Impact of cultivated land operating scale on farmers’ rice production ecological efficiency: a case of Changde City
-
摘要: 提高水稻生产生态效率是协同实现保障粮食产量稳增长与减少粮食生产环境损耗双目标的关键路径, 耕地作为农业生产活动最基本的生产资料之一, 探索耕地经营规模对农户水稻生产生态效率的影响对促进农业适度规模化经营和耕地可持续利用具有重要意义。本文基于粮食生产微观主体——农户视角, 从理论上揭示耕地经营规模对农户水稻生产生态效率的影响, 并利用常德市416 份农户问卷调查数据, 运用随机前沿分析法构建效率测算模型和影响模型进行实证检验。研究表明: 农户耕地规模化水平和水稻生产生态效率均有待提升, 样本农户中较小规模农户数量最多, 占总样本比重为94.95%, 较小规模农户仍是农业生产的主力; 农户水稻生产生态效率均值为0.830, 还存在0.170的提升空间。耕地经营规模对农户水稻生产生态效率有显著影响, 二者并非简单线性关系而是呈“倒U型”关系, 且拐点所在区间为1.2~1.4 hm2; 农户水稻生产生态效率还受到户主受教育程度、抚养比、农业收入占比的显著正向影响和户主年龄的显著负向影响。因此, 应在尊重较小规模农户将长期存在这一现实的基础上, 进一步推进耕地适度规模经营并培育新型农户, 以促进水稻生产生态效率提高。Abstract: Improving the rice production ecological efficiency is the key pathway to achieve the dual goals of guarantee of the stable growth of grain production and reduction of the environmental losses of cultivated land use. Cultivated land is one of the most basic production means in agricultural production activities. Therefore, it is of great significance for promoting moderate scale agricultural operating and cultivated land sustainable utilization to explore the impact of cultivated land operating scale on farmers’ rice production ecological efficiency. Unlike other studies that mostly focus on the medium and macro dimension of cities and provinces, this study is based on the micro dimension of grain production - farmers’ perspective. Moreover, the conclusions obtained from this study can make up for the lack in previous studies of targeted exploration on the impact mechanism of cultivated land operating scale on farmers’ rice production (ecological) efficiency and whether there is a non-linear relationship between them. Using 416 questionnaire survey data of farmers in Changde City, the random frontier analysis method is used to construct an efficiency calculation model and an impact model for empirical testing the relationship between cultivated land operating scale and the farmers’ rice production ecological efficiency. The results was shown as follows. 1) The farmers’ scale level and rice production ecological efficiency need to be improved. Among the sample farmers, the number of smaller operating scale farmers was the highest, accounting for 94.95% of the total sample. This indicated that smaller scale farmers were still the main force of agricultural production. The average of farmers’ rice production ecological efficiency was 0.830 with 0.170 rooms for improvement. 2) The cultivated land operating scale had a significant impact on the farmers’ rice production ecological efficiency. The farmers’ rice production ecological efficiency tended to increase then decrease with the expansion of cultivated land operating scale. Their relationship was non simple linear but exhibited an “inverted U” with an inflection point located in the range of 1.2−1.4 hm2. It was not necessarily true that the larger cultivated land operating scale, the higher farmers’ rice production ecological efficiency. The blind expansion of cultivated land operating scale could lead to a decrease in the farmers’ rice production ecological efficiency. Therefore, it is necessary to promote cultivated land moderate scale operation. 3) The farmers’ rice production ecological efficiency was also significantly positively affected by the education level of the head of household, dependency ratio and proportion of agricultural income, as well as significantly negatively affected by the age of the head of household. Therefore, we have to recognize that small-scale farmers will exist for a long time. Based on this, we should further enlarge the plot size to promote the cultivated land moderate scale operation, and promote the cultivated land concentration to reduce the degree of cultivated land fragmentation. At the same time, the government not only should continuously promote fertilizer reduction and efficiency improvement to accelerate the development of low-carbon agriculture, but also need to cultivate new farmers and increase supports for them to promote the ecological transformation of rice production.
-
表 1 水稻生产生态效率评价指标体系
Table 1. Index system of rice production ecological efficiency evaluation
类别Type 变量
Variable符号Symbol 指标
Index指标内涵
Connotation投入
Input劳动投入
Labor inputLi 劳动力投入
Labor input (d∙hm−2)单位播种面积水稻生产过程中投入的劳动时间
Labor time per unit sown area during rice production资本投入
Capital inputKi 固定资
本投入
Fixed capital input灌溉投入
Irrigation input (¥∙hm−2)单位播种面积水稻生产过程中灌溉所需费用
Costs of irrigating per unit sown area during rice production农机投入
Agricultural machinery
input (¥∙hm−2)单位播种面积水稻生产过程中自用和租赁农用运输车、插秧机、耕田机、收割机等农机的费用
Costs of personal or rental farm-transporters, transplanters, cultivators, harvesters and other agricultural machinery per unit sown area during rice production流动资
本投入
Floating
capital input化肥投入
Fertilizer input (¥∙hm−2)单位播种面积水稻生产过程中购买氮肥、磷肥、钾肥、复合肥等化肥的费用
Costs of purchasing nitrogen fertilizers, phosphate fertilizers, potassium fertilizers, compound fertilizers and other fertilizers per unit sown area during rice production农药投入
Pesticide input
(¥∙hm−2)单位播种面积水稻生产过程中购买农药的费用
Cost of purchasing pesticides per unit sown area during rice production种子投入
Seed input
(¥∙hm−2)单位播种面积水稻生产过程中购买种子的费用
Cost of purchasing seed per unit sown area during rice production产出Output 期望产出
Desirable outputYi 产量
Production
(kg∙hm−2)单位播种面积水稻产量
Rice production per unit sown area非期望产出
Undesirable outputCi 碳排放量
Carbon emissions [kg(C)∙hm−2]单位播种面积碳排放量
Carbon emissions per unit sown area表 2 水稻生产生态效率评价的变量指标及内涵
Table 2. Indexes and connotations of the variables for evaluating rice production ecological efficiency
类别
Type变量
Variable符号
Symbol指标内涵
Connotation被解释变量
Interpreted variable水稻生产生态效率
Rice production ecological efficiencyRPEEi 经过随机前沿生产函数模型计算得到的农户水稻生产生态效率值(式4)
The farmers’ rice production ecological efficiency value calculated through a random frontier production function model (Equation 4)核心解释变量
Core explanatory variable耕地经营规模
Cultivated land operating scaleSCA 2020年单季稻播种面积
Planting area of single season rice in 2020 (hm2)控制变量
Control variable个人特征
Personal characteristic户主年龄
Age of head of householdage 户主年龄
Age of the head of household户主受教育程度
Education level of head of householdedu 小学及以下=1; 初中=2; 高中或中专=3; 大专及以上=4
Primary school or below=1; junior middle school=2; high school or special (or technical) secondary school=3; junior college or above=4家庭特征
Family characteristic抚养比
Dependency ratiodep 2020年家庭非劳动力数量/家庭劳动力数量
Number of non-agricultural labor force /number of labor force in peasant households in 2020农业收入占比
Proportion of agricultural incomepro 2020年农业纯收入/家庭总纯收入
Agricultural income/gross household income of peasant households in 2020经营特征
Operating characteristic耕地细碎化程度
Degree of cultivated land fragmentationfra 地块数量/水稻播种面积
Number of plots/rice planting area (plots∙hm−2)集镇距离
Distance to market townmar 农户住址与中心镇/集镇的距离
Distance from the farmer’s address to the central town or market town (km)表 3 水稻生产碳源的碳排放系数
Table 3. Carbon emission coefficients of different carbon sources from rice production
碳源 Carbon source 排放系数 Emission coefficients 数据来源 Data source 氮肥 Nitrogen fertilizer 2.39 kg(C)∙kg−1 CLCD 0.7 磷肥 Phosphate fertilizer 0.66 kg(C)∙kg−1 CLCD 0.7 钾肥 Potassium fertilizer 0.57 kg(C)∙kg−1 CLCD 0.7 复合肥 Compound fertilizer 1.77 kg(C)∙kg−1 CLCD 0.7 农药 Pesticide 4.9341 kg(C)∙kg−1 [28] 柴油 Diesel oil 0.5927 kg(C)∙kg−1 [29]1 翻耕 Ploughing 312.6 kg (C)∙hm−2 [30] 灌溉 Irrigation 14.537 kg (C)∙hm−2 [31]2 水稻种子Rice seed 1.84 kg(C)∙kg−1 Ecoinvent 2.2 1)本研究农户单位面积单季稻柴油使用量采用常德市各县(区)单位面积农作物柴油使用量近似表示。2)根据《中国电力统计年鉴》2016—2020年地区统计数据, 计算得到湖南省近年平均火电系数为0.5815。因此, 将灌溉实际碳排放系数(Dubey研究值25 kg∙(C)∙hm−2与火电系数的乘积)修正为14.537 kg(C)∙kg−1。1) In the present study, diesel consumption per unit area of single season rice is represented by an approximate value of the diesel consumption per unit area of each county (district) in Changde City. 2) According to the regional statistical data from “China Electricity Statistical Yearbook” from 2016 to 2020, the average thermal power coefficient in Hunan Province in recent years has been calculated to be 0.5815. Therefore, the actual carbon emission coefficient for irrigation (the product of Dubey’s research value of 25 kg∙(C)∙hm−2 and thermal power coefficient) has been revised to 14.537 kg(C)∙kg−1. 表 4 常德市受访农户基本特征
Table 4. Basic characteristics of interviewed farmers in Changde City
个人特征
Personal characteristic类别
Type频数
Frequency (households)比例
Ratio (%)家庭特征
Family characteristic类别
Type频数
Frequency (households)比例
Ratio (%)年龄
Age≤50 74 17.79 家庭劳动力数量
Number of household labor≤2 92 22.12 51~60 103 24.76 3~4 269 64.67 >60 239 59.13 ≥5 55 13.22 受教育程度
Education level小学及以下 Primary school and below 246 59.13 家庭农业纯收入
Household agricultural income (¥·a−1)≤5000 140 33.65 初中 Junior middle school 131 31.49 5000~10 000 166 39.90 高中或中专 high school or special (or technical) secondary school 33 7.93 ≥10 000 110 26.44 大专及以上 Junior college or above 6 1.44 兼业情况
Concurrent employment纯农户 Pure farmer 1 0.24 社会身份
Social identity当过村干部 Served as a village official 36 8.65 Ⅰ兼农户
One-part-time farmers15 3.61 没有当过村干部 Never served as a village official 380 91.35 Ⅱ兼农户
Two-part-time farmers400 96.15 表 5 总样本农户水稻生产生态效率(不加入非效率项)
Table 5. Rice production ecological efficiency for overall sample farmers (without technical inefficiency)
变量
Variable系数
Coefficient标准误
Standard errorT值
T valueConstant 9.034*** 0.247 36.579 lnL −0.065*** 0.016 −3.943 lnK 0.004 0.024 0.172 lnC −0.962*** 0.020 −48.021 σ2 0.326*** 0.061 5.312 γ 0.956*** 0.013 75.665 模型对数似然函数值
Log likelihood function56.652 LR test 87.941 最大值 Maximum value 0.980 最小值 Minimum value 0.218 平均值 Mean value 0.830 *、**和***分别表示P<0.1、P<0.05和P<0.01; Log likelihood function表示用于检验生产函数形式的模型对数似然函数值; LR test为用于检验模型适用性的模型单边似然比检验统计量。L、K和C的含义见表1。*, ** and *** represent significant differences at P<10%, P<5% and P<1% level, respectively. Log likelihood function is the logarithmic likelihood function value of the model used to test the form of the production function. LR test is the unilateral likelihood ratio test statistic used to test the applicability of the model. Meaning of L, K and C can be seen in Table 1. 表 6 耕地经营规模对总样本农户水稻生产生态效率的影响估计结果(加入非效率项)
Table 6. Estimated results of the impact of cultivated land operating scales on rice production ecological efficiency for all sample farmers (with technical inefficiency)
变量
Variable模型1 Model 1 模型2 Model 2 模型3 Model 3 系数
Coefficient标准误
Standard errorT值
T value系数
Coefficient标准误
Standard
errorT值
T-value系数
Coefficient标准误
Standard
errorT值
T value常数项 Constant 8.855 *** 0.268 33.09 8.915*** 0.272 32.767 8.787*** 0.253 34.731 lnL −0.041 ** 0.016 −2.50 −0.041*** 0.015 −2.795 −0.034* 0.018 −1.853 lnK 0.013 0.023 0.57 0.016 0.028 0.557 0.022 0.028 0.780 lnC −0.964 *** 0.019 −49.76 −0.975*** 0.018 −54.134 −0.969*** 0.017 −58.487 常数项 Constant −1.729 1.349 −1.28 −2.240* 1.314 −1.705 −0.843 0.710 −1.186 SCA −2.199 *** 0.164 −13.37 −1.268*** 0.490 −2.588 SCA2 0.276 *** 0.025 11.18 0.169** 0.063 2.682 age 0.026** 0.013 1.988 0.014* 0.008 1.828 edu −0.351** 0.161 −2.185 −0.241** 0.101 −2.386 dep −0.422** 0.212 −1.989 −0.253* 0.134 −1.885 pro −3.930** 2.000 −1.965 −2.132*** 0.725 −2.941 fra 0.017** 0.009 1.876 0.005 0.007 0.699 mar 0.006 0.012 0.528 0.008 0.012 0.683 σ2 0.568 ** 0.272 2.09 0.438** 0.182 2.403 0.312*** 0.076 4.112 γ 0.973 *** 0.016 60.13 0.965*** 0.015 63.855 0.955*** 0.014 68.958 模型对数似然函数值 Log likelihood function 65.024 68.636 70.745 LR test 104.684 111.908 116.126 各符号含义见表1和表2。若一个影响因素变量的估计系数为负数是指该变量对技术非效率的影响是负向的, 则对农户水稻生产生态效率的影响是正向的。Meaning of the symbols can be seen in Table 1 and 2. If the estimated coefficient of an influencing factor variable is negative, it means that the variable shows negative impact on technical inefficiency. If not, it shows positive impact on the ecological efficiency of rice production for farmers. 表 7 农户耕地经营规模的划分
Table 7. The division of farmers’ cultivated land operating scale
类型 Type 划分标准 Division criteria (hm2) 频数 Frequency (households) 占比 Proportion (%) 较小规模 Small scale ≤1.333 395 94.95 较大规模 Large scale >1.333 21 5.05 表 8 耕地经营规模对较小规模农户水稻生产生态效率的影响
Table 8. Impact of cultivated land operating scales on rice production ecological efficiency for small scale farms
变量
Variable模型1 Model 1 模型2 Model 2 模型3 Model 3 系数
Coefficient标准误
Standard errorT值
T value系数
Coefficient标准误
Standard errorT值
T value系数
Coefficient标准误
Standard errorT值
T value常数项 Constant 8.749*** 0.313 27.915 8.886*** 0.265 33.517 8.663*** 0.291 29.810 lnL −0.029 0.020 −1.463 −0.045** 0.018 −2.518 −0.025 0.020 −1.229 lnK 0.010 0.030 0.324 0.005 0.025 0.210 0.020 0.029 0.705 lnC −0.952*** 0.023 −41.950 −0.956*** 0.022 −42.588 −0.956*** 0.023 −41.962 常数项 Constant −1.427* 0.827 −1.726 −2.669 1.199 −2.226 −0.753 0.823 −0.914 SCA −3.568** 1.661 −2.148 −1.602*** 0.649 −2.469 age 0.028** 0.011 2.520 0.014 0.009 1.624 edu −0.374*** 0.143 −2.619 −0.289** 0.127 −2.279 dep −0.427** 0.186 −2.299 −0.254* 0.149 −1.709 pro −4.074** 1.583 −2.574 −2.300** 0.951 −2.418 fra 0.021** 0.009 2.318 0.004 0.007 0.560 mar 0.006 0.013 0.504 0.007 0.013 0.534 σ2 0.584** 0.241 2.425 0.498*** 0.162 3.071 0.344*** 0.109 3.163 γ 0.973*** 0.011 84.799 0.970*** 0.010 92.452 0.955*** 0.013 75.097 模型对数似然函数值
Log likelihood function55.076 58.459 60.077 LR test 96.778 103.543 106.779 表 9 耕地经营规模对较大规模农户水稻生产生态效率的影响估计结果
Table 9. Estimated results of the impact of cultivated land operating scales on farmers’ rice production ecological efficiency for larger operating scales
变量
Variable模型1 Model 1 模型2 Model 2 模型3 Model 3 系数
Coefficient标准误
Standard errorT值
T value系数
Coefficient标准误
Standard errorT值
T value系数
Coefficient标准误
Standard errorT值
T valueSCA −0.011** 0.005 −2.150 −0.015*** 0.005 −3.000 age −0.001 0.002 −0.39 −0.003 0.001 −0.250 edu 0.044 0.026 1.690 0.031** 0.023 1.350 dep 0.051 0.041 1.240 0.037 0.036 1.030 pro 0.050 0.048 1.050 0.117** 0.047 2.510 fra 0.001 0.003 0.330 0.002 0.003 0.580 mar −0.001 0.002 −0.36 0.000 0.002 0.050 常数项 Constant 0.956*** 0.024 40.31 0.787*** 0.136 5.780 0.833*** 0.118 7.040 Prob>chi2 0.039 0.291 0.035 -
[1] 张谋贵. 三种主粮生产中化肥、农药的经济用量探析[J]. 江淮论坛, 2019(3): 10−15 doi: 10.3969/j.issn.1001-862X.2019.03.003ZHANG M G. Analysis on the economic consumption of chemical fertilizer and pesticide in the production of three staple foods[J]. Jianghuai Tribune, 2019(3): 10−15 doi: 10.3969/j.issn.1001-862X.2019.03.003 [2] 许秀文. 新型城镇化进程中城乡社保制度统筹发展的困境及对策[J]. 农业经济, 2021(2): 111−113 doi: 10.3969/j.issn.1001-6139.2021.02.043XU X W. Predicament and countermeasures of coordinated development of urban and rural social security system in the process of new urbanization[J]. Agricultural Economy, 2021(2): 111−113 doi: 10.3969/j.issn.1001-6139.2021.02.043 [3] 孙艳, 石志恒, 孙鹏飞. 规模经营能否提高种植大户的经营效率−以甘肃玉米种植大户为例[J]. 中国农业资源与区划, 2019, 40(3): 78−84SUN Y, SHI Z H, SUN P F. Can scale management improve the management efficiency of large-scale corn planter —A case study of large-scale corn planters in Gansu[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(3): 78−84 [4] 沈雪, 张俊飚, 张露, 等. 基于农户经营规模的水稻生产技术效率测度及影响因素分析−来自湖北省的调查数据[J]. 农业现代化研究, 2017, 38(6): 995−1001 doi: 10.13872/j.1000-0275.2017.0105SHEN X, ZHANG J B, ZHANG L, et al. Production technology assessment and influencing factors of rice farmer’s operation scales: based on farmers’ microdata from Hubei Province[J]. Research of Agricultural Modernization, 2017, 38(6): 995−1001 doi: 10.13872/j.1000-0275.2017.0105 [5] 伍国勇, 孙小钧, 于福波, 等. 中国种植业碳生产率空间关联格局及影响因素分析[J]. 中国人口·资源与环境, 2020, 30(5): 46−57WU G Y, SUN X J, YU F B, et al. Spatial correlation pattern and influencing factors of China’s crop production carbon productivity[J]. China Population, Resources and Environment, 2020, 30(5): 46−57 [6] 张忠明, 钱文荣. 农户土地经营规模与粮食生产效率关系实证研究[J]. 中国土地科学, 2010, 24(8): 52−58ZHANG Z M, QIAN W R. Empirical research on the relationship between farmers’ land management scale and food production efficiency[J]. China Land Science, 2010, 24(8): 52−58 [7] 罗光强, 姚旭兵. 粮食生产规模与效率的门槛效应及其区域差异[J]. 农业技术经济, 2019(10): 92−101 doi: 10.13246/j.cnki.jae.2019.10.007LUO G Q, YAO X B. Study on the threshold effect and regional differences of grain production scale and efficiency[J]. Journal of Agrotechnical Economics, 2019(10): 92−101 doi: 10.13246/j.cnki.jae.2019.10.007 [8] 贾琳, 夏英. 农户粮食生产规模效率及其影响因素分析−基于黑、豫、川三省玉米种植户的调查数据[J]. 资源科学, 2017, 39(5): 924−933JIA L, XIA Y. Scale efficiency of grain production and influencing factors based on survey data from Heilongjiang, Henan and Sichuan[J]. Resources Science, 2017, 39(5): 924−933 [9] 冀县卿, 钱忠好, 李友艺. 土地经营规模扩张有助于提升水稻生产效率吗?−基于上海市松江区家庭农场的分析[J]. 中国农村经济, 2019(7): 71−88JI X Q, QIAN Z H, LI Y Y. The impact of operational farm size on rice production efficiency: an analysis based on the survey data of family farms from Songjiang, Shanghai, China[J]. Chinese Rural Economy, 2019(7): 71−88 [10] 刘勇, 张俊飚, 张露. 基于DEA-SBM模型对不同稻作制度下我国水稻生产碳排放效率的分析[J]. 中国农业大学学报, 2018, 23(6): 177−186 doi: 10.11841/j.issn.1007-4333.2018.06.20LIU Y, ZHANG J B, ZHANG L. Analysis of carbon emission efficiency of rice in China under different rice planting patterns based on the DEA-SBM model[J]. Journal of China Agricultural University, 2018, 23(6): 177−186 doi: 10.11841/j.issn.1007-4333.2018.06.20 [11] 匡兵, 卢新海, 韩璟, 等. 考虑碳排放的粮食主产区耕地利用效率区域差异与变化[J]. 农业工程学报, 2018, 34(11): 1−8 doi: 10.11975/j.issn.1002-6819.2018.11.001KUANG B, LU X H, HAN J, et al. Regional differences and dynamic evolution of cultivated land use efficiency in major grain producing areas in low carbon perspective[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 1−8 doi: 10.11975/j.issn.1002-6819.2018.11.001 [12] 田旭, 王善高. 中国粮食生产环境效率及其影响因素分析[J]. 资源科学, 2016, 38(11): 2106−2116TIAN X, WANG S G. Environmental efficiency and its determinants regarding China’s grain production[J]. Resources Science, 2016, 38(11): 2106−2116 [13] 惠婞, 陈晓楠, 宋健峰. 基于水足迹的作物生产生态效率评价−以陕西省为例[J]. 生态学报, 2021, 41(8): 3078−3091HUI X, CHEN X N, SONG J F. Assessing crop production eco-efficiency based on water footprints: the case of Shanxi Province[J]. Acta Ecologica Sinica, 2021, 41(8): 3078−3091 [14] 史琛, 金涛, 李在军, 等. 我国粳稻生态效率的演变与区域差异研究[J]. 中国农业资源与区划, 2022, 43(5): 93−101SHI C, JIN T, LI Z J, et al. The evolution and regional difference of eco-efficiency of China’s Japonica rice production[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(5): 93−101 [15] 鲁庆尧, 张旭青, 孟祥海. 我国粮食种植生态效率的空间相关性及影响因素研究[J]. 经济问题, 2021(8): 82−88,94LU Q Y, ZHANG X Q, MENG X H. Empirical analysis of the influence spatial correlation and influencing factors of ecological efficiency of grain planting in China[J]. On Economic Problems, 2021(8): 82−88,94 [16] 马贤磊, 车序超, 李娜, 等. 耕地流转与规模经营改善了农业环境吗? −基于耕地利用行为对农业环境效率的影响检验[J]. 中国土地科学, 2019, 33(6): 62−70MA X L, CHE X C, LI N, et al. Has cultivated land transfer and scale operation improved the agricultural environment? An empirical test on impact of cultivated land use on agricultural environment efficiency[J]. China Land Science, 2019, 33(6): 62−70 [17] MARSHALL A. Principles of Economics[M]. London: Macmillan and Co. , 1890 [18] 毛蕴诗. “规模经济”抑或“规模经济性”−对新帕尔格雷夫经济学大辞典中的词条名“Economies and Diseconomies of Scale”汉译的商榷[J]. 学术研究, 2007(12): 41−45,159 doi: 10.3969/j.issn.1000-7326.2007.12.007MAO Y S. "Economy of Scale "or" Economies of Scale ": A Discussion on the Chinese Translation of the Entry Name" Economies and Disconomies of Scale "in the New Palgrave Dictionary of Economics[J]. Academic Research Journal, 2007(12): 41−45,159 doi: 10.3969/j.issn.1000-7326.2007.12.007 [19] 栾健, 韩一军. 农地规模经营能否实现农业增效与农民增收的趋同?[J]. 中国土地科学, 2020, 34(9): 58−66LUAN J, HAN Y J. Does farmland scale operation achieve the convergence of increase of agricultural efficiency and farmers’ income?[J]. China Land Science, 2020, 34(9): 58−66 [20] 王亚辉, 李秀彬, 辛良杰等. 中国农地经营规模对农业劳动生产率的影响及其区域差异[J]. 自然资源学报, 2017, 32(04): 539−552 doi: 10.11849/zrzyxb.20160463WANG Y H, LI X B, XIN L J, et al. The impact of farm land management scale on agricultural labor productivity in China and its regional differentiation[J]. Journal of Natural Resources, 2017, 32(04): 539−552 doi: 10.11849/zrzyxb.20160463 [21] 许庆, 尹荣梁, 章辉. 规模经济、规模报酬与农业适度规模经营−基于我国粮食生产的实证研究[J]. 经济研究, 2011, 46(03): 59−71,94XU Q, YIN R L, ZHANG H. Economies of scale, returns to scale and the problem of optimum-scale farm management: an empirical study based on grain production in China[J]. Economic Research Journal, 2011, 46(03): 59−71,94 [22] 杜丽永, 孟祥海, 沈贵银. 规模经营是否有利于农户化肥减量施用?[J]. 农业现代化研究, 2022, 43(3): 475−483Du L Y, Meng X H, SHEN G Y. Does scale operation reduce farmers’ fertilizer application?[J]. Research of Agricultural Modernization, 2022, 43(3): 475−483 [23] MCFADDEN D. Constant elasticity of substitution production functions[J]. The Review of Economic Studies, 1963, 30(2): 73 doi: 10.2307/2295804 [24] 黄炎忠, 罗小锋, 李兆亮, 等. 农户兼业对粮食生产效率的非线性影响[J]. 资源科学, 2021, 43(8): 1605−1614 doi: 10.18402/resci.2021.08.08HUANG Y Z, LUO X F, LI Z L, et al. Nonlinear effect of farmers’ off-farm employment on grain production efficiency[J]. Resources Science, 2021, 43(8): 1605−1614 doi: 10.18402/resci.2021.08.08 [25] Wu Y Y, Xi X C, Tang X, et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(27): 7010−7015 [26] KORHONEN P J, LUPTACIK M. Eco-efficiency analysis of power plants: an extension of data envelopment analysis[J]. European Journal of Operational Research, 2004, 154(2): 437−446 doi: 10.1016/S0377-2217(03)00180-2 [27] Grossman G M, Krueger A B. Environmental impacts of a north American free trade agreement[J]. NBER Working Paper, 1991, No 3914 [28] WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1/2/3): 217−232 [29] METZ B. Mitigation of Climate Change: Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007 [30] 田云, 张俊飚, 李波. 基于投入角度的农业碳排放时空特征及因素分解研究−以湖北省为例[J]. 农业现代化研究, 2011, 32(6): 752−755 doi: 10.3969/j.issn.1000-0275.2011.06.025TIAN Y, ZHANG J B, LI B. Research on spatial-temporal characteristics and factor decomposition of agricultural carbon emission based on input angle—Taking Hubei Province for example[J]. Research of Agricultural Modernization, 2011, 32(6): 752−755 doi: 10.3969/j.issn.1000-0275.2011.06.025 [31] DUBEY A, LAL R. Carbon footprint and sustainability of agricultural production systems in punjab, India, and Ohio, USA[J]. Journal of Crop Improvement, 2009, 23(4): 332−350 doi: 10.1080/15427520902969906 [32] 曹慧, 赵凯. 耕地经营规模对农户亲环境行为的影响[J]. 资源科学, 2019, 41(4): 740−752CAO H, ZHAO K. Farmland scale and farmers’ pro-environmental behavior: verification of the inverted U hypothesis[J]. Resources Science, 2019, 41(4): 740−752 [33] 薛文田, 周宇, 康健, 等. 不同经营规模农户杂粮生产技术效率研究−以四川省凉山彝族自治州为例[J]. 中国农业资源与区划, 2021, 42(2): 184−191XUE W T, ZHOU Y, KANG J, et al. Technical efficiency of farmers’ coarse cereals production in different management scales —a case study of Liangshan Yi autonomous prefecture in Sichuan Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2): 184−191 [34] 毕雪昊, 周佳宁, 邹伟. 家庭劳动力约束下经营规模对农户种植结构选择的影响[J]. 中国土地科学, 2020, 34(12): 68−77BI X H, ZHOU J N, ZOU W. The effect of operation scale on farmers’ planting structure selection under the constraints of family labor[J]. China Land Science, 2020, 34(12): 68−77 [35] 胡逸文, 霍学喜. 农户禀赋对粮食生产技术效率的影响分析−基于河南农户粮食生产数据的实证[J]. 经济经纬, 2016, 33(2): 42−47 doi: 10.15931/j.cnki.1006-1096.2016.02.008HU Y W, HUO X X. An empirical analysis of the impact of household endowments on the technical efficiency in food production —based on the data of Henan farmers in food production[J]. Economic Survey, 2016, 33(2): 42−47 doi: 10.15931/j.cnki.1006-1096.2016.02.008 [36] 叶子, 夏显力, 陈哲, 等. 农地确权、农地细碎化与农业生产效率[J]. 干旱区资源与环境, 2021, 35(12): 30−36 doi: 10.13448/j.cnki.jalre.2021.322YE Z, XIA X L, CHEN Z, et al. Farmland right confirmation, farmland fragmentation and agricultural production efficiency —a case study in Loess Plateau[J]. Journal of Arid Land Resources and Environment, 2021, 35(12): 30−36 doi: 10.13448/j.cnki.jalre.2021.322 [37] 刘颖, 金雅, 王嫚嫚. 不同经营规模下稻农生产技术效率分析−以江汉平原为例[J]. 华中农业大学学报(社会科学版), 2016(4): 15−21,127 doi: 10.13300/j.cnki.hnwkxb.2016.04.003LIU Y, JIN Y, WANG M M. Analysis on technical efficiency of rice farmer in different scales —a case study of Jianghan plain[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2016(4): 15−21,127 doi: 10.13300/j.cnki.hnwkxb.2016.04.003 [38] 袁承程, 刘黎明, 叶津炜, 等. 洞庭湖区不同农户经营规模的农业土地利用综合效应评价[J]. 生态与农村环境学报, 2017, 33(8): 688−696 doi: 10.11934/j.issn.1673-4831.2017.08.003YUAN C C, LIU L M, YE J W, et al. Comprehensive effects of agricultural land use of household farms in Dongting Lake region relative to scale in Dongting Lake region[J]. Journal of Ecology and Rural Environment, 2017, 33(8): 688−696 doi: 10.11934/j.issn.1673-4831.2017.08.003 [39] 徐振宇, 曹立杰. 小规模农户的前途与经济性质文献评述与反思[J]. 商业经济研究, 2015(23): 34−38 doi: 10.3969/j.issn.1002-5863.2015.23.013XU Z Y, CAO L J. Literature review and reflection on the future and economic nature of small-scale farmers[J]. Journal of Commercial Economics, 2015(23): 34−38 doi: 10.3969/j.issn.1002-5863.2015.23.013 -