留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型黑土区不同保护性耕作方式对玉米生长发育及产量形成的影响

李瑞平 谢瑞芝 罗洋 隋鹏祥 郑洪兵 明博 王浩 刘武仁 郑金玉 李少昆

李瑞平, 谢瑞芝, 罗洋, 隋鹏祥, 郑洪兵, 明博, 王浩, 刘武仁, 郑金玉, 李少昆. 典型黑土区不同保护性耕作方式对玉米生长发育及产量形成的影响[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−12 doi: 10.12357/cjea.20230346
引用本文: 李瑞平, 谢瑞芝, 罗洋, 隋鹏祥, 郑洪兵, 明博, 王浩, 刘武仁, 郑金玉, 李少昆. 典型黑土区不同保护性耕作方式对玉米生长发育及产量形成的影响[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−12 doi: 10.12357/cjea.20230346
LI R P, XIE R Z, LUO Y, SUI P X, ZHENG H B, MING B, WANG H, LIU W R, ZHENG J Y, LI S K. The effects of different conservation tillage methods on maize growth and yield in the typical black soil region[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20230346
Citation: LI R P, XIE R Z, LUO Y, SUI P X, ZHENG H B, MING B, WANG H, LIU W R, ZHENG J Y, LI S K. The effects of different conservation tillage methods on maize growth and yield in the typical black soil region[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20230346

典型黑土区不同保护性耕作方式对玉米生长发育及产量形成的影响

doi: 10.12357/cjea.20230346
基金项目: 吉林省科技发展计划项目(20210202024NC)、中国科学院战略性先导科技专项(XDA28080204)和国家重点研发计划项目子课题(2022YFD1500104-03)资助
详细信息
    作者简介:

    李瑞平, 主要研究方向为保护性耕作与秸秆还田, E-mail: ruipinghappy@126.com

    通讯作者:

    郑金玉, 主要研究方向为耕作制度, E-mail: 15844052867@163.com

    李少昆, 主要研究方向为玉米高产栽培与耕作, E-mail: lishaokun@caas.cn

  • 中图分类号: 344.9

The effects of different conservation tillage methods on maize growth and yield in the typical black soil region

Funds: This study was supported by the Science and Technology Development Plan Project of Jilin Province (20210202024NC), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28080204), and the Sub-project of the National Key Research and Development Program of China (2022YFD1500104-03).
More Information
  • 摘要: 实施保护性耕作对保护东北黑土和保障国家粮食安全具有重要意义。为明确东北典型黑土区保护性耕作对玉米产量的影响及其关键因素, 开展了连续3年大田定位试验, 设常规垄作秸秆不还田(CK)、免耕秸秆全量粉碎覆盖(T1)、免耕留高茬全量秸秆覆盖(T2)、少耕秸秆全量条带覆盖(T3)共4个处理, 分析了不同处理对土壤理化特性及玉米生长发育、产量及其构成因素的影响。结果表明, 与CK相比, 保护性耕作处理(T1、T2和T3) 0~20 cm耕层土壤有机质含量呈增加趋势; 保护性耕作显著提高了播种至出苗期耕层土壤含水量, T1、T2和T3处理分别提高7.8%~28.8%、9.0%~18.3%和17.3%~20.0%, 但显著降低土壤温度, 分别降低2.56~3.11 ℃、2.02~2.27 ℃、0.94~1.93 ℃; T1、T2和 T3处理分别延迟玉米出苗时间(VE) 5~7 d、4~6 d和2 d; T3处理3年平均出苗率较CK增加3.2%, T1和T2处理出苗率分别降低4.3%和4.7%; T1、T2和T3处理均降低了苗期(V6)株高整齐度和植株干物质积累, 但T3处理降低幅度明显小于T1和T2处理, V6之后干物质积累降低幅度逐渐减小; T1和T2处理显著降低玉米产量, 降幅分别为7.5%~15.7%和5.5%~12.9%, T3处理产量与CK差异不显著。结构方程模型(SEM)揭示, 保护性耕作通过调节土壤含水量和温度, 间接影响玉米出苗时间、出苗率、穗数和百粒重, 进而影响产量, 也可通过直接影响出苗质量和产量构成因素进而影响产量。在东北典型黑土区, 少耕秸秆全量条带覆盖(T3)不仅有利于提高土壤有机质含量, 而且还有利于平衡土壤水分和温度矛盾, 缩短出苗时间、提高出苗质量、高产稳产, 是该区域适宜的保护性耕作方式。
  • 图  1  2018—2020年玉米生育期间日平均气温与降雨量

    Figure  1.  Daily mean air temperature and precipitation during the growth period of maize from 2018 to 2020

    图  2  不同处理玉米苗期株高整齐度差异

    同一年份不同小写字母表示达到5%水平显著性差异。The different lowercase letters in the same year are significantly different at 0.05 probability level.

    Figure  2.  Difference in uniformity of maize plant height under different treatments

    图  3  保护性耕作对玉米产量的影响的结构方程模型(a)及标准化总效应(b)

    图a中实线箭头和虚线箭头分别表示正相关和负相关, 线宽度表示影响关系强度, 箭头旁边的数字为标准化路径系数。R2表示自变量解释的比例。“*”表示P < 0.05; “**”表示P < 0.01; “***”表示P < 0.001。Tillage: 耕作; SWC: 0~20 cm土壤含水量; ST: 0~20 cm土壤温度; PPD: 出苗时间差; ER: 出苗率; EN: 穗数; KN: 每穗粒数; 100-W: 百粒重; Yield: 籽粒产量。Solid and dotted arrows in the figure a indicate positive and negative relationships, respectively. Line width indicates the proportion of factorial contribution. Numbers adjacent to arrows are the standardized path coefficients. R2 indicate the strength of explanation by independent variables. *: P<0.05, **: P<0.01, ***: P<0.001. Tillage: tillage treatments; SWC: soil water content in 0−20 cm depth; ST: soil temperature in 0−20 cm depth; PPD: phenological period difference; ER: emergence rate; EN: ear number per hectare; KN: kernal number per ear; 100-W: 100 kernels weight; Yield: gain yield.

    Figure  3.  Structural equation model (a) and standardized total effect (b) of conservation tillage on maize yield

    表  1  不同处理具体操作过程

    Table  1.   Operation steps of different treatments

    处理
    Treatment
    秸秆处理与耕整地
    Residue management and tillage preparation
    播种
    Sowing
    CK秸秆不还田, 在播种前20 d左右进行灭茬、旋耕、起垄和施肥作业, 并进行镇压达到播种状态。
    Straw was not be returned to the field, stubble elimination, rotary tillage, ridging and fertilization operations were carried out about 20 days before sowing, and repression was carried out to achieve sowing status.
    采用机械播种, 播种后及时镇压。
    Adopt mechanical sowing, timely repression after sowing.
    T1机械收获时将全部秸秆粉碎长度小于20 cm喷撒于地表。
    During mechanical harvest, all the straw crushed less than 20 cm in length will be sprayed on the surface.
    翌年直接免耕播种, 同时一次性输入底肥。
    Direct no-till seeding in the following year with a one-time input of base fertilizer.
    T2机械收获时留高茬20~30 cm, 上部秸秆全部粉碎喷撒于地表。
    During mechanical harvest, 20−30 cm of high stubble was left, and the upper straw was pulverized and sprayed on the surface.
    与T1相同。
    Same as T1.
    T3机械收获时将全部秸秆粉碎长度小于20 cm喷撒于地表, 播种前采用秸秆归行机将秸秆清理为条带状, 宽度约为70~80 cm和50~60 cm(无秸秆)。
    During mechanical harvest, all the straw shall be pulverized with a length of less than 20 cm and sprayed on the surface. Before sowing, the straw shall be cleaned into strips with a width of about 70−80 cm and 50−60 cm (no straw) by straw cleaning machine.
    播种采用宽窄行模式, 播种时用免耕播种机在清理的50~60 cm无秸秆条带处播种(苗带宽度为40 cm), 同时一次性施入底肥。
    The wide/narrow row mode was used for sowing, and the no-till seeder was used to sow the 50−60 cm of cleared straw strip (the width of the strip was 40 cm), and the base fertilizer was applied at one time.
    下载: 导出CSV

    表  2  不同处理玉米产量及产量构成因素

    Table  2.   Maize yield and yield components of different treatments

    年份
    Year
    处理
    Treatment
    产量
    Yield (kg hm-2)
    穗数
    Ear number (×104 hm−2)
    穗粒数
    Kernel number
    百粒重
    100-kernel weight (g)
    2018CK11786.5±225.8 a5.21±0.13 a643.1±8.47 a37.9±0.30 a
    T110902.2±461.5 b5.14±0.19 a606.1±3.25 c36.0±0.74 b
    T211155.5±35.5 b5.12±0.04 a617.8±9.31 bc36.2±0.27 b
    T311309.0±150.2 ab5.21±0.15 a628.2±11.32 b37.1±0.49 ab
    2019CK11092.2±144.6 ab5.08±0.04 ab673.7±13.16 a37.4±0.83 a
    T19365.8±455.6 b4.85±0.07 c643.6±3.80 b34.3±0.11 c
    T29658.7±198.8 b4.90±0.15 bc640.9±15.89 b35.8±0.50 b
    T311419.3±183.2 a5.27±0.06 a655.5±10.01 ab37.6±0.10 a
    2020CK10854.3±197.9 a5.44±0.10 a652.9±5.88 a34.8±0.34 a
    T19798.0±228.7 b5.21±0.11 b638.9±9.90 ab33.2±0.10 b
    T29577.2±119.2 b5.13±0.04 b636.0±1.68 b33.3±0.31 b
    T310759.3±174.0 a5.46±0.09 a640.5±0.72 ab34.8±0.41 a
    方差分析
    ANOVA
    年 Year (Y)********
    处理 Treatment (T)*******
    Y×T*nsns*
      同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance.
    下载: 导出CSV

    表  3  不同处理0~20 cm土壤理化性质差异

    Table  3.   Differences in physical and chemical properties of 0~20 cm soil under different treatments


    Year
    处理
    Treatment
    土壤容重
    Soil bulk density (g cm−3)
    土壤有机质
    Soil organic matter (g kg−1)
    土壤含水量
    Soil water content (%)
    土壤温度
    Soil temperature (℃)
    2018CK1.39±0.01a29.88±1.08a27.58±0.83b12.10±0.36a
    T11.35±0.04ab30.27±1.50a29.73±0.89a9.54±0.29c
    T21.38±0.06a30.27±0.64a29.02±0.87ab9.83±0.29c
    T31.29±0.06b30.57±0.39a28.95±0.87ab11.16±0.33b
    2019CK1.36±0.02ab24.29±0.64b26.12±0.79d15.13±0.45a
    T11.32±0.02b27.14±0.64a33.65±1.01a12.02±0.36c
    T21.33±0.02ab25.11±0.43b28.48±0.86c13.03±0.39b
    T31.36±0.03a24.66±0.20b30.63±0.92b13.20±0.40b
    2020CK1.39±0.01a24.83±0.60c21.36±0.05c14.22±0.62a
    T11.36±0.06a28.10±0.54a27.85±0.19a11.28±0.51b
    T21.38±0.05a25.95±0.66b25.36±0.33b12.20±0.92b
    T31.37±0.02a25.28±0.05bc25.63±0.05b13.94±0.76a
    方差分析
    ANOVA
    年 Year (Y)ns******
    处理 Treatment (T)ns******
    Y×Tns***ns
      同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance.
    下载: 导出CSV

    表  4  不同处理玉米各生育时期(月-日)的差异

    Table  4.   Difference of times (month-day) of maize growth stages under different treatments

    年 Year处理 Treatment播种期(月-日) Sowing date出苗期 Emergence吐丝期 Silk成熟期 Maturity
    2018CK04-2605-1607-2010-01
    T104-2605-2107-2210-04
    T204-2605-2007-2110-03
    T304-2605-1807-2010-02
    2019CK05-0905-2607-2410-02
    T105-0905-3107-2810-06
    T205-0905-3107-2810-05
    T305-0905-2807-2610-04
    2020CK05-0705-2207-2310-02
    T105-0705-2907-2810-06
    T205-0705-2807-2610-05
    T305-0705-2407-2510-04
      同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance.
    下载: 导出CSV

    表  5  不同处理玉米出苗率差异

    Table  5.   Difference of maize emergence rates under different treatments (%)

    处理
    Treatment
    201820192020
    出苗率
    Emergence
    rate (%)
    变异系数
    CV (%)
    出苗率
    Emergence
    rate (%)
    变异系数
    CV (%)
    出苗率
    Emergence
    rate (%)
    变异系数
    CV (%)
    处理
    Treatment
    CK92.0±2.75 a2.9980.1±5.03 b6.2892.2±2.84 ab3.08
    T188.2±6.53 a7.4178.8±10.92 b13.8686.4±7.06 ab8.18
    T285.6±12.22 a14.2880.8±5.55 b6.8686.1±3.77 b4.38
    T387.0±3.81 a4.3892.3±2.98 a3.2393.4±2.72 a2.92
    方差分析
    ANOVA
    年 Year (Y)*
    处理 Treatment (T)*
    Y×T ns   
      同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance.
    下载: 导出CSV

    表  6  不同处理玉米干物质积累差异

    Table  6.   Difference in dry matter accumulation of maize under different treatments (g plant−1)


    Year
    处理
    Treatment
    生育时期 Growth stage
    6叶期 Sixth leaf collar12叶期 Twelfth leaf collar吐丝期 Silk乳熟期 Milk成熟期 Maturity
    2018CK10.44±1.09a79.12±3.89a180.14±13.34a278.84±17.34a385.32±15.94a
    T15.68±1.08c47.64±4.75c156.28±12.84b244.84±26.80b343.38±19.24b
    T27.05±0.89c51.56±5.96bc166.86±15.57ab264.36±24.42ab363.50±20.58ab
    T38.52±1.11b55.66±4.50b175.14±12.76ab277.30±14.71a376.64±15.38a
    2019CK16.61±3.00a103.27±6.73a205.68±17.11a306.08±13.11a404.84±18.96a
    T17.96±0.75b61.44±12.48b159.96±13.11c262.31±12.84c353.35±33.53b
    T25.38±0.70c66.45±9.32b163.72±20.55c273.64±19.28bc364.34±28.69b
    T38.82±1.21b97.72±12.34a177.00±15.35bc286.24±15.19ab405.19±20.80a
    2020CK6.16±1.21a71.39±11.42a207.31±24.81a319.75±31.44a412.52±32.50a
    T13.23±0.63b42.96±8.52b160.48±31.30b272.17±28.80b389.89±35.56a
    T23.89±0.60b51.03±5.50b180.63±29.25ab289.00±32.98ab382.13±30.02a
    T35.26±1.07a75.50±7.76a203.61±9.98a313.03±23.72ab390.65±24.42a
      同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance.
    下载: 导出CSV
  • [1] 韩晓增, 邹文秀. 东北黑土地保护利用研究足迹与科技研发展望[J]. 土壤学报, 2021, 58(6): 1341−1358

    HAN X Z, ZOU W X. Research perspectives and footprint of utilization and protection of black soil in northeast China[J]. Acta Pedologica Sinica, 2021, 58(6): 1341−1358
    [2] 李保国, 刘忠, 黄峰, 等. 巩固黑土地粮仓 保障国家粮食安全[J]. 中国科学院院刊, 2021, 36(10): 1184−1193

    LI B G, LIU Z, HUANG F, et al. Ensuring national food security by strengthening high-productivity black soil granary in northeast China[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1184−1193
    [3] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022

    National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2022
    [4] YANG X M, ZHANG X P, DENG W, et al. Black soil degradation by rainfall erosion in Jilin, China[J]. Land Degradation & Development, 2003, 14(4): 409−420
    [5] LIU X B, ZHANG X Y, WANG Y X, et al. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China[J]. Plant, Soil and Environment, 2010, 56(2): 87−97 doi: 10.17221/155/2009-PSE
    [6] 马守义, 景尚友. 美国农业保护性耕作技术的启示[J]. 黑龙江农业科学, 2016(12): 138−140

    MA S Y, JING S Y. Enlightenment agriculture conservation tillage of America[J]. Heilongjiang Agricultural Sciences, 2016(12): 138−140
    [7] WANG X B, CAI D X, HOOGMOED W B, et al. Developments in conservation tillage in rainfed regions of North China[J]. Soil and Tillage Research, 2007, 93(2): 239−250 doi: 10.1016/j.still.2006.05.005
    [8] LI R, HOU X Q, JIA Z K, et al. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China[J]. Agricultural Water Management, 2013, 116: 101−109 doi: 10.1016/j.agwat.2012.10.001
    [9] SIHU A S, SEKHON N K, THIND S S, et al. Soil temperature, growth and yield of maize (Zea mays L. ) as affected by wheat straw mulch[J]. Archives of Agronomy and Soil Science, 2007, 53(1): 95−102 doi: 10.1080/00036810601108467
    [10] 邬小春, 马向峰, 杨晓军, 等. 不同耕作方式对西北地区春玉米土壤物理性状及产量的影响[J]. 玉米科学, 2020, 28(3): 127−134

    WU X C, MA X F, YANG X J, et al. Effects of different tillage methods on soil physical properties and yield of spring maize in northwest China[J]. Journal of Maize Sciences, 2020, 28(3): 127−134
    [11] ZHANG S X, CHEN X W, JIA S X, et al. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China[J]. Soil and Tillage Research, 2015, 154: 84−90 doi: 10.1016/j.still.2015.06.002
    [12] 冯艳春, 罗洋, 李瑞平, 等. 耕作方式对玉米出苗率、干物质积累及产量的影响[J]. 玉米科学, 2018, 26(5): 85−90

    FENG Y C, LUO Y, LI R P, et al. Effect of different tillage systems on the seeding emergence rate, dry matter accumulation and yield of maize[J]. Journal of Maize Sciences, 2018, 26(5): 85−90
    [13] DRURY C F, TAN C S, WELACKY T W, et al. Red clover and tillage influence on soil temperature, water content, and corn emergence[J]. Agronomy Journal, 1999, 91(1): 101−108 doi: 10.2134/agronj1999.00021962009100010016x
    [14] 董智. 秸秆覆盖免耕对土壤有机质转化积累及玉米生长的影响[D]. 沈阳: 沈阳农业大学, 2013

    DONG Z. Accumulation of soil organic matter and maize growing process by different stover mulching quantity in no-tillage system[D]. Shenyang: Shenyang Agricultural University, 2013: 1–3
    [15] TURMEL M S, SPERATTI A, BAUDRON F, et al. Crop residue management and soil health: a systems analysis[J]. Agricultural Systems, 2015, 134: 6−16 doi: 10.1016/j.agsy.2014.05.009
    [16] 谢瑞芝, 李少昆, 李小君, 等. 中国保护性耕作研究分析−保护性耕作与作物生产[J]. 中国农业科学, 2007, 40(9): 1914−1924

    XIE R Z, LI S K, LI X J, et al. The analysis of conservation tillage in china−conservation tillage and crop production: reviewing the evidence[J]. Scientia Agricultura Sinica, 2007, 40(9): 1914−1924
    [17] 谢瑞芝, 李少昆, 金亚征, 等. 中国保护性耕作试验研究的产量效应分析[J]. 中国农业科学, 2008, 41(2): 397−404

    XIE R Z, LI S K, JIN Y Z, et al. The trends of crop yield responses to conservation tillage in China[J]. Scientia Agricultura Sinica, 2008, 41(2): 397−404
    [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

    LU, R. K. Methods of Soil Agricultural Chemical Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000: 107, 269
    [19] 李少昆, 王振华, 高增贵. 北方春玉米田间种植手册[M]. 北京: 中国农业出版社, 2011

    LI S K, WANG Z H, GAO Z G. Handbook of Field Planting of Spring Maize in Northern China[M]. Beijing: China Agriculture Press, 2011
    [20] 董智, 解宏图, 张立军, 等. 东北玉米带秸秆覆盖免耕对土壤性状的影响[J]. 玉米科学, 2013, 21(5): 100−103,108

    DONG Z, XIE H T, ZHANG L J, et al. Effects of no-tillage practice with corn stalk mulching on soil properties in the northeast of China[J]. Journal of Maize Sciences, 2013, 21(5): 100−103,108
    [21] 王玥凯, 郭自春, 张中彬, 等. 不同耕作方式对砂姜黑土物理性质和玉米生长的影响[J]. 土壤学报, 2019, 56(6): 1370−1380 doi: 10.11766/trxb201902280624

    WANG Y K, GUO Z C, ZHANG Z B, et al. Effect of tillage practices on soil physical properties and maize growth in Shajiang black soil (vertisol)[J]. Acta Pedologica Sinica, 2019, 56(6): 1370−1380 doi: 10.11766/trxb201902280624
    [22] KUMAR S, KADONO A, LAL R, et al. Long-term no-till impacts on organic carbon and properties of two contrasting soils and corn yields in Ohio[J]. Soil Science Society of America Journal, 2012, 76(5): 1798−1809 doi: 10.2136/sssaj2012.0055
    [23] 李洪文, 陈君达, 高焕文. 旱地农业三种耕作措施的对比研究[J]. 干旱地区农业研究, 1997, 15(1): 7−11 doi: 10.3321/j.issn:1000-7601.1997.01.002

    LI H W, CHEN J D, GAO H W. A comparison of three tillage methods in dryland farming[J]. Agricultural Research in the Arid Areas, 1997, 15(1): 7−11 doi: 10.3321/j.issn:1000-7601.1997.01.002
    [24] ADETUNJI A T, NCUBE B, MULIDZI R, et al. Management impact and benefit of cover crops on soil quality: a review[J]. Soil and Tillage Research, 2020, 204: 104717 doi: 10.1016/j.still.2020.104717
    [25] 张兴义, 陈强, 陈渊, 等. 东北北部冷凉区免耕土壤的特性及作物效应[J]. 中国农业科学, 2013, 46(11): 2271−2277

    ZHANG X Y, CHEN Q, CHEN Y, et al. Influences of no-tillage on soil and crop performance in the north cool region of northeast China[J]. Scientia Agricultura Sinica, 2013, 46(11): 2271−2277
    [26] USSIRI D A N, LAL R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio[J]. Soil and Tillage Research, 2009, 104(1): 39−47 doi: 10.1016/j.still.2008.11.008
    [27] 邱琛, 韩晓增, 陆欣春, 等. 东北黑土区玉米秸秆还田对土壤肥力及作物产量的影响[J]. 土壤与作物, 2020, 9(3): 277−286

    LI C, HAN X Z, LU X C, et al. Effects of maize straw incorporation on soil fertility and crop production in the black soil region of northeast China[J]. Soils and Crops, 2020, 9(3): 277−286
    [28] 宋振伟, 郭金瑞, 邓艾兴, 等. 耕作方式对东北春玉米农田土壤水热特征的影响[J]. 农业工程学报, 2012, 28(16): 108−114

    SONG Z W, GUO J R, DENG A X, et al. Effects of surface tillage regimes on soil moisture and temperature of spring corn farmland in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16): 108−114
    [29] CHEN Y, LIU S, LI H, et al. Effects of conservation tillage on corn and soybean yield in the humid continental climate region of Northeast China[J]. Soil and Tillage Research, 2011, 115/116: 56−61 doi: 10.1016/j.still.2011.06.007
    [30] 杨永辉, 武继承, 张洁梅, 等. 耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响[J]. 中国生态农业学报, 2017, 25(2): 258−266

    YANG Y H, WU J C, ZHANG J M, et al. Effect of tillage method on soil water infiltration, organic carbon content and structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 258−266
    [31] LI R P, ZHENG J Y, XIE R Z, et al. Potential mechanisms of maize yield reduction under short-term no-tillage combined with residue coverage in the semi-humid region of Northeast China[J]. Soil and Tillage Research, 2022, 217: 105289 doi: 10.1016/j.still.2021.105289
    [32] 陈素英, 张喜英, 刘孟雨. 玉米秸秆覆盖麦田下的土壤温度和土壤水分动态规律[J]. 中国农业气象, 2002, 23(4): 34−37

    CHEN S Y, ZHANG X Y, LIU M Y. Soil temperature and soil water dynamics in wheat field mulched with maize straw[J]. Agricultural Meteorology, 2002, 23(4): 34−37
    [33] YAN Q Y, DONG F, LOU G, et al. Alternate row mulching optimizes soil temperature and water conditions and improves wheat yield in dryland farming[J]. Journal of Integrative Agriculture, 2018, 17(11): 2558−2569 doi: 10.1016/S2095-3119(18)61986-0
    [34] 丛聪. 耕作方式及有机物还田对黑土坡耕地土壤物理性质和玉米生长的影响[D]. 北京: 中国农业科学院, 2019: 34–39

    CONG C. Effect of tillage practices and organic material application on soil physical properties and maize growth in sloping farmland of Mollisol[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019: 34–39
    [35] 张昊, 于海秋, 依兵, 等. 整秸秆覆盖免耕对土壤水热状况和玉米生长发育的影响[J]. 沈阳农业大学学报, 2011, 42(1): 90−93

    ZHANG H, YU H Q, YI B, et al. Effect of whole straw-mulching no-tillage on soil water content and temperature and growth of maize[J]. Journal of Shenyang Agricultural University, 2011, 42(1): 90−93
    [36] 谷思玉, 朱玉伟, 郭兴军, 等. 不同耕作方式下黑土物理性状及其对玉米苗期生长的影响[J]. 华北农学报, 2018, 33(4): 226−231

    GU S Y, ZHU Y W, GUO X J, et al. Effects of different tillage ways on seedling growth of maize and soil physical properties in Mollisol region[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(4): 226−231
    [37] 张丽华, 徐晨, 于江, 等. 半湿润区秸秆还田对土壤水分、温度及玉米产量的影响[J]. 水土保持学报, 2021, 35(4): 299−306

    ZHANG L H, XU C, YU J, et al. Effects of straw returning on soil moisture, temperature and maize yield in semi humid area[J]. Journal of Soil and Water Conservation, 2021, 35(4): 299−306
    [38] 蒋发辉, 钱泳其, 郭自春, 等. 基于Meta分析评价东北黑土地保护性耕作与深耕的区域适宜性: 以作物产量为例[J]. 土壤学报, 2022, 59(4): 935−952

    JIANG F H, QIAN Y Q, GUO Z C, et al. Evaluating the regional suitability of conservation tillage and deep tillage based on crop yield in the black soil of northeast China: a meta-analysis[J]. Acta Pedologica Sinica, 2022, 59(4): 935−952
    [39] STONE P J, SORENSEN I B, JAMIESON P D. Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate[J]. Field Crops Research, 1999, 63(2): 169−178 doi: 10.1016/S0378-4290(99)00033-7
    [40] 王玉珑, 于爱忠, 吕汉强, 等. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响[J]. 作物学报, 2022, 48(10): 2671−2679

    WANG Y L, YU A Z, LYU H Q, et al. Effects of wheat straw returning and tillage practices on corn yield in oasis irrigation area[J]. Acta Agronomica Sinica, 2022, 48(10): 2671−2679
    [41] 高旺盛. 论保护性耕作技术的基本原理与发展趋势[J]. 中国农业科学, 2007, 40(12): 2702−2708 doi: 10.3321/j.issn:0578-1752.2007.12.006

    GAO W S. Development trends and basic principles of conservation tillage[J]. Scientia Agricultura Sinica, 2007, 40(12): 2702−2708 doi: 10.3321/j.issn:0578-1752.2007.12.006
    [42] Food and Agriculture Organization of the United Nations. Conservation Agriculture: Three Principles of Conservation Agriculture[EB/OL]. http://www.fao.org/ag/ca/
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  37
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 录用日期:  2023-08-21
  • 修回日期:  2023-09-21
  • 网络出版日期:  2023-10-09

目录

    /

    返回文章
    返回