留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耕地经营规模对农户水稻生产生态效率的影响

文高辉 黄丹妮 谢依林 胡贤辉

文高辉, 黄丹妮, 谢依林, 胡贤辉. 耕地经营规模对农户水稻生产生态效率的影响−以常德市为例[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−13 doi: 10.12357/cjea.20230294
引用本文: 文高辉, 黄丹妮, 谢依林, 胡贤辉. 耕地经营规模对农户水稻生产生态效率的影响−以常德市为例[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−13 doi: 10.12357/cjea.20230294
WEN G H, HUANG D N, XIE Y L, HU X H. Impact of cultivated land operating scale on farmers’ rice production ecological efficiency: a case of Changde City[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−13 doi: 10.12357/cjea.20230294
Citation: WEN G H, HUANG D N, XIE Y L, HU X H. Impact of cultivated land operating scale on farmers’ rice production ecological efficiency: a case of Changde City[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−13 doi: 10.12357/cjea.20230294

耕地经营规模对农户水稻生产生态效率的影响以常德市为例

doi: 10.12357/cjea.20230294
基金项目: 国家自然科学基金项目(41801190)、湖南省教育厅重点项目(22A0066)、湖南省自然科学基金项目(2023JJ30407)、广东省哲学社会科学规划项目(GD21YGL05)和湖南省自然资源科研项目(2022-33)资助
详细信息
    作者简介:

    文高辉, 主要从事土地经济与管理。E-mail: wengaohui360101@sina.com

    通讯作者:

    胡贤辉, 主要从事土地经济与管理。E-mail: hxh66698@hunnu.edu.cn

  • 中图分类号: F323.2

Impact of cultivated land operating scale on farmers’ rice production ecological efficiency: a case of Changde City

Funds: This study was supported by the Natural Science Foundation of China (41801190), the Key project of Hunan Provincial Department of Education (22A0066), the Natural Science Foundation of Hunan Province(2023JJ30407), the Philosophy and Social Sciences Planning Project of Guangdong Province (GD21YGL05), and the Natural Resources Research Project of Hunan Province (2022-33).
More Information
  • 摘要: 提高水稻生产生态效率是协同实现保障粮食产量稳增长与减少粮食生产环境损耗双目标的关键路径, 耕地作为农业生产活动最基本的生产资料之一, 探索耕地经营规模对农户水稻生产生态效率的影响对促进农业适度规模化经营和耕地可持续利用具有重要意义。本文基于粮食生产微观主体——农户视角, 从理论上揭示耕地经营规模对农户水稻生产生态效率的影响, 并利用常德市416 份农户问卷调查数据, 运用随机前沿分析法构建效率测算模型和影响模型进行实证检验。研究表明: 农户耕地规模化水平和水稻生产生态效率均有待提升, 样本农户中较小规模农户数量最多, 占总样本比重为94.95%, 较小规模农户仍是农业生产的主力; 农户水稻生产生态效率均值为0.830, 还存在0.170的提升空间。耕地经营规模对农户水稻生产生态效率有显著影响, 二者并非简单线性关系而是呈“倒U型”关系, 且拐点所在区间为1.2~1.4 hm2; 农户水稻生产生态效率还受到户主受教育程度、抚养比、农业收入占比的显著正向影响和户主年龄的显著负向影响。因此, 应在尊重较小规模农户将长期存在这一现实的基础上, 进一步推进耕地适度规模经营并培育新型农户, 以促进水稻生产生态效率提高。
  • 图  1  耕地经营规模对农户水稻生产生态效率的影响机理

    Figure  1.  Influence mechanism of cultivated land operating scale on farmers’ rice production ecological efficiency

    图  2  总样本农户水稻生产生态效率占比分布图

    Figure  2.  Distribution of proportions of rice production ecological efficiency for overall sample farmers

    图  3  耕地经营规模与农户水稻生产生态效率的关系

    Figure  3.  Relationship between cultivated land operating scale and farmers’ rice production ecological efficiency

    表  1  水稻生产生态效率评价指标体系

    Table  1.   Index system of rice production ecological efficiency evaluation

    类别Type变量
    Variable
    符号Symbol指标
    Index
    指标内涵
    Connotation
    投入
    Input
    劳动投入
    Labor input
    Li劳动力投入
    Labor input (d∙hm−2)
    单位播种面积水稻生产过程中投入的劳动时间
    Labor time per unit sown area during rice production
    资本投入
    Capital input
    Ki固定资
    本投入
    Fixed capital input
    灌溉投入
    Irrigation input (¥∙hm−2)
    单位播种面积水稻生产过程中灌溉所需费用
    Costs of irrigating per unit sown area during rice production
    农机投入
    Agricultural machinery
    input (¥∙hm−2)
    单位播种面积水稻生产过程中自用和租赁农用运输车、插秧机、耕田机、收割机等农机的费用
    Costs of personal or rental farm-transporters, transplanters, cultivators, harvesters and other agricultural machinery per unit sown area during rice production
    流动资
    本投入
    Floating
    capital input
    化肥投入
    Fertilizer input (¥∙hm−2)
    单位播种面积水稻生产过程中购买氮肥、磷肥、钾肥、复合肥等化肥的费用
    Costs of purchasing nitrogen fertilizers, phosphate fertilizers, potassium fertilizers, compound fertilizers and other fertilizers per unit sown area during rice production
    农药投入
    Pesticide input
    (¥∙hm−2)
    单位播种面积水稻生产过程中购买农药的费用
    Cost of purchasing pesticides per unit sown area during rice production
    种子投入
    Seed input
    (¥∙hm−2)
    单位播种面积水稻生产过程中购买种子的费用
    Cost of purchasing seed per unit sown area during rice production
    产出Output期望产出
    Desirable output
    Yi产量
    Production
    (kg∙hm−2)
    单位播种面积水稻产量
    Rice production per unit sown area
    非期望产出
    Undesirable output
    Ci碳排放量
    Carbon emissions [kg(C)∙hm−2]
    单位播种面积碳排放量
    Carbon emissions per unit sown area
    下载: 导出CSV

    表  2  水稻生产生态效率评价的变量指标及内涵

    Table  2.   Indexes and connotations of the variables for evaluating rice production ecological efficiency

    类别
    Type
    变量
    Variable
    符号
    Symbol
    指标内涵
    Connotation
    被解释变量
    Interpreted variable
    水稻生产生态效率
    Rice production ecological efficiency
    RPEEi经过随机前沿生产函数模型计算得到的农户水稻生产生态效率值(式4)
    The farmers’ rice production ecological efficiency value calculated through a random frontier production function model (Equation 4)
    核心解释变量
    Core explanatory variable
    耕地经营规模
    Cultivated land operating scale
    SCA2020年单季稻播种面积
    Planting area of single season rice in 2020 (hm2)
    控制变量
    Control variable
    个人特征
    Personal characteristic
    户主年龄
    Age of head of household
    age户主年龄
    Age of the head of household
    户主受教育程度
    Education level of head of household
    edu小学及以下=1; 初中=2; 高中或中专=3; 大专及以上=4
    Primary school or below=1; junior middle school=2; high school or special (or technical) secondary school=3; junior college or above=4
    家庭特征
    Family characteristic
    抚养比
    Dependency ratio
    dep2020年家庭非劳动力数量/家庭劳动力数量
    Number of non-agricultural labor force /number of labor force in peasant households in 2020
    农业收入占比
    Proportion of agricultural income
    pro2020年农业纯收入/家庭总纯收入
    Agricultural income/gross household income of peasant households in 2020
    经营特征
    Operating characteristic
    耕地细碎化程度
    Degree of cultivated land fragmentation
    fra地块数量/水稻播种面积
    Number of plots/rice planting area (plots∙hm−2)
    集镇距离
    Distance to market town
    mar农户住址与中心镇/集镇的距离
    Distance from the farmer’s address to the central town or market town (km)
    下载: 导出CSV

    表  3  水稻生产碳源的碳排放系数

    Table  3.   Carbon emission coefficients of different carbon sources from rice production

    碳源 Carbon source排放系数 Emission coefficients数据来源 Data source
    氮肥 Nitrogen fertilizer2.39 kg(C)∙kg−1CLCD 0.7
    磷肥 Phosphate fertilizer0.66 kg(C)∙kg−1CLCD 0.7
    钾肥 Potassium fertilizer0.57 kg(C)∙kg−1CLCD 0.7
    复合肥 Compound fertilizer1.77 kg(C)∙kg−1CLCD 0.7
    农药 Pesticide4.9341 kg(C)∙kg−1[28]
    柴油 Diesel oil0.5927 kg(C)∙kg−1[29]1
    翻耕 Ploughing312.6 kg (C)∙hm−2[30]
    灌溉 Irrigation14.537 kg (C)∙hm−2[31]2
    水稻种子Rice seed1.84 kg(C)∙kg−1Ecoinvent 2.2
      1)本研究农户单位面积单季稻柴油使用量采用常德市各县(区)单位面积农作物柴油使用量近似表示。2)根据《中国电力统计年鉴》2016—2020年地区统计数据, 计算得到湖南省近年平均火电系数为0.5815。因此, 将灌溉实际碳排放系数(Dubey研究值25 kg∙(C)∙hm−2与火电系数的乘积)修正为14.537 kg(C)∙kg−1。1) In the present study, diesel consumption per unit area of single season rice is represented by an approximate value of the diesel consumption per unit area of each county (district) in Changde City. 2) According to the regional statistical data from “China Electricity Statistical Yearbook” from 2016 to 2020, the average thermal power coefficient in Hunan Province in recent years has been calculated to be 0.5815. Therefore, the actual carbon emission coefficient for irrigation (the product of Dubey’s research value of 25 kg∙(C)∙hm−2 and thermal power coefficient) has been revised to 14.537 kg(C)∙kg−1.
    下载: 导出CSV

    表  4  常德市受访农户基本特征

    Table  4.   Basic characteristics of interviewed farmers in Changde City

    个人特征
    Personal characteristic
    类别
    Type
    频数
    Frequency (households)
    比例
    Ratio (%)
    家庭特征
    Family characteristic
    类别
    Type
    频数
    Frequency (households)
    比例
    Ratio (%)
    年龄
    Age
    ≤50 74 17.79 家庭劳动力数量
    Number of household labor
    ≤2 92 22.12
    51~60 103 24.76 3~4 269 64.67
    >60 239 59.13 ≥5 55 13.22
    受教育程度
    Education level
    小学及以下 Primary school and below 246 59.13 家庭农业纯收入
    Household agricultural income (¥·a−1)
    ≤5000 140 33.65
    初中 Junior middle school 131 31.49 5000~10 000 166 39.90
    高中或中专 high school or special (or technical) secondary school 33 7.93 ≥10 000 110 26.44
    大专及以上 Junior college or above 6 1.44 兼业情况
    Concurrent employment
    纯农户 Pure farmer 1 0.24
    社会身份
    Social identity
    当过村干部 Served as a village official 36 8.65 Ⅰ兼农户
    One-part-time farmers
    15 3.61
    没有当过村干部 Never served as a village official 380 91.35 Ⅱ兼农户
    Two-part-time farmers
    400 96.15
    下载: 导出CSV

    表  5  总样本农户水稻生产生态效率(不加入非效率项)

    Table  5.   Rice production ecological efficiency for overall sample farmers (without technical inefficiency)

    变量
    Variable
    系数
    Coefficient
    标准误
    Standard error
    T
    T value
    Constant 9.034*** 0.247 36.579
    lnL −0.065*** 0.016 −3.943
    lnK 0.004 0.024 0.172
    lnC −0.962*** 0.020 −48.021
    σ2 0.326*** 0.061 5.312
    γ 0.956*** 0.013 75.665
    模型对数似然函数值
    Log likelihood function
    56.652
    LR test 87.941
    最大值 Maximum value 0.980
    最小值 Minimum value 0.218
    平均值 Mean value 0.830
      *、**和***分别表示P<0.1、P<0.05和P<0.01; Log likelihood function表示用于检验生产函数形式的模型对数似然函数值; LR test为用于检验模型适用性的模型单边似然比检验统计量。LKC的含义见表1。*, ** and *** represent significant differences at P<10%, P<5% and P<1% level, respectively. Log likelihood function is the logarithmic likelihood function value of the model used to test the form of the production function. LR test is the unilateral likelihood ratio test statistic used to test the applicability of the model. Meaning of L, K and C can be seen in Table 1.
    下载: 导出CSV

    表  6  耕地经营规模对总样本农户水稻生产生态效率的影响估计结果(加入非效率项)

    Table  6.   Estimated results of the impact of cultivated land operating scales on rice production ecological efficiency for all sample farmers (with technical inefficiency)

    变量
    Variable
    模型1 Model 1模型2 Model 2模型3 Model 3
    系数
    Coefficient
    标准误
    Standard error
    T
    T value
    系数
    Coefficient
    标准误
    Standard
    error
    T
    T-value
    系数
    Coefficient
    标准误
    Standard
    error
    T
    T value
    常数项 Constant 8.855 *** 0.268 33.09 8.915*** 0.272 32.767 8.787*** 0.253 34.731
    lnL −0.041 ** 0.016 −2.50 −0.041*** 0.015 −2.795 −0.034* 0.018 −1.853
    lnK 0.013 0.023 0.57 0.016 0.028 0.557 0.022 0.028 0.780
    lnC −0.964 *** 0.019 −49.76 −0.975*** 0.018 −54.134 −0.969*** 0.017 −58.487
    常数项 Constant −1.729 1.349 −1.28 −2.240* 1.314 −1.705 −0.843 0.710 −1.186
    SCA −2.199 *** 0.164 −13.37 −1.268*** 0.490 −2.588
    SCA2 0.276 *** 0.025 11.18 0.169** 0.063 2.682
    age 0.026** 0.013 1.988 0.014* 0.008 1.828
    edu −0.351** 0.161 −2.185 −0.241** 0.101 −2.386
    dep −0.422** 0.212 −1.989 −0.253* 0.134 −1.885
    pro −3.930** 2.000 −1.965 −2.132*** 0.725 −2.941
    fra 0.017** 0.009 1.876 0.005 0.007 0.699
    mar 0.006 0.012 0.528 0.008 0.012 0.683
    σ2 0.568 ** 0.272 2.09 0.438** 0.182 2.403 0.312*** 0.076 4.112
    γ 0.973 *** 0.016 60.13 0.965*** 0.015 63.855 0.955*** 0.014 68.958
    模型对数似然函数值 Log likelihood function 65.024 68.636 70.745
    LR test 104.684 111.908 116.126
      各符号含义见表1表2。若一个影响因素变量的估计系数为负数是指该变量对技术非效率的影响是负向的, 则对农户水稻生产生态效率的影响是正向的。Meaning of the symbols can be seen in Table 1 and 2. If the estimated coefficient of an influencing factor variable is negative, it means that the variable shows negative impact on technical inefficiency. If not, it shows positive impact on the ecological efficiency of rice production for farmers.
    下载: 导出CSV

    表  7  农户耕地经营规模的划分

    Table  7.   The division of farmers’ cultivated land operating scale

    类型 Type划分标准 Division criteria (hm2)频数 Frequency (households)占比 Proportion (%)
    较小规模 Small scale ≤1.333 395 94.95
    较大规模 Large scale >1.333 21 5.05
    下载: 导出CSV

    表  8  耕地经营规模对较小规模农户水稻生产生态效率的影响

    Table  8.   Impact of cultivated land operating scales on rice production ecological efficiency for small scale farms

    变量
    Variable
    模型1 Model 1 模型2 Model 2 模型3 Model 3
    系数
    Coefficient
    标准误
    Standard error
    T
    T value
    系数
    Coefficient
    标准误
    Standard error
    T
    T value
    系数
    Coefficient
    标准误
    Standard error
    T
    T value
    常数项 Constant 8.749*** 0.313 27.915 8.886*** 0.265 33.517 8.663*** 0.291 29.810
    lnL −0.029 0.020 −1.463 −0.045** 0.018 −2.518 −0.025 0.020 −1.229
    lnK 0.010 0.030 0.324 0.005 0.025 0.210 0.020 0.029 0.705
    lnC −0.952*** 0.023 −41.950 −0.956*** 0.022 −42.588 −0.956*** 0.023 −41.962
    常数项 Constant −1.427* 0.827 −1.726 −2.669 1.199 −2.226 −0.753 0.823 −0.914
    SCA −3.568** 1.661 −2.148 −1.602*** 0.649 −2.469
    age 0.028** 0.011 2.520 0.014 0.009 1.624
    edu −0.374*** 0.143 −2.619 −0.289** 0.127 −2.279
    dep −0.427** 0.186 −2.299 −0.254* 0.149 −1.709
    pro −4.074** 1.583 −2.574 −2.300** 0.951 −2.418
    fra 0.021** 0.009 2.318 0.004 0.007 0.560
    mar 0.006 0.013 0.504 0.007 0.013 0.534
    σ2 0.584** 0.241 2.425 0.498*** 0.162 3.071 0.344*** 0.109 3.163
    γ 0.973*** 0.011 84.799 0.970*** 0.010 92.452 0.955*** 0.013 75.097
    模型对数似然函数值
    Log likelihood function
    55.076 58.459 60.077
    LR test 96.778 103.543 106.779
    下载: 导出CSV

    表  9  耕地经营规模对较大规模农户水稻生产生态效率的影响估计结果

    Table  9.   Estimated results of the impact of cultivated land operating scales on farmers’ rice production ecological efficiency for larger operating scales

    变量
    Variable
    模型1 Model 1 模型2 Model 2 模型3 Model 3
    系数
    Coefficient
    标准误
    Standard error
    T
    T value
    系数
    Coefficient
    标准误
    Standard error
    T
    T value
    系数
    Coefficient
    标准误
    Standard error
    T
    T value
    SCA −0.011** 0.005 −2.150 −0.015*** 0.005 −3.000
    age −0.001 0.002 −0.39 −0.003 0.001 −0.250
    edu 0.044 0.026 1.690 0.031** 0.023 1.350
    dep 0.051 0.041 1.240 0.037 0.036 1.030
    pro 0.050 0.048 1.050 0.117** 0.047 2.510
    fra 0.001 0.003 0.330 0.002 0.003 0.580
    mar −0.001 0.002 −0.36 0.000 0.002 0.050
    常数项 Constant 0.956*** 0.024 40.31 0.787*** 0.136 5.780 0.833*** 0.118 7.040
    Prob>chi2 0.039 0.291 0.035
    下载: 导出CSV
  • [1] 张谋贵. 三种主粮生产中化肥、农药的经济用量探析[J]. 江淮论坛, 2019(3): 10−15 doi: 10.3969/j.issn.1001-862X.2019.03.003

    ZHANG M G. Analysis on the economic consumption of chemical fertilizer and pesticide in the production of three staple foods[J]. Jianghuai Tribune, 2019(3): 10−15 doi: 10.3969/j.issn.1001-862X.2019.03.003
    [2] 许秀文. 新型城镇化进程中城乡社保制度统筹发展的困境及对策[J]. 农业经济, 2021(2): 111−113 doi: 10.3969/j.issn.1001-6139.2021.02.043

    XU X W. Predicament and countermeasures of coordinated development of urban and rural social security system in the process of new urbanization[J]. Agricultural Economy, 2021(2): 111−113 doi: 10.3969/j.issn.1001-6139.2021.02.043
    [3] 孙艳, 石志恒, 孙鹏飞. 规模经营能否提高种植大户的经营效率−以甘肃玉米种植大户为例[J]. 中国农业资源与区划, 2019, 40(3): 78−84

    SUN Y, SHI Z H, SUN P F. Can scale management improve the management efficiency of large-scale corn planter —A case study of large-scale corn planters in Gansu[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(3): 78−84
    [4] 沈雪, 张俊飚, 张露, 等. 基于农户经营规模的水稻生产技术效率测度及影响因素分析−来自湖北省的调查数据[J]. 农业现代化研究, 2017, 38(6): 995−1001 doi: 10.13872/j.1000-0275.2017.0105

    SHEN X, ZHANG J B, ZHANG L, et al. Production technology assessment and influencing factors of rice farmer’s operation scales: based on farmers’ microdata from Hubei Province[J]. Research of Agricultural Modernization, 2017, 38(6): 995−1001 doi: 10.13872/j.1000-0275.2017.0105
    [5] 伍国勇, 孙小钧, 于福波, 等. 中国种植业碳生产率空间关联格局及影响因素分析[J]. 中国人口·资源与环境, 2020, 30(5): 46−57

    WU G Y, SUN X J, YU F B, et al. Spatial correlation pattern and influencing factors of China’s crop production carbon productivity[J]. China Population, Resources and Environment, 2020, 30(5): 46−57
    [6] 张忠明, 钱文荣. 农户土地经营规模与粮食生产效率关系实证研究[J]. 中国土地科学, 2010, 24(8): 52−58

    ZHANG Z M, QIAN W R. Empirical research on the relationship between farmers’ land management scale and food production efficiency[J]. China Land Science, 2010, 24(8): 52−58
    [7] 罗光强, 姚旭兵. 粮食生产规模与效率的门槛效应及其区域差异[J]. 农业技术经济, 2019(10): 92−101 doi: 10.13246/j.cnki.jae.2019.10.007

    LUO G Q, YAO X B. Study on the threshold effect and regional differences of grain production scale and efficiency[J]. Journal of Agrotechnical Economics, 2019(10): 92−101 doi: 10.13246/j.cnki.jae.2019.10.007
    [8] 贾琳, 夏英. 农户粮食生产规模效率及其影响因素分析−基于黑、豫、川三省玉米种植户的调查数据[J]. 资源科学, 2017, 39(5): 924−933

    JIA L, XIA Y. Scale efficiency of grain production and influencing factors based on survey data from Heilongjiang, Henan and Sichuan[J]. Resources Science, 2017, 39(5): 924−933
    [9] 冀县卿, 钱忠好, 李友艺. 土地经营规模扩张有助于提升水稻生产效率吗?−基于上海市松江区家庭农场的分析[J]. 中国农村经济, 2019(7): 71−88

    JI X Q, QIAN Z H, LI Y Y. The impact of operational farm size on rice production efficiency: an analysis based on the survey data of family farms from Songjiang, Shanghai, China[J]. Chinese Rural Economy, 2019(7): 71−88
    [10] 刘勇, 张俊飚, 张露. 基于DEA-SBM模型对不同稻作制度下我国水稻生产碳排放效率的分析[J]. 中国农业大学学报, 2018, 23(6): 177−186 doi: 10.11841/j.issn.1007-4333.2018.06.20

    LIU Y, ZHANG J B, ZHANG L. Analysis of carbon emission efficiency of rice in China under different rice planting patterns based on the DEA-SBM model[J]. Journal of China Agricultural University, 2018, 23(6): 177−186 doi: 10.11841/j.issn.1007-4333.2018.06.20
    [11] 匡兵, 卢新海, 韩璟, 等. 考虑碳排放的粮食主产区耕地利用效率区域差异与变化[J]. 农业工程学报, 2018, 34(11): 1−8 doi: 10.11975/j.issn.1002-6819.2018.11.001

    KUANG B, LU X H, HAN J, et al. Regional differences and dynamic evolution of cultivated land use efficiency in major grain producing areas in low carbon perspective[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 1−8 doi: 10.11975/j.issn.1002-6819.2018.11.001
    [12] 田旭, 王善高. 中国粮食生产环境效率及其影响因素分析[J]. 资源科学, 2016, 38(11): 2106−2116

    TIAN X, WANG S G. Environmental efficiency and its determinants regarding China’s grain production[J]. Resources Science, 2016, 38(11): 2106−2116
    [13] 惠婞, 陈晓楠, 宋健峰. 基于水足迹的作物生产生态效率评价−以陕西省为例[J]. 生态学报, 2021, 41(8): 3078−3091

    HUI X, CHEN X N, SONG J F. Assessing crop production eco-efficiency based on water footprints: the case of Shanxi Province[J]. Acta Ecologica Sinica, 2021, 41(8): 3078−3091
    [14] 史琛, 金涛, 李在军, 等. 我国粳稻生态效率的演变与区域差异研究[J]. 中国农业资源与区划, 2022, 43(5): 93−101

    SHI C, JIN T, LI Z J, et al. The evolution and regional difference of eco-efficiency of China’s Japonica rice production[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(5): 93−101
    [15] 鲁庆尧, 张旭青, 孟祥海. 我国粮食种植生态效率的空间相关性及影响因素研究[J]. 经济问题, 2021(8): 82−88,94

    LU Q Y, ZHANG X Q, MENG X H. Empirical analysis of the influence spatial correlation and influencing factors of ecological efficiency of grain planting in China[J]. On Economic Problems, 2021(8): 82−88,94
    [16] 马贤磊, 车序超, 李娜, 等. 耕地流转与规模经营改善了农业环境吗? −基于耕地利用行为对农业环境效率的影响检验[J]. 中国土地科学, 2019, 33(6): 62−70

    MA X L, CHE X C, LI N, et al. Has cultivated land transfer and scale operation improved the agricultural environment? An empirical test on impact of cultivated land use on agricultural environment efficiency[J]. China Land Science, 2019, 33(6): 62−70
    [17] MARSHALL A. Principles of Economics[M]. London: Macmillan and Co. , 1890
    [18] 毛蕴诗. “规模经济”抑或“规模经济性”−对新帕尔格雷夫经济学大辞典中的词条名“Economies and Diseconomies of Scale”汉译的商榷[J]. 学术研究, 2007(12): 41−45,159 doi: 10.3969/j.issn.1000-7326.2007.12.007

    MAO Y S. "Economy of Scale "or" Economies of Scale ": A Discussion on the Chinese Translation of the Entry Name" Economies and Disconomies of Scale "in the New Palgrave Dictionary of Economics[J]. Academic Research Journal, 2007(12): 41−45,159 doi: 10.3969/j.issn.1000-7326.2007.12.007
    [19] 栾健, 韩一军. 农地规模经营能否实现农业增效与农民增收的趋同?[J]. 中国土地科学, 2020, 34(9): 58−66

    LUAN J, HAN Y J. Does farmland scale operation achieve the convergence of increase of agricultural efficiency and farmers’ income?[J]. China Land Science, 2020, 34(9): 58−66
    [20] 王亚辉, 李秀彬, 辛良杰等. 中国农地经营规模对农业劳动生产率的影响及其区域差异[J]. 自然资源学报, 2017, 32(04): 539−552 doi: 10.11849/zrzyxb.20160463

    WANG Y H, LI X B, XIN L J, et al. The impact of farm land management scale on agricultural labor productivity in China and its regional differentiation[J]. Journal of Natural Resources, 2017, 32(04): 539−552 doi: 10.11849/zrzyxb.20160463
    [21] 许庆, 尹荣梁, 章辉. 规模经济、规模报酬与农业适度规模经营−基于我国粮食生产的实证研究[J]. 经济研究, 2011, 46(03): 59−71,94

    XU Q, YIN R L, ZHANG H. Economies of scale, returns to scale and the problem of optimum-scale farm management: an empirical study based on grain production in China[J]. Economic Research Journal, 2011, 46(03): 59−71,94
    [22] 杜丽永, 孟祥海, 沈贵银. 规模经营是否有利于农户化肥减量施用?[J]. 农业现代化研究, 2022, 43(3): 475−483

    Du L Y, Meng X H, SHEN G Y. Does scale operation reduce farmers’ fertilizer application?[J]. Research of Agricultural Modernization, 2022, 43(3): 475−483
    [23] MCFADDEN D. Constant elasticity of substitution production functions[J]. The Review of Economic Studies, 1963, 30(2): 73 doi: 10.2307/2295804
    [24] 黄炎忠, 罗小锋, 李兆亮, 等. 农户兼业对粮食生产效率的非线性影响[J]. 资源科学, 2021, 43(8): 1605−1614 doi: 10.18402/resci.2021.08.08

    HUANG Y Z, LUO X F, LI Z L, et al. Nonlinear effect of farmers’ off-farm employment on grain production efficiency[J]. Resources Science, 2021, 43(8): 1605−1614 doi: 10.18402/resci.2021.08.08
    [25] Wu Y Y, Xi X C, Tang X, et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(27): 7010−7015
    [26] KORHONEN P J, LUPTACIK M. Eco-efficiency analysis of power plants: an extension of data envelopment analysis[J]. European Journal of Operational Research, 2004, 154(2): 437−446 doi: 10.1016/S0377-2217(03)00180-2
    [27] Grossman G M, Krueger A B. Environmental impacts of a north American free trade agreement[J]. NBER Working Paper, 1991, No 3914
    [28] WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1/2/3): 217−232
    [29] METZ B. Mitigation of Climate Change: Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007
    [30] 田云, 张俊飚, 李波. 基于投入角度的农业碳排放时空特征及因素分解研究−以湖北省为例[J]. 农业现代化研究, 2011, 32(6): 752−755 doi: 10.3969/j.issn.1000-0275.2011.06.025

    TIAN Y, ZHANG J B, LI B. Research on spatial-temporal characteristics and factor decomposition of agricultural carbon emission based on input angle—Taking Hubei Province for example[J]. Research of Agricultural Modernization, 2011, 32(6): 752−755 doi: 10.3969/j.issn.1000-0275.2011.06.025
    [31] DUBEY A, LAL R. Carbon footprint and sustainability of agricultural production systems in punjab, India, and Ohio, USA[J]. Journal of Crop Improvement, 2009, 23(4): 332−350 doi: 10.1080/15427520902969906
    [32] 曹慧, 赵凯. 耕地经营规模对农户亲环境行为的影响[J]. 资源科学, 2019, 41(4): 740−752

    CAO H, ZHAO K. Farmland scale and farmers’ pro-environmental behavior: verification of the inverted U hypothesis[J]. Resources Science, 2019, 41(4): 740−752
    [33] 薛文田, 周宇, 康健, 等. 不同经营规模农户杂粮生产技术效率研究−以四川省凉山彝族自治州为例[J]. 中国农业资源与区划, 2021, 42(2): 184−191

    XUE W T, ZHOU Y, KANG J, et al. Technical efficiency of farmers’ coarse cereals production in different management scales —a case study of Liangshan Yi autonomous prefecture in Sichuan Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2): 184−191
    [34] 毕雪昊, 周佳宁, 邹伟. 家庭劳动力约束下经营规模对农户种植结构选择的影响[J]. 中国土地科学, 2020, 34(12): 68−77

    BI X H, ZHOU J N, ZOU W. The effect of operation scale on farmers’ planting structure selection under the constraints of family labor[J]. China Land Science, 2020, 34(12): 68−77
    [35] 胡逸文, 霍学喜. 农户禀赋对粮食生产技术效率的影响分析−基于河南农户粮食生产数据的实证[J]. 经济经纬, 2016, 33(2): 42−47 doi: 10.15931/j.cnki.1006-1096.2016.02.008

    HU Y W, HUO X X. An empirical analysis of the impact of household endowments on the technical efficiency in food production —based on the data of Henan farmers in food production[J]. Economic Survey, 2016, 33(2): 42−47 doi: 10.15931/j.cnki.1006-1096.2016.02.008
    [36] 叶子, 夏显力, 陈哲, 等. 农地确权、农地细碎化与农业生产效率[J]. 干旱区资源与环境, 2021, 35(12): 30−36 doi: 10.13448/j.cnki.jalre.2021.322

    YE Z, XIA X L, CHEN Z, et al. Farmland right confirmation, farmland fragmentation and agricultural production efficiency —a case study in Loess Plateau[J]. Journal of Arid Land Resources and Environment, 2021, 35(12): 30−36 doi: 10.13448/j.cnki.jalre.2021.322
    [37] 刘颖, 金雅, 王嫚嫚. 不同经营规模下稻农生产技术效率分析−以江汉平原为例[J]. 华中农业大学学报(社会科学版), 2016(4): 15−21,127 doi: 10.13300/j.cnki.hnwkxb.2016.04.003

    LIU Y, JIN Y, WANG M M. Analysis on technical efficiency of rice farmer in different scales —a case study of Jianghan plain[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2016(4): 15−21,127 doi: 10.13300/j.cnki.hnwkxb.2016.04.003
    [38] 袁承程, 刘黎明, 叶津炜, 等. 洞庭湖区不同农户经营规模的农业土地利用综合效应评价[J]. 生态与农村环境学报, 2017, 33(8): 688−696 doi: 10.11934/j.issn.1673-4831.2017.08.003

    YUAN C C, LIU L M, YE J W, et al. Comprehensive effects of agricultural land use of household farms in Dongting Lake region relative to scale in Dongting Lake region[J]. Journal of Ecology and Rural Environment, 2017, 33(8): 688−696 doi: 10.11934/j.issn.1673-4831.2017.08.003
    [39] 徐振宇, 曹立杰. 小规模农户的前途与经济性质文献评述与反思[J]. 商业经济研究, 2015(23): 34−38 doi: 10.3969/j.issn.1002-5863.2015.23.013

    XU Z Y, CAO L J. Literature review and reflection on the future and economic nature of small-scale farmers[J]. Journal of Commercial Economics, 2015(23): 34−38 doi: 10.3969/j.issn.1002-5863.2015.23.013
  • 加载中
图(3) / 表(9)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  41
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 录用日期:  2023-09-11
  • 修回日期:  2023-09-08
  • 网络出版日期:  2023-09-16

目录

    /

    返回文章
    返回