留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于APSIM模型的旱地小麦叶面积指数相关参数敏感性分析及优化

魏学厚 聂志刚

魏学厚, 聂志刚. 基于APSIM模型的旱地小麦叶面积指数相关参数敏感性分析及优化[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−11 doi: 10.12357/cjea.20230345
引用本文: 魏学厚, 聂志刚. 基于APSIM模型的旱地小麦叶面积指数相关参数敏感性分析及优化[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−11 doi: 10.12357/cjea.20230345
WEI X H, NIE Z G. Sensitivity analysis and optimization of leaf area index related parameters of dryland wheat based on APSIM model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20230345
Citation: WEI X H, NIE Z G. Sensitivity analysis and optimization of leaf area index related parameters of dryland wheat based on APSIM model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20230345

基于APSIM模型的旱地小麦叶面积指数相关参数敏感性分析及优化

doi: 10.12357/cjea.20230345
基金项目: 国家自然科学基金(32160416)、甘肃省教育厅产业支撑计划(2021CYZC-15, 2022CYZC-41)和甘肃农业大学青年导师扶持基金(GAU-QDFC-2022-19)资助
详细信息
    作者简介:

    魏学厚, 主要从事作物生长模拟模型参数分析及优化方面的研究。E-mail: 1584618764@qq.com

  • 中图分类号: S512.1

Sensitivity analysis and optimization of leaf area index related parameters of dryland wheat based on APSIM model

Funds: This study was supported by National Natural Science Foundation of China (32160416), Gansu Provincial Education Department Industrial Support Plan Project (2021CYZC-15, 2022CYZC-41) and Gansu Agricultural University Youth Mentor Support Fund (GAU-QDFC-2022-19)
  • 摘要: 为解决作物模型参数率定过程中参数众多导致的敏感参数定位迟缓和调参效率低的问题, 本研究运用敏感性分析和智能优化算法相结合的方法对作物模型参数进行调整, 以甘肃省定西市安定区李家堡镇麻子川村(2002—2004年)和凤翔镇安家沟村(2015—2017年)大田旱地小麦试验数据(叶面积指数)为参照, 利用扩展傅里叶幅度检验法(EFAST), 对APSIM-Wheat旱地小麦叶片生长子模型的23个参数进行敏感性分析, 得到对模型结果较敏感的部分参数, 然后利用粒子群优化算法对部分敏感参数进行优化。结果表明: 1)影响旱地小麦叶片生长最敏感的参数依次为叶面积指数为0时最大比叶面积、叶片生长的氮限制因子、出苗到拔节积温、消光系数、拔节到开花积温、蒸腾效率系数; 2)旱地小麦叶片生长子模型的参数优化结果: 叶面积指数为0时最大比叶面积为26 652 mm2∙g−1, 叶片生长的氮限制因子为0.96, 出苗到拔节积温为382 ℃·d, 消光系数为0.44, 拔节到开花积温为542 ℃·d, 蒸腾效率系数为0.0056; 3)上述参数优化后的叶面积指数实测值与模拟值之间的均方根误差平均值从参数优化前的0.080减小到0.042, 归一化均方根误差平均值从11.54%减小到6.11%, 模型有效性指数平均值从0.962增加到0.988, 优化后叶面积指数的模拟更好。该方法相对于传统的手工试错法, 避免了优化参数的不确定性, 实现参数自动率定, 提高模型参数的率定效率, 有利于模型快速地本地化应用, 并指导农业生产。本研究方法也对APSIM-Wheat模型中其他作物模块的参数调整优化具有指导意义。
  • 图  1  APSIM-Wheat旱地小麦叶片生长子模型的相关参数对叶面积指数的全局和一阶敏感性分析

    模型各个参数说明见表2。Details of the parameters of the model can be seen in Table 2.

    Figure  1.  Global and first-order sensitivity analysis of leaf area index to relevant parameters of the APSIM-Wheat leaf growth submodel for dryland wheat

    图  2  APSIM-Wheat旱地小麦叶面积指数优化前和优化后与实测值的关系

    Figure  2.  Relationship between pre- and post-optimization and measured values of leaf area index of APSIM-Wheat dryland wheat

    表  1  试验区土壤属性参数[13]

    Table  1.   Soil property parameters in the experimental area[13]

    土层
    Soil layer
    (mm)
    容重
    Bulk density (g∙cm−3)
    最大持水量
    Field capacity
    (mm∙mm−1)
    萎蔫系数
    Wilting coefficient (mm∙mm−1)
    风干系数
    Coefficient of air-dry (mm∙mm−1)
    饱和水含量
    Saturated water content (mm∙mm−1)
    土壤导水率
    Soil hydraulic conductivity (mm∙h−1)
    有效水分下限
    Lower limit of effective mositure (mm∙mm−1)
    0~50 1.29 0.27 0.08 0.01 0.46 0.60 0.09
    50~100 1.23 0.27 0.08 0.01 0.49 0.60 0.09
    100~300 1.32 0.27 0.08 0.05 0.45 0.60 0.09
    300~500 1.20 0.27 0.08 0.07 0.50 0.60 0.09
    500~800 1.14 0.26 0.09 0.07 0.52 0.60 0.09
    800~1100 1.14 0.27 0.09 0.07 0.52 0.60 0.10
    1100~1400 1.13 0.26 0.11 0.07 0.48 0.60 0.11
    1400~1700 1.12 0.26 0.13 0.07 0.53 0.60 0.13
    1700~2000 1.11 0.26 0.13 0.07 0.53 0.60 0.15
    下载: 导出CSV

    表  2  APSIM-Wheat旱地小麦叶片生长子模型的23个品种参数及其上下限

    Table  2.   Parameters of 23 varieties and their upper and lower limits of the APSIM-Wheat leaf growth submodel for dryland wheat

    参数
    Parameter
    定义
    Definition
    下限值
    Lower bound
    上限值
    Upper bound
    Photop_sens 作物光周期敏感性指数 Crop photoperiodic sensitivity index 0 5
    Vern_sens 作物春化敏感性指数 Crop vernalization sensitivity index 0 5
    y_rue 出苗到灌浆结束的辐射利用效率
    Radiation use efficiency from seedling emergence to the end of grouting (g∙MJ−1)
    1.1160 1.3640
    y_extinct_coef 消光系数 Extinction coefficient (k) 0.25 0.75
    node_no_correction 叶鞘中正在生长的叶数 Number of growing leaves in leaf sheaths 1 3
    leaf_no_at_emerg 出苗时的叶片数量 Number of leaves at emergence 1 3
    initial_tpla 初始叶面积 Initial leaf area (mm2∙plant−1) 100 300
    min_tpla 最小叶面积 Minimum leaf area (mm2∙plant−1) 2.5 7.5
    y_sla_max0 叶面积指数为0时最大比叶面积 Maximum specific leaf area at a leaf area index of 0 (mm2∙g−1) 13 500 40 500
    y_sla_max5 叶面积指数为5时最大比叶面积 Maximum specific leaf area at a leaf area index of 5 (mm2∙g−1) 11 000 33 000
    tt_end_of_juvenile 出苗到拔节积温 Accumulated temperature from seedling to jointing (℃∙d) 200 600
    tt_floral_initiation 拔节到开花积温 Accumulated temperature from jointing to flowering (℃∙d) 250 800
    tt_flowering 开花到灌浆积温 Accumulated temperature from flowering to grouting (℃∙d) 60 180
    tt_start_grain_fill 灌浆到成熟积温 Accumulated temperature from grouting to maturity (℃∙d) 200 900
    y_node_no_rate 节点出现的热时间间隔 Thermal time interval for node appearance (℃∙d) 47.5 142.5
    transp_eff_cf 蒸腾效率系数 Transpiration efficiency coefficient 0.003 0.009
    fr_lf_sen_rate 主茎和节点上总叶片老化比例 Proportion of total leaves aging on main stems and nodes 0.0175 0.0525
    sen_rate_water 光合叶片老化的水分胁迫斜率 Water stress slopes in photosynthetic leaf aging 0.005 0.01
    sen_light_slope 遮阴导致叶面积老化敏感性系数 Sensitivity coefficient of leaf area aging due to shading 0.0010 0.0030
    lai_sen_light 遮阴导致老化的最大叶面积指数
    Maximum leaf area index for shade-induced deterioration (m2∙m−2)
    3.5 10.5
    node_sen_rate 主茎上的节点老化率 Node aging rate on the main stem (℃∙d∙node−1) 30 90
    N_fact_expansion 叶片生长的氮限制因子 Nitrogen limiting factors during leaf growth 0 1
    N_fact_photo 氮亏缺对光合作用的影响系数 Coefficient of effect of nitrogen deficit on photosynthesis 0.75 2.25
      transp_eff_cf是计算蒸腾效率时用到的系数, 并非广义的蒸腾效率系数。transp_eff_cf is the coefficients used in the calculation of transpiration efficiency and it is not generalized coefficients of transpiration efficiency.
    下载: 导出CSV

    表  3  APSIM-Wheat旱地小麦叶片生长子模型相关参数的初值及优化值

    Table  3.   Initial and optimized values of parameters related to the APSIM-Wheat leaf growth submodel for dryland wheat

    参数
    Parameter
    单位
    Unit
    初值
    Initial value
    优化值
    Optimized value
    y_sla_max0mm2∙g−126 00026 652
    N_fact_expansion1.000.96
    tt_end_of_juvenile℃∙d400382
    y_extinct_coef0.490.44
    tt_floral_initiation℃∙d555542
    transp_eff_cf0.0060.0056
      模型各个参数说明见表2。Details of the parameters of the model can be seen in Table 2.
    下载: 导出CSV

    表  4  APSIM-Wheat旱地小麦叶片生长子模型的小麦叶面积指数模拟检验结果

    Table  4.   Results of the simulation test of leaf area index of dryland wheat using APSIM-Wheat leaf growth sub-model

    参数 Parameter麻子川村 Mazichuan Village 安家沟村 Anjiagou Village
    RMSENRMSE (%)MERMSENRMSE (%)ME
    默认值 Default value0.07010.530.968 0.09012.550.956
    优化值 Optimized value0.0385.740.9890.0466.470.987
      RMSE为均方根误差; NRMSE为归一化均方根误差; ME为模型有效性指数。RMSE is root mean square error; NRMSE is normalized root mean square error; ME is the model validity index.
    下载: 导出CSV
  • [1] TANTALAKI N, SOURAVLAS S, ROUMELIOTIS M. Data-driven decision making in precision agriculture: the rise of big data in agricultural systems[J]. Journal of Agricultural & Food Information, 2019, 20(4): 344−380
    [2] 姜志伟, 陈仲新, 周清波, 等. CERES-Wheat作物模型参数全局敏感性分析[J]. 农业工程学报, 2011, 27(1): 236−242 doi: 10.3969/j.issn.1002-6819.2011.01.038

    JIANG Z W, CHEN Z X, ZHOU Q B, et al. Global sensitivity analysis of CERES-Wheat model parameters[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 236−242 doi: 10.3969/j.issn.1002-6819.2011.01.038
    [3] AHUJA L, MA L W. Parameterization of agricultural system models[M]//AHUJA L R, MA L W, HOWELL T A. Agricultural System Models in Field Research and Technology Transfer. Boca Raton: CRC Press, 2002
    [4] THORP K R, BATCHELOR W D, PAZ J O, et al. Using cross-validation to evaluate CERES-Maize yield simulations within a decision support system for precision agriculture[J]. Transactions of the ASABE, 2007, 50(4): 1467−1479 doi: 10.13031/2013.23605
    [5] DAI C N, YAO M, XIE Z J, et al. Parameter optimization for growth model of greenhouse crop using genetic algorithms[J]. Applied Soft Computing, 2009, 9(1): 13−19 doi: 10.1016/j.asoc.2008.02.002
    [6] 崔金涛, 丁继辉, YESILEKIN N, 等. 基于EFAST的CERES-Wheat模型土壤参数敏感性分析[J]. 农业机械学报, 2020, 51(12): 276−283 doi: 10.6041/j.issn.1000-1298.2020.12.030

    CUI J T, DING J H, YESILEKIN N, et al. Sensitivity analysis of soil input parameters of CERES-Wheat model based on EFAST method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 276−283 doi: 10.6041/j.issn.1000-1298.2020.12.030
    [7] 兴安, 卓志清, 赵云泽, 等. 基于EFAST的不同生产水平下WOFOST模型参数敏感性分析[J]. 农业机械学报, 2020, 51(2): 161−171 doi: 10.6041/j.issn.1000-1298.2020.02.018

    XING A, ZHUO Z Q, ZHAO Y Z, et al. Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 161−171 doi: 10.6041/j.issn.1000-1298.2020.02.018
    [8] VANUYTRECHT E, RAES D, WILLEMS P. Global sensitivity analysis of yield output from the water productivity model[J]. Environmental Modelling & Software, 2014, 51: 323−332
    [9] CÉSAR TREJO ZÚÑIGA E, LÓPEZ CRUZ I L, GARCÍA A R. Parameter estimation for crop growth model using evolutionary and bio-inspired algorithms[J]. Applied Soft Computing, 2014, 23: 474−482 doi: 10.1016/j.asoc.2014.06.023
    [10] SOUNDHARAJAN B, SUDHEER K P. Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework[J]. Paddy and Water Environment, 2013, 11(1): 59−71
    [11] 房全孝. 根系水质模型中土壤与作物参数优化及其不确定性评价[J]. 农业工程学报, 2012, 28(10): 118−123 doi: 10.3969/j.issn.1002-6819.2012.10.019

    FANG Q X. Optimizing and uncertainty evaluation of soil and crop parameters in root zone water quality model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(10): 118−123 doi: 10.3969/j.issn.1002-6819.2012.10.019
    [12] 聂志刚, 李广, 王钧, 等. 基于APSIM模型旱地小麦叶面积指数相关参数的优化[J]. 中国农业科学, 2019, 52(12): 2056−2068 doi: 10.3864/j.issn.0578-1752.2019.12.004

    NIE Z G, LI G, WANG J, et al. Parameter optimization for the simulation of leaf area index of dryland wheat with the APSIM model[J]. Scientia Agricultura Sinica, 2019, 52(12): 2056−2068 doi: 10.3864/j.issn.0578-1752.2019.12.004
    [13] 李广, 黄高宝, William Bellotti, 等. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性[J]. 生态学报, 2009, 29(5): 2655−2663 doi: 10.3321/j.issn:1000-0933.2009.05.056

    LI G, HUANG G B, WILLIAM B, et al. Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region[J]. Acta Ecologica Sinica, 2009, 29(5): 2655−2663 doi: 10.3321/j.issn:1000-0933.2009.05.056
    [14] 邓晓垒, 董莉霞, 李广, 等. 西北春麦区Apsim-Wheat模型参数全局敏感性分析[J]. 麦类作物学报, 2022, 42(6): 746−754 doi: 10.7606/j.issn.1009-1041.2022.06.12

    DENG X L, DONG L X, LI G, et al. Global sensitivity analysis of Apsim-Wheat model parameters in northwest spring wheat region[J]. Journal of Triticeae Crops, 2022, 42(6): 746−754 doi: 10.7606/j.issn.1009-1041.2022.06.12
    [15] 刘铁梅, 王燕, 邹薇, 等. 大麦叶面积指数模拟模型[J]. 应用生态学报, 2010, 21(1): 121−128 doi: 10.13287/j.1001-9332.2010.0067

    LIU T M, WANG Y, ZOU W, et al. Simulation model of barley leaf area index[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 121−128 doi: 10.13287/j.1001-9332.2010.0067
    [16] 逯玉兰, 李广, 闫丽娟, 等. 基于APSIM模型的不同氮肥方案小麦叶面积指数的模拟研究[J]. 甘肃农业大学学报, 2020, 55(3): 38−44,53 doi: 10.13432/j.cnki.jgsau.2020.03.006

    LU Y L, LI G, YAN L J, et al. Simulating study on leaf area index of spring wheat in dryland under different nitrogen fertilization schemes based on APSIM model[J]. Journal of Gansu Agricultural University, 2020, 55(3): 38−44,53 doi: 10.13432/j.cnki.jgsau.2020.03.006
    [17] ASSENG S, KEATING B A, FILLERY I R P, et al. Performance of the APSIM-wheat model in Western Australia[J]. Field Crops Research, 1998, 57(2): 163−179 doi: 10.1016/S0378-4290(97)00117-2
    [18] ASSENG S, VAN KEULEN H, STOL W. Performance and application of the APSIM Nwheat model in the Netherlands[J]. European Journal of Agronomy, 2000, 12(1): 37−54 doi: 10.1016/S1161-0301(99)00044-1
    [19] SALTELLI A, TARANTOLA S, CAMPOLONGO F, et al. Sensitivity Analysis in Practice[M]. Halsted Press : Wiley, 2004
    [20] DEJONGE K C, ASCOUGH J C, AHMADI M, et al. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments[J]. Ecological Modelling, 2012, 231: 113−125 doi: 10.1016/j.ecolmodel.2012.01.024
    [21] ZHAO G, BRYAN B A, SONG X D. Sensitivity and uncertainty analysis of the APSIM-wheat model: interactions between cultivar, environmental, and management parameters[J]. Ecological Modelling, 2014, 279: 1−11 doi: 10.1016/j.ecolmodel.2014.02.003
    [22] ZHENG B, CHENU K, DOHERTY A, et al. The APSIM-wheat module (7.5 R3008)[J]. Agricultural Production Systems Simulator (APSIM) Initiative, 2014, 615
    [23] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. November 27-December 1, 1995, Perth, WA, Australia. IEEE, 2002: 1942–1948
    [24] 丁帅伟, 席怡, 刘骞, 等. 基于粒子群算法的低渗油藏CO2驱油与封存自动优化[J]. 中国石油大学学报(自然科学版), 2022, 46(4): 109−115

    DING S W, XI Y, LIU Q, et al. An automatic optimization method of CO2 injection for enhanced oil recovery and storage in low permeability reservoirs based on particle swarm optimization algorithm[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(4): 109−115
    [25] 刘志娟, 杨晓光, 王静, 等. APSIM玉米模型在东北地区的适应性[J]. 作物学报, 2012, 38(4): 740−746

    LIU Z J, YANG X G, WANG J, et al. Adaptability of APSIM maize model in Northeast China[J]. Acta Agronomica Sinica, 2012, 38(4): 740−746
    [26] ZHANG X C. Calibration, refinement, and application of the WEPP model for simulating climatic impact on wheat production[J]. Transactions of the ASAE, 2004, 47(4): 1075−1085 doi: 10.13031/2013.16580
    [27] 张宪政. 作物生理研究法[M]. 北京: 农业出版社, 1992

    ZHANG X Z. Crop Physiology Research Method[M]. Beijing: Agricultural Publishing House, 1992
    [28] 许育彬, 沈玉芳, 李世清. CO2浓度升高和施氮对冬小麦光合面积及粒叶比的影响[J]. 中国生态农业学报, 2013, 21(9): 1049−1056 doi: 10.3724/SP.J.1011.2013.01049

    XU Y B, SHEN Y F, LI S Q. Effects of elevated CO2 and nitrogen application on photosynthetic area and gain-leaf ratio of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1049−1056 doi: 10.3724/SP.J.1011.2013.01049
    [29] 李正鹏, 宋明丹, 冯浩. 水氮耦合下冬小麦LAI与株高的动态特征及其与产量的关系[J]. 农业工程学报, 2017, 33(4): 195−202 doi: 10.11975/j.issn.1002-6819.2017.04.027

    LI Z P, SONG M D, FENG H. Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4): 195−202 doi: 10.11975/j.issn.1002-6819.2017.04.027
    [30] 许强, 王彦才, 马宏玮. 宁夏春小麦缺氮导致减产的生理机理研究[J]. 干旱地区农业研究, 1999, 17(3): 56−61 doi: 10.3321/j.issn:1000-7601.1999.03.011

    XU Q, WANG Y C, MA H W. Study on physiological mechanism of the decline in spring wheat production caused by inscofficient nitrogen in Ningxia[J]. Agricultural Reseach in the Arid Areas, 1999, 17(3): 56−61 doi: 10.3321/j.issn:1000-7601.1999.03.011
    [31] FRANCO A C, BUSTAMANTE M, CALDAS L S, et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit[J]. Trees, 2005, 19(3): 326−335 doi: 10.1007/s00468-004-0394-z
    [32] 胡燕美, 苏慧, 朱玉磊, 等. 花后早期增温对小麦旗叶光合和抗氧化特性及籽粒发育的影响[J]. 麦类作物学报, 2020, 40(10): 1247−1256 doi: 10.7606/j.issn.1009-1041.2020.10.12

    HU Y M, SU H, ZHU Y L, et al. Effects of early warming after anthesis on photosynthesis and anti- oxidant characteristics of flag leaf and grain development of wheat[J]. Journal of Triticeae Crops, 2020, 40(10): 1247−1256 doi: 10.7606/j.issn.1009-1041.2020.10.12
    [33] 康定明, 王宏星, 魏琳. 不同品种不同播期冬小麦株型和消光系数K的初步研究[J]. 石河子农学院学报, 1993, 11(3): 15−21

    KANG D M, WANG H X, WEILIN. A preliminary study on the relationship between varieties, seedling date and extinction coefficient (K value) of canopx leaves of winter wheat community[J]. Journal of Shihezi University (Natural Science), 1993, 11(3): 15−21
    [34] 赵鸿, 杨启国, 邓振镛, 等. 半干旱雨养区小麦光合作用、蒸腾作用及水分利用效率特征[J]. 干旱地区农业研究, 2007, 25(1): 125−130 doi: 10.3321/j.issn:1000-7601.2007.01.026

    ZHAO H, YANG Q G, DENG Z Y, et al. Characteristics of photosynthesis, transpiration and water use efficiency of wheat leaf in semi-arid rain feed region[J]. Agricultural Research in the Arid Areas, 2007, 25(1): 125−130 doi: 10.3321/j.issn:1000-7601.2007.01.026
    [35] 魏迪. 小麦蒸腾效率候选基因TaER及气孔发育相关基因TaEPF1-2B的优势单倍型分析[D]. 杨凌: 西北农林科技大学, 2021

    WEI D. Superior haplotypes analysis of transpiration efficiency candidate gene TaER and stomatal development related genes TaEPF1-2B in bread wheat[D]. Yangling: Northwest A & F University, 2021
    [36] 谢松涯, 张宝忠. 基于全局敏感性分析的WOFOST模型参数优化[J]. 中国农村水利水电, 2018(12): 29−34 doi: 10.3969/j.issn.1007-2284.2018.12.006

    XIE S Y, ZHANG B Z. Optimization of WOFOST model parameters based on global sensitivity analysis[J]. China Rural Water and Hydropower, 2018(12): 29−34 doi: 10.3969/j.issn.1007-2284.2018.12.006
    [37] WANG J, LI X, LU L, et al. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method[J]. Environmental Modelling & Software, 2013, 48: 171−182
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  51
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 录用日期:  2023-09-22
  • 修回日期:  2023-09-06
  • 网络出版日期:  2023-09-22

目录

    /

    返回文章
    返回