留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应

周立峰 杨宇翔 杨荣

周立峰, 杨宇翔, 杨荣. 覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−12 doi: 10.12357/cjea.20230289
引用本文: 周立峰, 杨宇翔, 杨荣. 覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−12 doi: 10.12357/cjea.20230289
ZHOU L F, YANG Y X, YANG R. Root and leaf senescence of maize subject to spatial differentiation of soil water and CO2 in sandy fields with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20230289
Citation: ZHOU L F, YANG Y X, YANG R. Root and leaf senescence of maize subject to spatial differentiation of soil water and CO2 in sandy fields with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20230289

覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应

doi: 10.12357/cjea.20230289
基金项目: 国家自然科学基金项目(52369006)、中国科学院战略性先导科技专项项目(XDA23060302)和云南省基础研究计划项目(202201BE070001-023)资助
详细信息
    作者简介:

    周立峰, 主要研究方向为农田生态过程及模拟。E-mail: zhoulf@kust.edu.cn

    通讯作者:

    杨荣, 主要研究方向为绿洲农业生态学。E-mail: yangrong@lzb.ac.cn

  • 中图分类号: S275.6

Root and leaf senescence of maize subject to spatial differentiation of soil water and CO2 in sandy fields with plastic film mulching

Funds: This study was supported by the National Natural Science Foundation of China (52369006), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23060302), and the Yunnan Fundamental Research Projects (202201BE070001-023).
More Information
  • 摘要: 干旱区新垦绿洲沙地灌溉强度大, 农田覆膜后往往出现春玉米早衰现象。为探讨土壤水分和通气性是否是引发早衰的原因, 本研究在河西走廊绿洲春玉米农田设置不覆膜(NM)和覆膜(PFM)处理, 探求覆膜条件下土壤水分和CO2分压(pCO2)对玉米根系生长、绿叶面积衰减、光合生理以及籽粒产量与品质的影响。相比不覆膜处理, 覆膜区域的土壤pCO2较未覆膜区域高40%以上; 覆膜区域过高的土壤pCO2 (0.93%~1.27%)使玉米花期根系活力下降19.7%, 但非覆膜区根长密度和根系活力分别增加22.7%和9.6%。覆膜提高了春玉米拔节期叶片光合速率(20.0%)和蒸腾速率(8.5%), 但抑制了花后叶片光合速率(−40.0%)和蒸腾速率(−18.0%); 覆膜处理相对绿叶面积衰减启动时间和衰减最大速率时间分别提前1.7 d和7.1 d, 而平均衰减速率和最大衰减速率分别增加6.7%和21.7%。覆膜的上述效应未显著影响玉米籽粒产量, 但使籽粒淀粉含量和蛋白质含量分别降低20.1%和22.1%。以上结果表明, 在干旱区新垦绿洲沙地, 覆膜根区土壤pCO2过高可能是导致玉米花后早衰和籽粒品质下降的重要原因, 后期建议开展适时揭膜、控制灌溉(如亏缺灌溉、分根交替灌溉)或加气灌溉对覆膜新垦绿洲农田土壤通气性的改善研究。
  • 图  1  试验地玉米生育期(2020年4—10月)气温、降水和水面蒸发量

    Figure  1.  Air temperature, precipitation and pan evaporation during maize growth period (April to October in 2020) at the experimental site

    图  2  土壤水分测定的水平方向取样点示意图

    Figure  2.  Diagram of sampling points in the horizontal direction for soil moisture measurement

    图  3  土壤气体采样系统 (以 15 cm 深度为例)

    Figure  3.  Soil gas sampling system (taking the depth of 15 cm as an example)

    图  4  覆膜(PFM)和不覆膜(NM)处理下灌水前后春玉米根区土壤(0~60 cm)含水率

    −10为窄行在水平方向距植株10 cm处, 5、15和25分别为宽行在水平方向距植株5 cm、15 cm 和25 cm处; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域。不同小写字母表示同一处理不同水平距离间差异显著(P<0.05), 不同大写字母表示同一水平距离不同处理间差异显著(P<0.05)。−10 is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction, and 5, 15 and 25 are the sampling points at 5 cm, 15 cm and 25 cm distance from the plant in wide row in the horizontal direction, respectively. Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area. Different lowercase letters indicate significant differences at P<0.05 level among different horizontal distances of the same treatment, and different capital letters indicate significant differences at P<0.05 level among different treatments at the same horizontal distance.

    Figure  4.  Soil water content in root zone (0−60 cm) of spring maize before and after irrigation under no mulching (NM) and plastic film mulching (PFM) treatments

    图  5  覆膜(PFM)和不覆膜(NM)处理下灌水前后春玉米生育期根区(0~60 cm)土壤CO2分压

    −10为窄行在水平方向距植株10 cm处, 5、15和25分别为宽行在水平方向距植株5 cm、15 cm和25 cm处; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域。不同小写字母表示同一处理不同水平距离间差异显著(P<0.05), 不同大写字母表示同一水平距离不同处理间差异显著(P<0.05)。−10 is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction, and the 5, 15, and 25 are the sampling points at 5 cm, 15 cm, and 25 cm distance from the plant in wide row in the horizontal direction. Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area. Different lowercase letters indicate significant differences at P<0.05 level among different horizontal distances at the same treatment, and different capital letters indicate significant differences at P<0.05 level among different treatments at the same horizontal distance.

    Figure  5.  Partial pressure of soil CO2 (pCO2) in root zone (0−60 cm) of spring maize before and after irrigation under no mulching (NM) and plastic film mulching (PFM) treatments

    图  6  覆膜(PFM)和不覆膜(NM)处理下春玉米物候期

    Figure  6.  Phenological phase of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments

    图  7  覆膜(PFM)和不覆膜(NM)处理下春玉米花期根长密度分布及根系活力

    不同小写字母表示同一指标在同一垂直深度(左图)或水平距离(右图)不同处理间差异显著(P<0.05)。右图中, −10 cm 为窄行在水平方向距植株10 cm处, 5 cm、15 cm 和25 cm分别为宽行在水平方向距植株5 cm、15 cm 和25 cm处l; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域; 柱子和带散点的折线分别为平均根长密度和根系活力。

    Figure  7.  Root length density and activity of spring maize at flower stage at different soil depth and horizontal distance from plant under no mulching (NM) and plastic film mulching (PFM) treatments

    Different lowercase letters indicate significant differences at P<0.05 level of the same indicator among different treatments at the same depth (left figure) or horizontal distance (right figure). In the right figure, −10 cm is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction; 5 cm, 15 cm and 25 cm are the sampling points at 5 cm, 15 cm and 25 cm distance from the plant in wide row in the horizontal direction, respectively; Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area; bar and line with dots in the right figure refer to average root length density and root activity, respectively.

    图  8  覆膜(PFM)和不覆膜(NM)处理下春玉米吐丝后相对绿叶面积的动态变化

    Figure  8.  Dynamic changes of relative green leaf area after silking of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments

    图  9  覆膜(PFM)和不覆膜(NM)处理下春玉米不同生长阶段叶片光合与蒸腾速率

    不同小写字母表示拔节期同一时间点不同处理间差异显著(P<0.05), 不同大写字母表示灌浆期同一时间点不同处理间差异显著(P<0.05)。

    Figure  9.  Leaf photosynthetic rate and transpiration rate of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments at different growth stage

    Different lowercase letters indicate significant differences at P<0.05 level between different treatments at the same time at elongation stage, and different capital letters indicate significant differences at P<0.05 level between different treatments at the same time at grainfilling stage.

    表  1  试验地0~120 cm土层土壤基本理化性质

    Table  1.   Basic soil physical and chemical properties (0−120 cm depth) at the experimental site

    土层深度
    Soil depth
    (cm)
    容重
    Bulk density
    (g·cm−3)
    田间持水量
    Field capacity (%)
    有机质
    Organic matter
    (g·kg−1)
    NO3含量
    NO3 content
    (mg·kg−1)
    NH4+ 含量
    NH4+ content
    (mg·kg−1)
    土壤粒径分布
    Soil particle size distribution (%)
    黏粒
    Clay
    粉粒
    Slit
    砂粒
    Sand
    0~201.4333.27.8118.513.216.218.365.5
    20~401.4931.93.7312.321.813.118.368.6
    40~601.5228.62.789.813.411.214.274.6
    60~901.5626.52.226.77.39.69.880.6
    90~1201.5824.31.575.86.27.86.485.8
    下载: 导出CSV

    表  3  春玉米籽粒产量和品质以及土壤和作物的其他指标的相关矩阵

    Table  3.   Correlation matrix containing grain yield and quality and other indexes of soil and crop of spring maize

    土壤
    水分
    Soil
    moisture
    土壤CO2分压
    Partial pressure of CO2 in soil
    根系
    活力
    Root activity
    光合
    速率
    Photosynth-etic rate
    绿叶衰减
    启动
    时间
    Leaf senescence start time
    绿叶平均衰减
    速率
    Average leaf senescence
    rate
    产量
    Grain yield
    淀粉
    含量
    Starch
    content
    蛋白质
    含量
    Protein
    content
    土壤水分
    Soil moisture
    1.000.53*−0.21−0.140.190.280.25−0.27−0.18
    土壤CO2分压
    Partial pressure
    of CO2 in soil
    1.00−0.66*−0.57*0.73**0.66*0.32−0.61*−0.59*
    根系活力
    Root activity
    1.000.62*−0.51*−0.57*0.210.350.62*
    光合速率
    Photosynthetic rate
    1.00−0.78**−0.82**0.280.52*0.48
    绿叶衰减启动时间
    Leaf senescence start time
    1.000.73**0.16−0.69*−0.52*
    绿叶平均衰减速率
    Average leaf senescence rate
    1.000.41−0.75**−0.64*
    产量 Grain yield1.000.17−0.22
    淀粉含量
    Starch content
    1.00−0.30
    蛋白质含量
    Protein content
    1.00
      ***分别表示在P<0.05和P<0.01水平显著相关。* and ** indicate significant correlations at P<0.05 and P<0.01 level, respectively.
    下载: 导出CSV
  • [1] HUANG T T, YANG N, LU C, et al. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods[J]. Soil and Tillage Research, 2021, 214: 105171 doi: 10.1016/j.still.2021.105171
    [2] WANG T Y, WANG Z H, GUO L, et al. Experiences and challenges of agricultural development in an artificial oasis: A review[J]. Agricultural Systems, 2021, 193: 103220 doi: 10.1016/j.agsy.2021.103220
    [3] NIU Z R, SU Y Z, AN F J, et al. Changes in soil carbon and nitrogen content, associated with aggregate fractions, after conversion of sandy desert to irrigation farmland, northwest China[J]. Soil Use and Management, 2022, 38(1): 396−410 doi: 10.1111/sum.12743
    [4] GAN Y T, SIDDIQUE K H M, TURNER N C, et al. Ridge-furrow mulching systems − An innovative technique for boosting crop productivity in semiarid rain-fed environments[M]//Advances in Agronomy. Amsterdam: Elsevier, 2013: 429–476
    [5] 李尚中, 王勇, 樊廷录, 等. 旱地玉米不同覆膜方式的水温及增产效应[J]. 中国农业科学, 2010, 43(5): 922−931

    LI S Z, WANG Y, FAN T L, et al. Effects of different plastic film mulching modes on soil moisture, temperature and yield of dryland maize[J]. Scientia Agricultura Sinica, 2010, 43(5): 922−931
    [6] 路海东, 薛吉全, 郝引川, 等. 播期对雨养旱地春玉米生长发育及水分利用的影响[J]. 作物学报, 2015, 41(12): 1906−1914 doi: 10.3724/SP.J.1006.2015.01906

    LU H D, XUE J Q, HAO Y C, et al. Effects of sowing time on spring maize (Zea mays L.) growth and water use efficiency in rainfed dryland[J]. Acta Agronomica Sinica, 2015, 41(12): 1906−1914 doi: 10.3724/SP.J.1006.2015.01906
    [7] 蒋锐, 郭升, 马德帝. 旱地雨养农业覆膜体系及其土壤生态环境效应[J]. 中国生态农业学报, 2018, 26(3): 317−328

    JIANG R, GUO S, MA D D. Review of plastic film mulching system and its impact on soil ecological environment in China’s rainfed drylands[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 317−328
    [8] 魏廷邦, 胡发龙, 赵财, 等. 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应[J]. 中国农业科学, 2017, 50(15): 2916−2927

    WEI T B, HU F L, ZHAO C, et al. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas[J]. Scientia Agricultura Sinica, 2017, 50(15): 2916−2927
    [9] BEN-NOAH I, FRIEDMAN S P. Review and evaluation of root respiration and of natural and agricultural processes of soil aeration[J]. Vadose Zone Journal, 2018, 17(1): 1−47
    [10] LYNCH J P. Roots of the second green revolution[J]. Australian Journal of Botany, 2007, 55(5): 493 doi: 10.1071/BT06118
    [11] KUZYAKOV Y. Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods[J]. Soil Biology and Biochemistry, 2002, 34(11): 1621−1631 doi: 10.1016/S0038-0717(02)00146-3
    [12] DU Y D, NIU W Q, ZHANG Q A, et al. Effects of nitrogen on soil microbial abundance, enzyme activity, and nitrogen use efficiency in greenhouse celery under aerated irrigation[J]. Soil Science Society of America Journal, 2018, 82(3): 606−613 doi: 10.2136/sssaj2017.11.0377
    [13] STADLER L B, LOVE N G. Impact of microbial physiology and microbial community structure on pharmaceutical fate driven by dissolved oxygen concentration in nitrifying bioreactors[J]. Water Research, 2016, 104: 189−199 doi: 10.1016/j.watres.2016.08.001
    [14] LI Y A, NIU W Q, ZHANG M Z, et al. Artificial soil aeration increases soil bacterial diversity and tomato root performance under greenhouse conditions[J]. Land Degradation & Development, 2020, 31(12): 1443−1461
    [15] ZHU Y, DYCK M, CAI H J, et al. The effects of aerated irrigation on soil respiration, oxygen, and porosity[J]. Journal of Integrative Agriculture, 2019, 18(12): 2854−2868 doi: 10.1016/S2095-3119(19)62618-3
    [16] LIU Y, GUO K Y, ZHAO Y Z, et al. Change in composition and function of microbial communities in an acid bamboo (Phyllostachys praecox) plantation soil with the addition of three different biochars[J]. Forest Ecology and Management, 2020, 473: 118336 doi: 10.1016/j.foreco.2020.118336
    [17] FRIEDMAN S P, NAFTALIEV B. A survey of the aeration status of drip-irrigated orchards[J]. Agricultural Water Management, 2012, 115: 132−147 doi: 10.1016/j.agwat.2012.08.015
    [18] 陶丽佳, 王凤新, 顾小小. 膜下滴灌对土壤CO2与CH4浓度的影响[J]. 中国生态农业学报, 2012, 20(3): 330−336 doi: 10.3724/SP.J.1011.2012.00330

    TAO L J, WANG F X, GU X X. Influence of drip irrigation under plastic film mulching on concentrations of CO2 and CH4 in soil[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 330−336 doi: 10.3724/SP.J.1011.2012.00330
    [19] 俞永祥, 赵成义, 贾宏涛, 等. 覆膜对绿洲棉田土壤CO2通量和CO2浓度的影响[J]. 应用生态学报, 2015, 26(1): 155−160

    YU Y X, ZHAO C Y, JIA H T, et al. Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 155−160
    [20] XU M J, ZHUANG S Y, GUI R Y. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox[J]. Scientific Reports, 2017, 7(1): 14353 doi: 10.1038/s41598-017-14798-8
    [21] QIAN Z Z, ZHUANG S Y, GAO J S, et al. Aeration increases soil bacterial diversity and nutrient transformation under mulching-induced hypoxic conditions[J]. Science of the Total Environment, 2022, 817: 153017 doi: 10.1016/j.scitotenv.2022.153017
    [22] QI J, NIE J J, ZHANG Y J, et al. Plastic film mulching does not increase the seedcotton yield due to the accelerated late-season leaf senescence of short-season cotton compared with non-mulching[J]. Field Crops Research, 2022, 287: 108660 doi: 10.1016/j.fcr.2022.108660
    [23] 罗宏海, 张宏芝, 陶先萍, 等. 膜下滴灌条件下水氮供应对棉花根系及叶片衰老特性的调节[J]. 中国农业科学, 2013, 46(10): 2142−2150

    LUO H H, ZHANG H Z, TAO X P, et al. Effect of irrigation and nitrogen application regimes on senescent characters of roots and leaves in cotton with under-mulch-drip irrigation[J]. Scientia Agricultura Sinica, 2013, 46(10): 2142−2150
    [24] ZHOU Y P, BASTIDA F, ZHOU B, et al. Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community[J]. Soil Biology and Biochemistry, 2020, 141: 107663 doi: 10.1016/j.soilbio.2019.107663
    [25] FLORES FERNÁNDEZ J L, HARTMANN P, SCHÄFFER J, et al. Initial recovery of compacted soil — Planting and technical treatments decrease CO2 concentrations in soil and promote root growth[J]. Annals of Forest Science, 2017, 74(4): 1−12
    [26] DE MORAES M T, DEBIASI H, FRANCHINI J C, et al. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil[J]. Soil and Tillage Research, 2020, 200: 104611 doi: 10.1016/j.still.2020.104611
    [27] 雷宏军, 胡世国, 潘红卫, 等. 土壤通气性与加氧灌溉研究进展[J]. 土壤学报, 2017, 54(2): 297−308

    LEI H J, HU S G, PAN H W, et al. Advancement in research on soil aeration and oxygation[J]. Acta Pedologica Sinica, 2017, 54(2): 297−308
    [28] BEN-NOAH I, NITSAN I, COHEN B, et al. Soil aeration using air injection in a citrus orchard with shallow groundwater[J]. Agricultural Water Management, 2021, 245: 106664 doi: 10.1016/j.agwat.2020.106664
    [29] NOBEL P S, PALTA J A. Soil O2 and CO2 effects on root respiration of cacti[J]. Plant and Soil, 1989, 120(2): 263−271 doi: 10.1007/BF02377076
    [30] ZHANG X Y, MA X, SONG H M. Quality degradation of alfalfa caused by CO2 leakage from carbon capture and storage[J]. Ecotoxicology and Environmental Safety, 2022, 246: 114147 doi: 10.1016/j.ecoenv.2022.114147
    [31] KADER M A, SENGE M, MOJID M A, et al. Recent advances in mulching materials and methods for modifying soil environment[J]. Soil and Tillage Research, 2017, 168: 155−166 doi: 10.1016/j.still.2017.01.001
    [32] WANG Y Y, HU C S, MING H, et al. Concentration profiles of CH4, CO2 and N2O in soils of a wheat-maize rotation ecosystem in North China Plain, measured weekly over a whole year[J]. Agriculture, Ecosystems & Environment, 2013, 164: 260−272
    [33] OOSTEROM E J, JAYACHANDRAN R, BIDINGER F R. Diallel analysis of the stay-green trait and its components in sorghum[J]. Crop Science, 1996, 36(3): 549−555 doi: 10.2135/cropsci1996.0011183X003600030002x
    [34] 刘开昌, 董树亭, 赵海军, 等. 我国玉米自交系叶片保绿性及其与产量的关系[J]. 作物学报, 2009, 35(9): 1662−1671 doi: 10.3724/SP.J.1006.2009.01662

    LIU K C, DONG S T, ZHAO H J, et al. Leaf stay-green traits in Chinese maize inbred lines and their relationship with grain yield[J]. Acta Agronomica Sinica, 2009, 35(9): 1662−1671 doi: 10.3724/SP.J.1006.2009.01662
    [35] QIN W, HU C S, OENEMA O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis[J]. Scientific Reports, 2015, 5: 16210 doi: 10.1038/srep16210
    [36] ZHOU L F, ZHAO W Z, HE J Q, et al. Simulating soil surface temperature under plastic film mulching during seedling emergence of spring maize with the RZ-SHAW and DNDC models[J]. Soil and Tillage Research, 2020, 197: 104517 doi: 10.1016/j.still.2019.104517
    [37] 张彦群, 王建东, 龚时宏, 等. 基于液流计估测蒸腾分析覆膜滴灌玉米节水增产机理[J]. 农业工程学报, 2018, 34(21): 89−97 doi: 10.11975/j.issn.1002-6819.2018.21.011

    ZHANG Y Q, WANG J D, GONG S H, et al. Analysis of water saving and yield increasing mechanism in maize field with drip irrigation under film mulching based on transpiration estimated by sap flow meter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 89−97 doi: 10.11975/j.issn.1002-6819.2018.21.011
    [38] WANG P, DENG Y J, LI X Y, et al. Dynamical effects of plastic mulch on evapotranspiration partitioning in a mulched agriculture ecosystem: measurement with numerical modeling[J]. Agricultural and Forest Meteorology, 2019, 268: 98−108 doi: 10.1016/j.agrformet.2019.01.014
    [39] LIN W, LIU W Z, ZHOU S S, et al. Influence of plastic film mulch on maize water use efficiency in the Loess Plateau of China[J]. Agricultural Water Management, 2019, 224: 105710 doi: 10.1016/j.agwat.2019.105710
    [40] YU Y Y, TURNER N C, GONG Y H, et al. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients[J]. European Journal of Agronomy, 2018, 99: 138−147 doi: 10.1016/j.eja.2018.07.005
    [41] LI F M, GUO A H, WEI H. Effects of clear plastic film mulch on yield of spring wheat[J]. Field Crops Research, 1999, 63(1): 79−86 doi: 10.1016/S0378-4290(99)00027-1
    [42] ZHOU L F, FENG H. Plastic film mulching stimulates brace root emergence and soil nutrient absorption of maize in an arid environment[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 540−550 doi: 10.1002/jsfa.10036
    [43] NAN W G, YUE S C, HUANG H Z, et al. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China[J]. Journal of Integrative Agriculture, 2016, 15(2): 451−464 doi: 10.1016/S2095-3119(15)61106-6
    [44] GAERTIG T, SCHACK-KIRCHNER H, HILDEBRAND E E, et al. The impact of soil aeration on oak decline in southwestern Germany[J]. Forest Ecology and Management, 2002, 159(1/2): 15−25
    [45] 张守都, 栗岩峰, 李久生. 滴灌条件下揭膜时间对土壤酶活性及玉米吸氮量的影响[J]. 排灌机械工程学报, 2019, 37(5): 454−460

    ZHANG S D, LI Y F, LI J S. Effects of film-uncovering time on soil enzyme activity and maize nitrogen uptake under drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(5): 454−460
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  32
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 录用日期:  2023-08-15
  • 修回日期:  2023-08-30
  • 网络出版日期:  2023-09-01

目录

    /

    返回文章
    返回