Response of AM fungi to long-term organic and inorganic fertilization in agricultural soils in dry farming regions
-
摘要: AM真菌群落动态变化对于长期有效的土壤生态系统管理非常重要。为揭示旱作区农田土壤丛枝菌根(AM)真菌对长期有机、无机培肥管理的响应机制, 利用单因素随机区组设计, 基于连续11年的定位试验及高通量测序方法, 研究了不施肥(T0)、长期单施化肥(T1)、长期化肥与牛粪有机肥(T2)和长期化肥与羊粪有机肥(T3)对土壤的影响,比较了土壤AM真菌群落组成及多样性间的差异, 探究了驱动土壤AM真菌群落组成及多样性变化的土壤环境因子及其相互作用效应。结果表明: 随培肥时间延长, 与T0处理相比, T2、T3处理的土壤全氮、有机质含量显著增加, pH显著下降(P<0.05); 与培肥8年相比, 培肥11年后的T0、T1和T3处理土壤全磷和速效钾含量显著下降。有机无机培肥下, 球囊霉属(Glomus)和类球囊霉属(Paraglomus)是土壤AM真菌的优势属, 但近明球囊霉属(Claroideoglomus)的相对丰度显著下降, 从优势属变为非优势属。近明球囊霉属较球囊霉属和类球囊霉属相对丰度而言, 更容易受长期培肥影响而发生显著改变。连续有机无机施肥8年后, T2、T3处理的土壤近明球囊霉属和两性球囊霉属(Ambispora)的相对丰度与T0间有显著差异(P<0.05); 培肥11年后, T2、T3处理土壤近明球囊霉属和两性球囊霉属的相对丰度与T0处理间无显著差异。随培肥时间延长, 不同处理间土壤AM真菌群落的α多样性差异消失。NMDS分析结果表明: 长期培肥改变了土壤AM真菌群落的β多样性, 但T2与T3处理间土壤AM真菌群落相似性较一致。连续培肥改变了土壤AM真菌群落结构组成和多样性, 驱动AM真菌群落变化的土壤环境因子由土壤全氮、pH转变为土壤全磷。长期有机无机培肥没有同步提升土壤全磷、速效钾等主要理化性状。随培肥年限增加, 驱动土壤AM真菌群落结构和多样性变化的土壤因子发生了显著改变, AM真菌群落会随土壤环境因子的变化倾向于更加敏感的驱动因子。Abstract: The dynamics of the AM fungal community are important for effective long-term soil ecosystem management. To reveal the response mechanisms of soil AM fungi to long-term organic and inorganic fertilizer management in dryland farming regions, the effects of no fertilizer application (T0), long-term chemical fertilizer application alone (T1), long-term chemical fertilizer and cow manure organic fertilizer (T2) and long-term chemical fertilizer and sheep manure organic fertilizer (T3) on soil were investigated through a one-way randomized group design, based on 11 consecutive years of locality testing and high-throughput sequencing methods. The differences in the composition and diversity of soil AM fungal communities were compared, and the factors in soil environmental and interactions effects that drive the changes in soil AM fungal community composition and diversity were investigated. The results indicated that the soil’s total nitrogen and organic matter contents significantly increased, while the pH value significantly decreased (P<0.05) under T2 and T3 treatments compared to T0. Furthermore, Compared with 8 years of fertilization, the total phosphorus and available potassium contents of soil in T0, T1 and T3 treatments after 11 years of fertilization significantly decreased. The dominant genera of soil AM fungi were Glomus and Paraglomus under organic and inorganic fertilization. However, the relative abundance of Claroideoglomus significantly decreased and changed from dominant to non-dominant. In contrast, the relative abundance of the Claroideoglomus was more susceptible to long-term fertilization than that of Glomus and Paraglomus. After a period of 8 years of continuous organic and inorganic fertilization, the relative abundance of AM fungi, specifically, Claroideoglomus and Ambispora in soils under T2 and T3 treatments was significantly different from that of T0 (P<0.05). Over the 11-years of fertilization, the relative abundance of Claroideoglomus and Ambispora under T2 and T3 treatments was not significantly different, compared with T0. With the extension of the fertilization time, differences in the alpha-diversity of soil AM fungal communities disappeared between treatments. The NMDS analysis showed that long-term fertilization changed the beta-diversity of the soil AM fungal community, but the soil AM fungal community was more similarity between the T2 and T3 treatments. During the continuous application of fertilizer, a significant change was observed in the structural composition and diversity of the soil AM fungal community. Moreover, the soil environmental factors influencing changes in the AM fungal community shifted from soil total nitrogen and pH to soil total Phosphorus. Long-term organic and inorganic fertilization didn’t simultaneously improve the main physicochemical properties of the soil, such as total phosphorus and available potassium. As the number of years of fertilization increased, the soil factors that drive changes in the structure and diversity of soil AM fungal communities were significantly altered. The AM fungal community were more easily influenced by sensitive driving factor with the changing of all soil environment.
-
Key words:
- AM fungus /
- Diversity /
- Community composition /
- Organic-inorganic fertilization /
- Dryfarming regions
-
图 1 2018年(a)和2021年(b)长期有机无机施肥处理下土壤丛枝菌根(AM)真菌属水平群落组成
T0、T1、T2和T3分别指不施肥处理、单施化肥处理、化肥+牛粪有机肥处理和化肥+羊粪有机肥处理。T0, T1, T2 and T3 refer to no fertilizer treatment, chemical fertilizer treatment, chemical fertilizer + cow dung organic fertilizer treatment and chemical fertilizer + sheep dung organic fertilizer treatment, respectively.
Figure 1. Community composition of arbuscular mycorrhiza (AM) fungi at genus level under long-term organic and inorganic fertilization in 2018 (a) and 2021 (b)
图 2 2018年(a)和2021年(b)土壤丛枝菌根(AM)真菌属水平群落结构的非度量多维尺度(NMDS)分析
T0、T1、T2和T3分别指不施肥处理、单施化肥处理、化肥+牛粪有机肥处理和化肥+羊粪有机肥处理。T0, T1, T2 and T3 refer to no fertilizer treatment, chemical fertilizer treatment, chemical fertilizer + cow dung organic fertilizer treatment and chemical fertilizer + sheep dung organic fertilizer treatment, respectively.
Figure 2. Non-metric multidimensional scaling (NMDS) analysis on a Bray-Curtis dissimilarity matrix of arbuscular mycorrhiza (AM) community composition at genus level in 2018(a) and 2021(b)
图 3 2018年(a)和2021年(b)土壤丛枝菌根(AM)真菌群落结构、多样性与土壤环境因子的RDA分析
TN、TP、AN、AP、AK、SOM、SW、SR、pH、Shannon、Simpson、Chao1分别指全氮、全磷、碱解氮、速效磷、速效钾、有机质、土壤含水量、土壤呼吸强度、pH、香农指数、辛普森指数、Chao1指数。T0、T1、T2和T3分别指不施肥处理、单施化肥处理、化肥+牛粪有机肥处理和化肥+羊粪有机肥处理。TN, TP, AN, AP, AK, SOM, SW, SR, pH, Shannon, Simpson, and Chao1 refer to total nitrogen, total phosphorus, alkali-dissolved nitrogen, quick-acting phosphorus, quick-acting potassium, organic matter, soil water content, intensity of soil respiration, pH, Shannon’s index, Simpson’s index, and Chao1 index, respectively. T0, T1, T2 and T3 refer to no fertilizer treatment, chemical fertilizer treatment, chemical fertilizer + cow dung organic fertilizer treatment and chemical fertilizer + sheep dung organic fertilizer treatment, respectively.
Figure 3. Redundancyanalysis (RDA) of soil arbuscular mycorrhiza (AM) community structure, diversity and soil environmental factors
表 1 不同有机无机施肥处理下的土壤理化性质和作物产量
Table 1. Soil physicochemical and crop yield properties under different organic and inorganic fertilization treatments
处理
Treatment年份
Year全氮
Total
nitrogen
(g∙kg−1)全磷
Total
phosphorus
(g∙kg−1)有机质
Organic
matter
(g∙kg−1)碱解氮
Available
nitrogen
(mg∙kg−1)速效磷
Available
phosphorus
(mg∙kg−1)速效钾
Available
potassium
(mg∙kg−1)pH 含水量
Soil water
(%)产量
Crop yield
(kg∙hm−2)T0 2018 0.25±0.02bb 0.65±0.06ab 8.89±0.43ac 17.17±1.49ab 29.78±7.04ac 160.94±16.84ab 8.77±0.05aa 12.10±0.20aa 8872.90±75.60acb 2021 0.41±0.10ab 0.32±0.01bc 7.99±1.09ab 9.24±1.03bc 28.18±2.04ab 76.78±10.36bc 8.25±0.05ba 6.40±0.77ba 4647.54±33.01bc T1 2018 0.28±0.03bb 0.74±0.05aa 9.59±1.05ac 19.69±2.49ab 44.42±7.16ab 251.85±52.10aa 8.58±0.13ab 12.50±0.61aa 9979.95±133.05bb 2021 0.46±0.18ab 0.36±0.03bbc 8.48±0.78ab 19.11±5.71ab 33.81±5.51bb 62.11±27.20bc 8.22±0.02ba 6.44±1.54ba 12 373.14±20.86ab T2 2018 0.41±0.09ba 0.81±0.04aa 14.07±1.63aa 33.38±8.72aa 66.80±8.48aa 260.61±93.63aa 8.55±0.09ab 12.46±1.45aa 14 396.79±55.92aa 2021 0.73±0.11aa 0.40±0.04bab 14.85±1.65aa 27.93±8.58aa 61.20±12.36aa 260.92±36.49aa 8.16±0.02bb 7.22±1.38ba 13 806.80±48.23aa T3 2018 0.39±0.05ba 0.76±0.08aa 12.54±1.00bb 30.33±4.54aa 63.70±8.58aa 288.89±50.58aa 8.59±0.06ab 12.10±0.73aa 16 799.35±126.78aa 2021 0.76±0.18aa 0.42±0.03ba 16.00±2.43aa 23.52±7.91aab 52.27±14.97aa 204.88±36.93bb 8.17±0.03bb 7.61±1.51ba 14 264.99±12.11ba 数值为均值±标准差(n=6)。同一列内上标不同小写字母表示同一施肥处理不同年间差异显著(P<0.05), 不同小写字母表示同一年限不同处理间差异显著(P<0.05)。T0、T1、T2和T3分别指不施肥处理、单施化肥处理、化肥+牛粪有机肥处理和化肥+羊粪有机肥处理。T0, T1, T2 and T3 refer to no fertilizer treatment, chemical fertilizer treatment, chemical fertilizer + cow dung organic fertilizer treatment and chemical fertilizer + sheep dung organic fertilizer treatment, respectively. 表 2 2018年和2021年长期有机无机施肥对土壤丛枝菌根(AM)真菌群落α多样性的影响
Table 2. Effect of long-term organic and inorganic fertilization on the alpha diversity of soil arbuscular mycorrhiza (AM) fungal communities in 2018 and 2021
处理
Treatment2018 2021 香农维纳指数
Shannon wiener辛普森指数
Simpson indexChao1 指数
Chao1 index香农维纳指数
Shannon wiener辛普森指数
Simpson indexChao1 指数
Chao1 indexT0 6.82±0.21a 0.97±0.01a 974.43±106.77a 5.85±0.87a 0.91±0.08a 573.64±97.66a TI 6.27±0.49ab 0.94±0.04a 966.15±80.78a 6.52±0.38a 0.96±0.01a 558.85±147.71a T2 5.88±0.62b 0.92±0.05a 877.75±126.36ab 5.81±0.44a 0.94±0.03a 627.25±67.96a T3 5.75±0.58b 0.93±0.04a 790.37±97.17b 6.26±0.98a 0.93±0.09a 707.74±131.2a T0、T1、T2和T3分别指不施肥处理、单施化肥处理、化肥+牛粪有机肥处理和化肥+羊粪有机肥处理。T0, T1, T2 and T3 refer to no fertilizer treatment, chemical fertilizer treatment, chemical fertilizer + cow dung organic fertilizer treatment and chemical fertilizer + sheep dung organic fertilizer treatment, respectively. -
[1] KRAUSS M, BERNER A, PERROCHET F, et al. Enhanced soil quality with reduced tillage and solid manures in organic farming - a synthesis of 15 years[J]. Scientific Reports, 2020, 10: 4403 doi: 10.1038/s41598-020-61320-8 [2] GOSLING P, OZAKI A, JONES J, et al. Organic management of tilled agricultural soils results in a rapid increase in colonisation potential and spore populations of arbuscular mycorrhizal fungi[J]. Agriculture, Ecosystems and Environment, 2010, 139(1/2): 273−279 [3] 王博, 张茹, 刘静, 等. 翻埋与覆盖林木枝条对干旱区沙化土壤及紫花苜蓿根系丛枝菌根真菌的影响[J]. 草业学报, 2023, 32(2): 15−25WANG B, ZHANG R, LIU J, et al. Effects of incorporated and mulchedtree branches on arbuscularmycorrhizalfungiinthedesertifiedsoilandrootofalfalfain arid areas[J]. ActaPrataculturaeSinica, 2023, 32(2): 15−25 [4] MA M C, ONGENA M, WANG Q F, et al. Chronic fertilization of 37 years alters the phylogenetic structure of soil arbuscular mycorrhizal fungi in Chinese Mollisols[J]. AMB Express, 2018, 8(1): 57 doi: 10.1186/s13568-018-0587-2 [5] CHEN Y L, ZHANG X, YE J S, et al. Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia[J]. Soil Biology and Biochemistry, 2014, 69: 371−381 doi: 10.1016/j.soilbio.2013.11.020 [6] ZENG H L, YU LL, LIU P, et al. Nitrogen fertilization has a stronger influence than cropping pattern on AMF community in maize/soybean strip intercropping systems[J]. Applied Soil Ecology, 2021, 167: 104034 doi: 10.1016/j.apsoil.2021.104034 [7] LIU Y J, SHI G X, MAO L, et al. Direct and indirect influences of 8-yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[J]. New Phytologist, 2012, 194(2): 523−535 doi: 10.1111/j.1469-8137.2012.04050.x [8] 王庆峰, 姜昕, 马鸣超, 等. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响[J]. 中国农业科学, 2018, 51(17): 3315−3324WANG Q F, JIANG X, MA M C, et al. Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in mollisols of northeast China[J]. Scientia Agricultura Sinica, 2018, 51(17): 3315−3324 [9] CHENG Y, ISHIMOTO K, KURIYAMA Y, et al. Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities[J]. Plant and Soil, 2013, 365(1): 397−407 [10] YANG W, GU S Y, XIN Y, et al. Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil[J]. Frontiers in Microbiology, 2018, 9: 169 doi: 10.3389/fmicb.2018.00169 [11] OEHL F, SIEVERDING E, MÄDER P, et al. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi[J]. Oecologia, 2004, 138(4): 574−583 doi: 10.1007/s00442-003-1458-2 [12] WU F S, DONG M X, LIU Y J, et al. Effects of long-term fertilization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateau of China[J]. Plant and Soil, 2011, 342(1): 233−247 [13] WANG F Y, HU J L, LIN X G, et al. Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization: a field case from China[J]. World Journal of Microbiology and Biotechnology, 2011, 27(1): 67−74 doi: 10.1007/s11274-010-0427-2 [14] QIN H, LU K P, STRONG P J, et al. Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture[J]. Applied Soil Ecology, 2015, 89: 35−43 doi: 10.1016/j.apsoil.2015.01.008 [15] LUO X, SHI S M, LIU Y N, et al. Arbuscular mycorrhizal fungal communities of topsoil and subsoil of an annual maize-wheat rotation after 15-years of differential mineral and organic fertilization[J]. Agriculture, Ecosystems & Environment, 2021, 315: 107442 [16] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 1–329BAOS D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 1–329 [17] 马琨, 宋丽丽, 王明国, 等. 玉米秸秆还田对土壤丛枝菌根真菌群落的影响[J]. 应用生态学报, 2019, 30(8): 2746−2756MA K, SONG L L, WANG M G, et al. Effects of maize straw returning on arbuscular mycorrhizal fungal community structure in soil[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2746−2756 [18] 马桂秀, 林治安, 李志杰, 等. 有机物料与化肥配施改良盐碱耕地的效果研究[J]. 中国土壤与肥料, 2019(3): 69−75MA G X, LIN Z A, LI Z J, et al. Effect of combination of organic material and chemical fertilizer on the improvement of saline soil[J]. Soil and Fertilizer Sciences in China, 2019(3): 69−75 [19] ALEKSEEV I, KRAEV G, SHEIN A, et al. Soil organic matter in soils of suburban landscapes of Yamal region: humification degree and mineralizing risks[J]. Energies, 2022, 15(6): 2301 doi: 10.3390/en15062301 [20] 李成亮, 孔宏敏, 何园球. 施肥结构对旱地红壤有机质和物理性质的影响[J]. 水土保持学报, 2004, 18(6): 116−119LI C L, KONG H M, HE Y Q. Effect of fertilization structures on soil organic matter and physical properties of upland field in red soil area[J]. Journal of Soil Water Conservation, 2004, 18(6): 116−119 [21] 李娟, 赵秉强, 李秀英, 等. 长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J]. 中国农业科学, 2008, 41(1): 144−152LI J, ZHAO B Q, LI X Y, et al. Effects of long-term combined application of organic and mineral fertilizers on soil microbiological properties and soil fertility[J]. Scientia Agricultura Sinica, 2008, 41(1): 144−152 [22] 方凯, 孙丽丽, 周昌敏, 等. 长期秸秆还田对双季稻土壤有机碳组分及碳库管理指数的影响[J]. 福建农业学报, 2022, 37(9): 1216−1224FANG K, SUN L L, ZHOU C M, et al. Effects of long-term spent straw incorporation on organic carbons in soil and carbon pool management at two-crop rice fields[J]. Fujian Journal of Agricultural Sciences, 2022, 37(9): 1216−1224 [23] 赵伟东, 郭宝玲, 郑祥洲, 等. 烟-稻轮作不同施肥土壤N2O排放对水分的响应[J]. 农业环境科学学报, 2023, 42(7): 1655−1665ZHAO W D, GUO B L, ZHENG X Z, et al. Effects of moisture content on N2O emissions in different fertilized soils under tobacco-rice rotation[J]. Journal of Agro-Environment Science, 2023, 42(7): 1655−1665 [24] 朱建华, 李俊良, 李晓林, 等. 几种复合肥施用对蔬菜保护地土壤环境质量的影响[J]. 农业环境保护, 2002, 21(1): 5−8ZHU J H, LI J L, LI X L, et al. Effects of compound fertilizers utilized on soil environmental quality in protected vegetable field[J]. Agro-Environmental Protection, 2002, 21(1): 5−8 [25] 唐贤, 梁丰, 徐明岗, 等. 长期施用化肥对农田土壤pH影响的整合分析[J]. 吉林农业大学学报, 2020, 42(3): 316−321TANG X, LIANG F, XUM G, et al. A meta-analysis of effects of long-term application of chemical fertilizer on pH of farmland soil[J]. Journal of Jilin Agricultural University, 2020, 42(3): 316−321 [26] 刘灿, 秦鱼生, 赵秀兰. 长期不同施肥对钙质紫色水稻土重金属累积及有效性的影响[J]. 农业环境科学学报, 2020, 39(7): 1494−1502LIU C, QIN Y S, ZHAO X L. Long-term effect of fertilization on accumulation and availability of heavy metal in a calcareous paddy soil[J]. Journal of Agro-Environment Science, 2020, 39(7): 1494−1502 [27] 黄福珍, 白志坚, 张与真, 等. 黄土区生土的特性及熟化中肥力变化的研究[J]. 中国农业科学, 1980, 13(1): 52−60HUANG F Z, BAI Z J, ZHANG Y Z, et al. A study on the characteristics of exposed subsoil and increment of its fertility in mellow process in loess area[J]. Scientia Agricultura Sinica, 1980, 13(1): 52−60 [28] 樊红柱, 陈庆瑞, 秦鱼生, 等. 长期施肥紫色水稻土磷素累积与迁移特征[J]. 中国农业科学, 2016, 49(8): 1520−1529FAN H Z, CHEN Q R, QIN Y S, et al. Characteristics of phosphorus accumulation and movement in a calcareous purple paddy soil profile as affected by long-term fertilization[J]. Scientia Agricultura Sinica, 2016, 49(8): 1520−1529 [29] 王西和, 吕金岭, 刘骅. 灰漠土小麦-玉米-棉花轮作体系钾平衡与钾肥利用率[J]. 土壤学报, 2016, 53(1): 213−223WANG X H, LYU J L, LIU H. Potassium balance and use efficiency in grey desert soil under continuous wheat-maize-cotton crop rotation system[J]. Acta Pedologica Sinica, 2016, 53(1): 213−223 [30] 夏颖, 刘冬碧, 张富林, 等. 湖北省主要种植制度农田生态系统钾平衡状况[J]. 生态学杂志, 2014, 33(9): 2395−2401XIA Y, LIU D B, ZHANG F L, et al. Potassium balance in the agroecosystem of the main cropping systems in Hubei Province[J]. Chinese Journal of Ecology, 2014, 33(9): 2395−2401 [31] 王箫璇, 张敏, 张鑫尧, 等. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响[J]. 中国农业科学, 2023, 56(6): 1113−1126WANG X X, ZHANG M, ZHANG X Y, et al. Effects of different varieties of phosphate fertilizer application on soil phosphorus transformation and phosphorus uptake and utilization of winter wheat[J]. Scientia Agricultura Sinica, 2023, 56(6): 1113−1126 [32] SHARPLEY A N, MCDOWELL R W, KLEINMAN P J A. Amounts, forms, and solubility of phosphorus in soils receiving manure[J]. Soil Science Society of America Journal, 2004, 68(6): 2048−2057 doi: 10.2136/sssaj2004.2048 [33] HUO W G, CHAI X F, WANG X H, et al. Indigenous arbuscular mycorrhizal fungi play a role in phosphorus depletion in organic manure amended high fertility soil[J]. Journal of Integrative Agriculture, 2022, 21(10): 3051−3066 doi: 10.1016/j.jia.2022.07.045 [34] XUE J F, PU C, LIU S L, et al. Effects of tillage systems on soil organic carbon and total nitrogen in a double paddy cropping system in Southern China[J]. Soil and Tillage Research, 2015, 153: 161−168 doi: 10.1016/j.still.2015.06.008 [35] 何炜. 南山植物园主要观赏园AM真菌多样性研究[D]. 重庆: 西南大学, 2009HE W. AM fungi diversity in the main ornamental gardens of Chongqing Nanshan Botanical Park[D]. Chongqing: Southwest University, 2009 [36] BEHIE S W, BIDOCHKA M J. Nutrient transfer in plant-fungal symbioses[J]. Trends in Plant Science, 2014, 19(11): 734−740 doi: 10.1016/j.tplants.2014.06.007 [37] 刘蕾, 徐梦, 张国印, 等. 不同轮作模式下设施土壤丛枝菌根真菌群落结构的季相变化[J]. 应用生态学报, 2021, 32(11): 4095−4106LIU L, XU M, ZHANG G Y, et al. Seasonal variations of arbuscular mycorrhizal fungal community in greenhouse soil under different rotation systems[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4095−4106 [38] 徐如玉, 左明雪, 袁银龙, 等. 增施摩西管柄囊霉对甜玉米氮肥增效及土壤丛枝菌根真菌多样性的影响[J]. 福建农业学报, 2020, 35(4): 379−391XU R Y, ZUO M X, YUAN Y L, et al. Effects of Funneliformis mosseae application on nitrogen utilization by sweet corn and AM fungi diversity in soil[J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 379−391 [39] SHENG M, CHEN X D, ZHANG X L, et al. Changes in arbuscular mycorrhizal fungal attributes along a chronosequence of black locust (Robinia pseudoacacia) plantations can be attributed to the plantation-induced variation in soil properties[J]. Science of the Total Environment, 2017, 599/600: 273−283 doi: 10.1016/j.scitotenv.2017.04.199 [40] 张淑彬, 王幼珊, 殷晓芳, 等. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响[J]. 植物营养与肥料学报, 2017, 23(3): 649−657ZHANG S B, WANG Y S, YIN X F, et al. Development of arbuscular mycorrhizal (AM) fungi and their influences on the absorption of N and P of maize at different soil phosphorus application levels[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 649−657 [41] 刘文科, 冯固, 李晓林. 磷素形态对AM真菌生长及接种效应的影响[J]. 农业环境科学学报, 2004, 23(5): 968−971LIU W K, FENG G, LI X L. Effects of applying different forms of phosphorus on maize growth and inoculation of arbuscular mycorrhizal fungi for maize symbiosis[J]. Journal of Agro-Environmental Science, 2004, 23(5): 968−971 [42] 韦素贞, 张好强, 胡文涛, 等. AM真菌和施钾对宁夏枸杞响应干旱胁迫的交互影响[J]. 西北林学院学报, 2016, 31(5): 165−170,260WEI S Z, ZHANG H Q, HU W T, et al. Interactive effects of arbuscular mycorrhizal fungus and potassium application on response of Lycium barbarum to drought stress[J]. Journal of Northwest Forestry University, 2016, 31(5): 165−170,260 [43] ŘEZÁČOVÁ V, SLAVÍKOVÁ R, KONVALINKOVÁ T, et al. Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows[J]. Mycorrhiza, 2019, 29(6): 567−579 doi: 10.1007/s00572-019-00921-2 [44] WANG J C, SONG Y, MA T F, et al. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil[J]. Applied Soil Ecology, 2017, 112: 42−50 doi: 10.1016/j.apsoil.2017.01.005 [45] 蔡艳, 郝明德, 臧逸飞, 等. 不同轮作制下长期施肥旱地土壤微生物多样性特征[J]. 核农学报, 2015, 29(2): 344−350 doi: 10.11869/j.issn.100-8551.2015.02.0344CAI Y, HAO M D, ZANG Y F, et al. Effect of long-term fertilization on microbial diversity of black loessial soil based on 454 sequencing technology[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 344−350 doi: 10.11869/j.issn.100-8551.2015.02.0344 [46] WILLIAMS A, MANOHARAN L, ROSENSTOCK N P, et al. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange[J]. New Phytologist, 2017, 213(2): 874−885 doi: 10.1111/nph.14196 [47] HERRMANN L, LESUEUR D, BRÄU L, et al. Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand[J]. Mycorrhiza, 2016, 26(8): 863−877 doi: 10.1007/s00572-016-0720-5 [48] VERBRUGGEN E, RÖLING W F M, GAMPER H A, et al. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils[J]. New Phytologist, 2010, 186(4): 968−979 doi: 10.1111/j.1469-8137.2010.03230.x [49] WANG Y, ZHANG W T, LI C Y, et al. Long-term nitrogen and/or phosphorus additions lead to a shift in the diversity of soil arbuscular mycorrhizal fungi and improve rainfed crop yield on the Chinese Loess Plateau[J]. Pedosphere, 2023, https://doi.org/10.1016/j.pedsph.2023.01.009 [50] NGO H T T, WATTS-WILLIAMS S J, PANAGARIS A, et al. Development of an organomineral fertiliser formulation that improves tomato growth and sustains arbuscular mycorrhizal colonisation[J]. The Science of the Total Environment, 2022, 815: 151977 doi: 10.1016/j.scitotenv.2021.151977 [51] XIAO D, CHE R X, LIU X, et al. Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in Karst ecosystems[J]. Biology and Fertility of Soils, 2019, 55(5): 457−469 doi: 10.1007/s00374-019-01362-x [52] XU Z Y, LYU Y C, FANG M J, et al. Diverse and abundant arbuscular mycorrhizal fungi in ecological floating beds used to treat eutrophic water[J]. Applied Microbiology and Biotechnology, 2021, 105(18): 6959−6975 doi: 10.1007/s00253-021-11470-0 [53] 王发园, 刘润进. 环境因子对AM真菌多样性的影响[J]. 生物多样性, 2001, 9(3): 301−305 doi: 10.3321/j.issn:1005-0094.2001.03.015WANG F Y, LIU R J. Effects of environmental factors on the diversity of arbuscular mycorrhizal fungi[J]. Chinese Biodiversity, 2001, 9(3): 301−305 doi: 10.3321/j.issn:1005-0094.2001.03.015 [54] YONEYAMA K, XIE X, KUSUMOTO D, et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites[J]. Planta, 2007, 227(1): 125−132 doi: 10.1007/s00425-007-0600-5 [55] BRADLEY K, DRIJBER R A, KNOPS J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2006, 38(7): 1583−1595 doi: 10.1016/j.soilbio.2005.11.011 -