本增收与绿色发展将发挥重要作用。Abstract: Energy is a major component in enhancing agricultural productivity. Accounting for energy efficiency at the production stage of crop is essential for achieving sustainable agriculture. Due to the high level of production and consumption of oil in China, it is of great importance to pay attention to energy consumption and its negatively environmental impacts in the oil production process. Measures of optimizing energy utilization structure, reducing excessive and ineffective energy consumption and improving energy utilization efficiency can be used, in order to increase income, save cost and reduce greenhouse gas emissions synthetically. Academically, a large number of previous studies have contributed to energy use and environmental impacts in the production of oilseed crops, fruits, vegetables, and food crops on various scales. However, there is a lack of studies related to energy use efficiency and greenhouse gas emissions in oil production which concentrate in major oilseed crops production areas nationally so far. Generally, in terms of models used in relevant study areas, methods including life cycle assessment (LCA), data envelopment analysis (DEA), process analysis, energy analysis have been used commonly, which provide valuable references to the present study. Given that oilseed crops production is inherently a life process, this paper combined LCA+DEA methods to estimate the energy utilization efficiency and greenhouse gas emissions of oilseed crops, which helped to rank efficient and inefficient provincial production units. In further, the underlying reasons which caused inefficient energy use were deeply identified in different provinces. Additionally, for purpose of practical application, this paper explored the possibility and potential of energy saving and CO2 emission reduction in each province. The results showed as follows. 1) There was no significant difference in the output capacity per unit energy consumption among the three studied oilseed crop systems. However, the energy use efficiency of three oilseed crops displayed remarkably differently, which showed peanut > oilseed rape > soybean. 2) Among the three oilseed crops, peanut had the highest CO2 emissions [874.96 kg(CO2 eq)∙hm−2], followed by oilseed rape [660.16 kg(CO2 eq)∙hm−2] and soybean [507.07 kg(CO2 eq)∙hm−2]. In addition, the contributions of substantiality inputs and agricultural operations to CO2 emissions varied greatly from different oilseed crops. Specifically, the significant CO2 emission source of oilseed rape and peanut was fertilizer. Nevertheless, contribution of fertilizer, diesel fuel and irrigation to the CO2 emissions of soybean showed less different. 3) There was great potential for energy utilization optimization and CO2 emission reduction. Estimates resulted from this study displayed that about 11.97%, 16.38% and 15.89% of resources invested to oilseed rape, soybean and peanut in inefficient provinces could be saved respectively, which were capable of reducing 20.60−616.32 kg(CO2 eq)∙hm−2 emissions as well. Therefore, it is necessary to optimize the energy utilization structure of low efficiency areas according to the actual situation, and explore the production mode of double optimal yield and carbon emissions. This will play an important role in saving money and increasing income for regional oilseed cultivation, as well as green development.
-
Key words:
- Oilseed crops /
- Energy use efficiency /
- GHG emissions /
- LCA model /
- DEA model
-
表 1 研究对象与区域
Table 1. Research object and area
研究对象
Study object研究区域
Research area大豆
Soybean河北、山西、内蒙古、辽宁、吉林、黑龙江、江苏、安徽、山东、河南、湖北、四川、陕西
Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui, Shandong, Henan, Hubei, Sichuan, Shaanxi油菜
Oilseed rape内蒙古、江苏、浙江、安徽、江西、河南、湖北、湖南、重庆、四川、贵州、云南、陕西、甘肃、青海
Inner Mongolia, Jiangsu, Zhejiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai花生
Peanut河北、辽宁、吉林、安徽、福建、江西、山东、河南、湖北、湖南、广东、广西、四川
Hebei, Liaoning, Jilin, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Sichuan表 2 油料作物生产系统各项能源输入和输出计算公式及相关系数
Table 2. Calculation formula and correlation coefficient of energy input and output in oilseed crop production system
项目 Project 公式 Formula 描述 Description 能源输入 Energy input 种子
Seed$ {e}_{i}^{\mathrm{s}}={q}_{i}^{\mathrm{s}}\times {\varepsilon }_{i}^{\mathrm{s}} $ $ {e}_{i}^{\mathrm{s}} $表示作物i (即油菜、大豆和花生)的种子能耗(MJ∙hm−2); $ {q}_{i}^{\mathrm{s}} $表示作物i的种子用量(kg∙hm−2); $ {\varepsilon }_{i}^{\mathrm{s}} $表示作物i的种子能量当量, 油菜、大豆和花生的取值分别为20.9 MJ∙kg−1、16.31 MJ∙kg−1和13.1 MJ∙kg−1[22]
$ {e}_{i}^{\mathrm{s}} $ refers to energy consumption of seed for crop i (MJ∙hm−2), which includes oilseed rape, soybean and peanut; $ {q}_{i}^{\mathrm{s}} $ refers to usage amount of seed for crop i (kg∙hm−2); $ {\varepsilon }_{i}^{\mathrm{s}} $ refers to seed energy equivalent for crop i, and the corresponding value of oilseed rape, soybean and peanut are 20.9, 16.31 and 13.1 MJ∙kg−1, respectively[22]化肥
Chemical fertilizer$ {e}_{ih}^{\mathrm{f}}={q}_{ih}^{\mathrm{f}}\times {\varepsilon }_{h}^{\mathrm{f}} $ $ {e}_{ih}^{\mathrm{f}} $表示化肥h (即氮肥、磷肥、钾肥和复混肥)的能耗(MJ∙hm−2); $ {q}_{ih}^{\mathrm{f}} $表示化肥h施用在作物i的用量(kg∙hm−2); $ {\varepsilon }_{h}^{\mathrm{f}} $表示化肥h的能量当量, 氮肥、磷肥、钾肥和复混肥的取值分别为24.0 MJ∙kg−1、8.5 MJ∙kg−1、9.0 MJ∙kg−1和12.8 MJ∙kg−1 [23]
$ {e}_{ih}^{\mathrm{f}} $ refers to energy consumption of chemical fertilizer h (MJ∙hm−2), which includes nitrogen fertilizer, phosphate fertilizer, potassium fertilizer and compound fertilizer; $ {q}_{ih}^{\mathrm{f}} $ refers to the usage amount of fertilizer h for crop i (kg∙hm−2); $ {\varepsilon }_{h}^{\mathrm{f}} $ refers to energy equivalent for fertilizer h, and the corresponding value of nitrogen fertilizer, phosphate fertilizer, potassium fertilizer and compound fertilizer are 24.0, 8.5, 9.0 and 12.8 MJ∙kg−1, respectively[23]柴油
Diesel fuel$ {e}_{i}^{\mathrm{d}}={(q}_{i}^{\mathrm{d}}+{q}_{i}^{\mathrm{m}}\times \phi )/{p}^{\mathrm{d}}\times {\varepsilon }^{\mathrm{d}} $ $ {e}_{i}^{\mathrm{d}} $表示作物i的柴油能耗(MJ∙hm−2); $ {q}_{i}^{\mathrm{d}} $表示作物i的燃料动力费(¥∙hm−2); $ {q}_{i}^{\mathrm{m}} $表示作物i的机械作业费(¥∙hm−2); $ \mathrm{\phi } $表示机械作业费中购买燃料费用占比, 取值40%[24]; $ {p}^{\mathrm{d}} $表示柴油价格(¥∙kg−1); $ {\varepsilon }^{\mathrm{d}} $表示柴油能量当量, 取值为43.5 MJ∙kg−1 [23]
$ {e}_{i}^{\mathrm{d}} $ refers to consumption of diesel fuel for crop i (MJ∙hm−2); $ {q}_{i}^{\mathrm{d}} $ refers to fuel and power cost for crop i (¥∙hm−2); $ {q}_{i}^{\mathrm{m}} $ refers to machinery cost for crop i (¥∙hm−2); $ \mathrm{\phi } $ refers to the proportion of the cost of buying fuel in the total cost of mechanical operation, and the value of $ \mathrm{\phi } $ is 40%[24]; $ {p}^{\mathrm{d}} $ refers to diesel price (¥∙kg−1); $ {\varepsilon }^{\mathrm{d}} $ refers to diesel fuel energy equivalent, and the value of $ {\varepsilon }^{\mathrm{d}} $ is 43.5 MJ∙kg−1 [23]电力
Electricity${e}_{i}^{\mathrm{e} }=\left({q}_{i}^{\mathrm{ir} }-{q}_{i}^{\mathrm{w} }\right)/{p}^{\mathrm{e} }\times {\varepsilon }^{\mathrm{e} }$ $ {e}_{i}^{\mathrm{e}} $表示作物i的电力能耗(MJ∙hm−2); ${q}_{i}^{\mathrm{ir} }$表示作物i的灌排费(¥∙hm−2); $ {q}_{i}^{\mathrm{w}} $表示作物i灌排费中的水费(¥∙hm−2); $ {p}^{\mathrm{e}} $表示农业灌溉电费(¥∙kWh−1); $ {\varepsilon }^{\mathrm{e}} $表示电力能量当量, 取值为12.3 MJ∙kWh−1[23]
$ {e}_{i}^{\mathrm{e}} $ refers to energy consumption of electricity for crop i (MJ∙hm−2); ${q}_{i}^{\mathrm{ir} }$ refers to irrigation and drainage fee for crop i (¥∙hm−2); $ {q}_{i}^{\mathrm{w}} $ refers to water charges in irrigation and drainage fees for crop i (¥∙hm−2); $ {p}^{\mathrm{e}} $ refers to electricity costs for agricultural irrigation (¥∙kWh−1); $ {\varepsilon }^{\mathrm{e}} $ refers to electricity energy equivalent, which is 12.3 MJ∙kWh−1[23]人工
Labor$ {e}_{i}^{\mathrm{p}}={q}_{i}^{\mathrm{p}}\times {\varepsilon }^{\mathrm{p}}/24\times 8 $ $ {e}_{i}^{\mathrm{p}} $表示作物i人工能耗(MJ∙hm−2); $ {q}_{i}^{\mathrm{p}} $表示作物i家庭用工天数; $ {\varepsilon }^{\mathrm{p}} $表示男社员劳动力全日(24小时)能量消耗, 取值11.1 MJ∙d−1[25]; 每天工作时长按8 h计
$ {e}_{i}^{\mathrm{p}} $ refers to energy consumption of human consumption for crop i (MJ∙hm−2); $ {q}_{i}^{\mathrm{p}} $ refers to househould employment days for crop i; $ {\varepsilon }^{\mathrm{p}} $ refers to full day (24 hours) energy consumption of male member labor force, which is 11.1 MJ∙d−1[25]; the working time is assumed as 8 hours per day能源输出 Energy output 主产品
Main product$ {e}_{i}^{\mathrm{o}}={q}_{i}^{\mathrm{G}}\times {\varepsilon }_{i}^{\mathrm{o}} $ $ {e}_{i}^{\mathrm{o}} $表示作物i每公顷主产品能源输出量(MJ∙hm−2); $ {q}_{i}^{\mathrm{G}} $表示作物i每公顷主产品产量(kg∙hm−2); $ {\varepsilon }_{i}^{\mathrm{o}} $表示作物i主产品能量当量, 油菜、大豆和花生的取值分别为20.9 MJ∙kg−1、16.31 MJ∙kg−1和27.7 MJ∙kg−1 [22];
$ {e}_{i}^{\mathrm{o}} $ refers to the energy output per hectare of the main product for crop i (MJ∙hm−2); $ {q}_{i}^{\mathrm{G}} $ refers to the yield of main product per hectare for crop i (kg∙hm−2); $ {\varepsilon }_{i}^{\mathrm{o}} $ refers to the energy equivalent of the main product for crop i, and the corresponding value for oilseed rape, soybean and peanut are 20.9, 16.31 and 27.7 MJ∙kg−1, respectively[22]副产品
By-product$ {e}_{i}^{\mathrm{b}}={q}_{i}^{\mathrm{G}}\times {\theta }_{i}\times {\varepsilon }_{i}^{\mathrm{b}} $ $ {e}_{i}^{\mathrm{b}} $表示作物i每公顷秸秆能源输出量(MJ∙hm−2); $ {\theta }_{i} $表示作物i的草谷比, 不同省份油菜的取值分别为2.05①⑩⑪⑬⑭㉓、2.0⑥㉑㉒㉔、2.67③⑧⑯⑰⑳, 不同省份大豆的取值分别为1.57⑦⑧⑯⑱⑲、1.7⑨⑫⑮、1.68①⑩⑬、1.07⑳、1.05㉑, 不同省份花生的取值分别为1.22⑦⑧⑫⑮⑱、1.5①⑩⑪⑭、1.65②④⑤㉑ [26-27], 上标数字表示不同省份, 见表注; $ {\varepsilon }_{i}^{\mathrm{b}} $表示作物i的副产品能量当量, 油菜、大豆和花生的取值分别为14.14 MJ∙kg−1、15.15 MJ∙kg−1和27.7 MJ∙kg−1 [23,28]
$ {e}_{i}^{\mathrm{b}} $ refers to energy output per hectare of straw for crop i (MJ∙hm−2); $ {\theta }_{i} $ refers to ratio of grass to grain for crop i; $ {\theta }_{i} $ for oilseed rape in different provinces are 2.05①⑩⑪⑬⑭㉓, 2.0⑥㉑㉒㉔ and 2.67③⑧⑯⑰⑳, $ {\theta }_{i} $ for soybean in different provinces are 1.57⑦⑧⑯⑱⑲, 1.7⑨⑫⑮, 1.68①⑩⑬, 1.07⑳ and 1.05㉑, $ {\theta }_{i} $ for peanut in different provinces are 1.22⑦⑧⑫⑮⑱, 1.5①⑩⑪⑭ and 1.65②④⑤㉑ [26-27], and the superscript refers to different provinces as shown in the notes of the table; $ {\varepsilon }_{i}^{\mathrm{b}} $ refers to by-product energy equivalent for crop i, and the corresponding values for oilseed rape, soybean and peanut are 14.14, 15.15 and 27.7 MJ∙kg−1, respectively [23,28]①: 安徽; ②: 福建; ③: 甘肃; ④: 广东; ⑤: 广西; ⑥: 贵州; ⑦: 河北; ⑧: 河南; ⑨: 黑龙江; ⑩: 湖北; ⑪: 湖南; ⑫: 吉林; ⑬: 江苏; ⑭: 江西; ⑮: 辽宁; ⑯: 内蒙古; ⑰: 青海; ⑱: 山东; ⑲: 山西; ⑳: 陕西; ㉑: 四川; ㉒: 云南; ㉓: 浙江; ㉔: 重庆。草谷比指农作物单位面积地上部秸秆产量与籽粒产量的比值。①: Anhui; ②: Fujian; ③: Gansu; ④: Guangdong; ⑤: Guangxi; ⑥: Guizhou; ⑦: Hebei; ⑧: Henan; ⑨: Heilongjiang; ⑩: Hubei; ⑪: Hunan; ⑫: Jilin; ⑬: Jiangsu; ⑭: Jiangxi; ⑮: Liaoning; ⑯: Inner Mongolia; ⑰: Qinghai; ⑱: Shandong; ⑲: Shanxi; ⑳: Shaanxi; ㉑: Sichuan; ㉒: Yunnan; ㉓: Zhejiang; ㉔: Chongqing. Grass-grain ratio refers to the ratio of straw yield to grain yield per unit area of the crop. 表 3 油料作物生产系统平均能源输入与输出
Table 3. Average energy inputs and outputs of oilseed crop production system
项目
Project油菜
Oilseed rape大豆
Soybean花生
Peanut能源输入
Energy input (MJ∙hm−2)8647.94 8125.84 13 931.01 种子 Seed 116.62 1279.71 2838.52 化学肥料
Chemical fertilizer4170.71 1821.05 3997.82 氮肥
Nitrogen fertilizer2098.56 472.43 870.65 磷肥
Phosphate fertilizer72.17 48.84 196.06 钾肥
Potassium fertilizer31.86 14.85 14.64 复合肥
Compound fertilizer1968.13 1284.92 2916.48 柴油 Diesel fuel 2675.69 2594.70 3463.48 电力 Electricity 695.13 1846.61 2302.39 人工 Labor 989.79 583.77 1328.80 能源输出
Energy output (GJ∙hm−2)112.87 132.21 188.79 主产品
Main-product45.06 34.64 50.33 副产品
By-product67.81 97.57 138.46 能源效率
Energy efficiency净能源
Net energy (GJ∙hm−2)104.22
36.41*76.84
26.51*222.10
83.64*能源生产力
Energy productivity
(kg∙MJ−1)0.80
0.25*0.67
0.26*0.61
0.25*能源利用效率
Energy use efficiency13.05
5.21*10.46
4.26*16.94
7.00**表示仅考虑了主产品能源输出。* refers to the data only involving the energy output of the main product. 表 4 中国油料作物生产不同排放源的温室气体排放量
Table 4. GHG emissions from different sources of oilseed crop production in China
kg(CO2 eq)∙hm−2 排放源 Emission source 油菜 Oilseed rape 大豆 Soybean 花生 Peanut 柴油 Diesel fuel 203.72 197.55 263.70 电力 Electricity 34.36 91.28 113.81 化肥 Chemical fertilizer 422.08 218.24 497.45 合计 Total 660.16 507.07 874.96 表 5 油料作物种植低效省份的能源节约
Table 5. Energy saving in provinces where oilseed crops are planted inefficiently
MJ∙hm−2 类型
Types决策单元
Decision making unit柴油
Diesel fuel电力
Electricity化肥
Chemical fertilizer人工
Labor种子
Seed总能源节约
Total energy saving油菜
Oilseed rape甘肃 Gansu 3116.82 763.21 2134.09 0.00 97.35 6111.46 河南 Henan 157.10 174.84 0.00 0.00 12.07 344.02 陕西 Shaanxi 1445.93 1181.50 2079.26 335.73 82.32 5124.73 云南 Yunnan 1551.51 456.17 1775.77 0.34 164.33 3948.12 大豆
Soybean湖北 Hubei 1071.47 0.00 422.83 0.00 66.22 1560.52 山西 Shanxi 1588.06 3677.71 2126.48 416.89 114.18 7923.32 陕西 Shaanxi 1789.28 3001.97 2643.75 224.05 165.51 7824.56 花生
Peanut河北 Hebei 0.00 10 408.32 990.90 516.58 1241.41 13 157.21 河南 Henan 0.00 5911.78 2685.82 3.60 1024.42 9625.63 山东 Shandong 0.00 2020.61 2472.59 856.69 646.83 5996.73 表 6 能源节约省份温室气体减排潜力
Table 6. GHG emission reduction potential in energy-saving provinces
类型
Types决策单元
Decision making unit柴油
Diesel fuel
[kg(CO2 eq)∙hm−2]电力
Electricity
[kg(CO2 eq)∙hm−2]化肥
Chemical fertilizer
[kg(CO2 eq)∙hm−2]总计
Total
[kg(CO2 eq)∙hm−2]减排潜力
Reduction potential
(%)油菜
Oilseed rape甘肃 Gansu 237.31 37.73 219.30 494.34 51.15 河南 Henan 11.96 8.64 0.00 20.60 3.20 陕西 Shaanxi 110.09 58.40 213.67 382.16 53.00 云南 Yunnan 118.13 22.55 182.48 323.16 51.25 大豆
Soybean湖北 Hubei 81.58 0.00 43.45 125.03 26.42 山西 Shanxi 120.91 181.79 218.52 521.23 67.92 陕西 Shaanxi 136.23 148.39 271.68 556.30 92.69 花生
Peanut河北 Hebei 0.00 514.49 101.83 616.32 48.54 河南 Henan 0.00 292.22 276.00 568.23 47.09 山东 Shandong 0.00 99.88 254.09 353.97 30.33 -
[1] HONMA S, HU J L. Industry-level total-factor energy efficiency in developed countries: a Japan-centered analysis[J]. Applied Energy, 2014, 119: 67−78 doi: 10.1016/j.apenergy.2013.12.049 [2] ZHU L, WANG Y, SHANG P P, et al. Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: based on an improved nonradial multidirectional efficiency analysis[J]. Energy Policy, 2019, 133: 110883 doi: 10.1016/j.enpol.2019.110883 [3] MOHSENI P, BORGHEI A M, KHANALI M. Coupled life cycle assessment and data envelopment analysis for mitigation of environmental impacts and enhancement of energy efficiency in grape production[J]. Journal of Cleaner Production, 2018, 197: 937−947 doi: 10.1016/j.jclepro.2018.06.243 [4] WU H J, YUAN Z W, GENG Y, et al. Temporal trends and spatial patterns of energy use efficiency and greenhouse gas emissions in crop production of Anhui Province, China[J]. Energy, 2017, 133: 955−968 doi: 10.1016/j.energy.2017.05.173 [5] 谢淑娟, 匡耀求, 黄宁生. 中国发展碳汇农业的主要路径与政策建议[J]. 中国人口·资源与环境, 2010, 20(12): 46−51 doi: 10.3969/j.issn.1002-2104.2010.12.010XIE S J, KUANG Y Q, HUANG N S. Main paths and policy proposals for the development of carbon-sinking agriculture in China[J]. China Population, Resources and Environment, 2010, 20(12): 46−51 doi: 10.3969/j.issn.1002-2104.2010.12.010 [6] NEMECEK T, DUBOIS D, HUGUENIN-ELIE O, et al. Life cycle assessment of Swiss farming systems: Ⅰ. integrated and organic farming[J]. Agricultural Systems, 2011, 104(3): 217−232 doi: 10.1016/j.agsy.2010.10.002 [7] 朱永彬, 马晓哲, 史雅娟. 县级尺度下河南省农业投入产出效率与减排潜力分析[J]. 中国生态农业学报(中英文), 2022, 30(11): 1852−1861 doi: 10.12357/cjea.20220219ZHU Y B, MA X Z, SHI Y J. Analysis of agricultural input-output efficiency and emission reduction potential in Henan Province at County level[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1852−1861 doi: 10.12357/cjea.20220219 [8] 刘杨, 刘鸿斌. 山东省农业碳排放特征、影响因素及达峰分析[J]. 中国生态农业学报(中英文), 2022, 30(4): 558−569 doi: 10.12357/cjea.20210582LIU Y, LIU H B. Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 558−569 doi: 10.12357/cjea.20210582 [9] YUAN S, PENG S B. Input-output energy analysis of rice production in different crop management practices in central China[J]. Energy, 2017, 141: 1124−1132 doi: 10.1016/j.energy.2017.10.007 [10] BUDZYŃSKI W S, JANKOWSKI K J, JAROCKI M. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland[J]. Energy, 2015, 90: 1272−1279 doi: 10.1016/j.energy.2015.06.087 [11] LEWANDOWSKA-CZARNECKA A, BULLER L S, NIENARTOWICZ A, et al. Energy and emergy analysis for assessing changes in Polish agriculture since the accession to the European Union[J]. Ecological Modelling, 2019, 412: 108819 doi: 10.1016/j.ecolmodel.2019.108819 [12] SINGH P, SINGH G, SODHI G P S. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India[J]. Energy, 2019, 174: 269−279 doi: 10.1016/j.energy.2019.02.169 [13] MOHAMMADI A, RAFIEE S, JAFARI A, et al. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 724−733 doi: 10.1016/j.rser.2013.11.012 [14] ARRIETA E M, CUCHIETTI A, CABROL D, et al. Greenhouse gas emissions and energy efficiencies for soybeans and maize cultivated in different agronomic zones: a case study of Argentina[J]. Science of the Total Environment, 2018, 625: 199−208 doi: 10.1016/j.scitotenv.2017.12.286 [15] RABIEE M, MAJIDIAN M, ALIZADEH M R, et al. Evaluation of energy use efficiency and greenhouse gas emission in rapeseed (Brassica napus L.) production in paddy fields of Guilan province of Iran[J]. Energy, 2021, 217: 119411 doi: 10.1016/j.energy.2020.119411 [16] 杨欢, 乔远, 王兴邦, 等. 黄淮海玉米生产能源利用效率和净生态系统碳平衡时空特征[J]. 生态学报, 2022, 42(15): 6184−6195YANG H, QIAO Y, WANG X B, et al. Spatio-temporal characteristics of energy use efficiency and net ecosystem carbon budget of maize production in Huang-Huai-Hai region[J]. Acta Ecologica Sinica, 2022, 42(15): 6184−6195 [17] 王玉涛, 王丰川, 洪静兰, 等. 中国生命周期评价理论与实践研究进展及对策分析[J]. 生态学报, 2016, 36(22): 7179−7184WANG Y T, WANG F C, HONG J L, et al. The development of life cycle assessment theory research in China and analysis of countermeasures[J]. Acta Ecologica Sinica, 2016, 36(22): 7179−7184 [18] Food and Agriculture Organization of the United Nations. Crops and livestock products dataset of Food and Agriculture Organization of the United Nations[DB/OL], https://www.fao.org/faostat/en/#data/QCL, 2023-3-24/2023-10-16 [19] 范紫月, 齐晓波, 曾麟岚, 等. 中国农业系统近40年温室气体排放核算[J]. 生态学报, 2022, 42(23): 9470−9482FAN Z Y, QI X B, ZENG L L, et al. Accounting of greenhouse gas emissions in the Chinese agricultural system from 1980 to 2020[J]. Acta Ecologica Sinica, 2022, 42(23): 9470−9482 [20] 秦萌, 任宗杰, 张帅, 等. 从“农药零增长行动”看“农药减量化”发展[J]. 中国植保导刊, 2021, 41(11): 89−94 doi: 10.3969/j.issn.1672-6820.2021.11.025QIN M, REN Z J, ZHANG S, et al. Development of “pesticide reduction” viewed from “pesticide zero growth action”[J]. China Plant Protection, 2021, 41(11): 89−94 doi: 10.3969/j.issn.1672-6820.2021.11.025 [21] MOUSAVI-AVVAL S H, RAFIEE S, JAFARI A, et al. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran[J]. Journal of Cleaner Production, 2011, 19(13): 1464−1470 doi: 10.1016/j.jclepro.2011.04.013 [22] 中国疾病预防控制中心营养与健康所. 中国食物成分表[M]. 6版. 北京: 北京大学医学出版社, 2018National Institute for Nutrition and Health Chinese Center for Disease Control and Prevention. China Food Composition Table[M]. 6th. Beijing: Peking University Medical Press, 2018 [23] 牛若峰, 刘天福. 农业技术经济手册[M]. 2版. 北京: 农业出版社, 1984NIU R F, LIU T F. Handbook of Agricultural Technology and Economy[M]. 2nd. Beijing: Chinese Agricultural Press, 1984 [24] 徐键辉. 粮食生产的能源消耗及其效率研究——基于DEA方法的实证分析[D]. 杭州: 浙江大学, 2010.XU J H. Study on energy consumption and efficiency of grain production—An empirical analysis based on DEA method[D]. Hangzhou: Zhejiang University, 2010 [25] 于永中, 李天麟, 任建方, 等. 农业劳动强度及劳动能量消耗的调查研究[J]. 卫生研究, 1979, 8(1): 91−97YU Y Z, LI T L, REN J F, et al. Investigation and study on agricultural labor intensity and labor energy consumption[J]. Journal of Hygiene Research, 1979, 8(1): 91−97 [26] 农业农村部办公厅. 农业农村部办公厅关于做好农作物秸秆资源台账建设工作的通知[EB/OL]. 中华人民共和国农业农村部. [2019-01-14]. http://www.moa.gov.cn/gk/tzgg_1/tfw/201901/t20190129_6170842.htmGeneral Office of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of the General Office of the Ministry of Agriculture and Rural Affairs on the construction of the ledger of crop straw resources[EB/OL]. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. [2019-01-14]. http://www.moa.gov.cn/gk/tzgg_1/tfw/201901/t20190129_6170842.htm [27] 王亚静, 高春雨, 王红彦, 等. 中国油菜秸秆资源量估算及其资源化利用[C]//2015年中国农业资源与区划学会学术年会论文集. 西宁, 2015: 458–466WANG Y J, GAO C Y, WANG H Y, et al. Estimation and utilization of rape straw resources in China [C]//Proceedings of the 2015 Annual Conference of Chinese Society of Agricultural Resources and Regionalization. Xining, 2015: 458–466 [28] 韦茂贵, 王晓玉, 谢光辉. 中国各大田作物田间秸秆资源量及其时间分布[J]. 中国农业大学学报, 2012, 17(6): 32−44 doi: 10.11841/j.issn.1007-4333.2012.06.003WEI M G, WANG X Y, XIE G H. Field residue of field crops and its temporal distribution among thirty-one provinces of China[J]. Journal of China Agricultural University, 2012, 17(6): 32−44 doi: 10.11841/j.issn.1007-4333.2012.06.003 [29] MARDANI A, ZAVADSKAS E K, STREIMIKIENE D, et al. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1298−1322 doi: 10.1016/j.rser.2016.12.030 [30] TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498−509 doi: 10.1016/S0377-2217(99)00407-5 [31] 姜秋香, 王天, 王子龙, 等. 基于EBM的水资源失衡风险导致的社会经济损失模型及应用[J]. 农业工程学报, 2018, 34(19): 104−113 doi: 10.11975/j.issn.1002-6819.2018.19.014JIANG Q X, WANG T, WANG Z L, et al. EBM-based social economic loss model of water resources imbalance risk and its application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(19): 104−113 doi: 10.11975/j.issn.1002-6819.2018.19.014 [32] UNAKITAN G, HURMA H, YILMAZ F. An analysis of energy use efficiency of canola production in Turkey[J]. Energy, 2010, 35(9): 3623−3627 doi: 10.1016/j.energy.2010.05.005 -