The effects of different conservation tillage methods on maize growth and yield in the typical black soil region
-
摘要: 实施保护性耕作对保护东北黑土和保障国家粮食安全具有重要意义。为明确东北典型黑土区保护性耕作对玉米产量的影响及其关键因素, 开展了连续3年大田定位试验, 设常规垄作秸秆不还田(CK)、免耕秸秆全量粉碎覆盖(T1)、免耕留高茬全量秸秆覆盖(T2)、少耕秸秆全量条带覆盖(T3)共4个处理, 分析了不同处理对土壤理化特性及玉米生长发育、产量及其构成因素的影响。结果表明, 与CK相比, 保护性耕作处理(T1、T2和T3) 0~20 cm耕层土壤有机质含量呈增加趋势; 保护性耕作显著提高了播种至出苗期耕层土壤含水量, T1、T2和T3处理分别提高7.8%~28.8%、9.0%~18.3%和17.3%~20.0%, 但显著降低土壤温度, 分别降低2.56~3.11 ℃、2.02~2.27 ℃、0.94~1.93 ℃; T1、T2和 T3处理分别延迟玉米出苗时间(VE) 5~7 d、4~6 d和2 d; T3处理3年平均出苗率较CK增加3.2%, T1和T2处理出苗率分别降低4.3%和4.7%; T1、T2和T3处理均降低了苗期(V6)株高整齐度和植株干物质积累, 但T3处理降低幅度明显小于T1和T2处理, V6之后干物质积累降低幅度逐渐减小; T1和T2处理显著降低玉米产量, 降幅分别为7.5%~15.7%和5.5%~12.9%, T3处理产量与CK差异不显著。结构方程模型(SEM)揭示, 保护性耕作通过调节土壤含水量和温度, 间接影响玉米出苗时间、出苗率、穗数和百粒重, 进而影响产量, 也可通过直接影响出苗质量和产量构成因素进而影响产量。在东北典型黑土区, 少耕秸秆全量条带覆盖(T3)不仅有利于提高土壤有机质含量, 而且还有利于平衡土壤水分和温度矛盾, 缩短出苗时间、提高出苗质量、高产稳产, 是该区域适宜的保护性耕作方式。Abstract: The implementation of conservation tillage is crucial for protecting the black soil in Northeast China and ensuring national food security. A three-year field experiment was conducted to examine impact of conservation tillage on maize yield and its key factors in the typical black soil region of Northeast China. Four treatments were designed, including conventional ridge tillage without straw mulching (CK), no-tillage with 100% crushed straw mulching (T1), no-tillage with high stubble and 100% straw mulching (T2), and reduced tillage with 100% straw strip mulching (T3). The study analyzed the soil physical and chemical properties, maize growth, yield and its components to assess the effects of the different treatments on soil and yield. The results demonstrated that conservation tillage treatments (T1, T2 and T3) increased the soil organic matter content in the 0-20 cm soil layer, compared to the CK treatment. Additionally, conservation tillage significantly improved soil water content during the sowing to seedling stage, while decreasing soil temperature. T1, T2 and T3 treatments led to increases in soil water content ranging from 7.8% to 28.8 %, 9.0% to 18.3% and 17.3% to 20.0%, respectively. Meanwhile, the soil temperature decreased by 2.56℃ to 3.11℃, 2.02℃ to 2.27℃ and 0.94℃ to 1.93℃, respectively. The data revealed that the emergence time (VE) of T1 and T2 was delayed from 5 to 7 days and from 4 to 6 days, respectively. However, T3 only experienced a delay of 2 days. Among the three years, the average seedling emergence rate of T3 treatment increased by 3.2% compared to CK, whereas the emergence rates of T1 and T2 decreased by 4.3% and 4.7%, respectively. T1, T2 and T3 treatments reduced the uniformity of plant height and dry matter accumulation at the seedling stage (V6), with T3 treatment exhibiting a significantly smaller decrease compared to T1 and T2 treatments. Additionally, the dry matter accumulation after V6 gradually decreased in T3 compared to other treatments. T1 and T2 significantly reduced the yield by 7.5% to 15.7% and 5.5% to 12.9%, respectively, over the course of three years. However, T3 treatment did not show a significant difference compared to CK. The structural equation model (SEM) indicated that conservation tillage indirectly affected yield by regulating soil water content and temperature, thereby influencing emergence time, emergence rate, ear number and 100-kernal weight. Furthermore, conservation tillage can also directly affect emergence quality and yield components, subsequently impacting yield. Therefore, reduced tillage with 100% straw strip mulching (T3) is an optimal conservation tillage practice for the typical black soil region of Northeast China. T3 not only benefits in improving soil organic matter content, but also helps in adjusting the contradiction between soil moisture and temperature to shorten the emergence time, improve the quality of emergence and stabilize yield.
-
图 3 保护性耕作对玉米产量的影响的结构方程模型(a)及标准化总效应(b)
图a中实线箭头和虚线箭头分别表示正相关和负相关, 线宽度表示影响关系强度, 箭头旁边的数字为标准化路径系数。R2表示自变量解释的比例。“*”表示P < 0.05; “**”表示P < 0.01; “***”表示P < 0.001。Tillage: 耕作; SWC: 0~20 cm土壤含水量; ST: 0~20 cm土壤温度; PPD: 出苗时间差; ER: 出苗率; EN: 穗数; KN: 每穗粒数; 100-W: 百粒重; Yield: 籽粒产量。Solid and dotted arrows in the figure a indicate positive and negative relationships, respectively. Line width indicates the proportion of factorial contribution. Numbers adjacent to arrows are the standardized path coefficients. R2 indicate the strength of explanation by independent variables. *: P<0.05, **: P<0.01, ***: P<0.001. Tillage: tillage treatments; SWC: soil water content in 0−20 cm depth; ST: soil temperature in 0−20 cm depth; PPD: phenological period difference; ER: emergence rate; EN: ear number per hectare; KN: kernal number per ear; 100-W: 100 kernels weight; Yield: gain yield.
Figure 3. Structural equation model (a) and standardized total effect (b) of conservation tillage on maize yield
表 1 不同处理具体操作过程
Table 1. Operation steps of different treatments
处理
Treatment秸秆处理与耕整地
Residue management and tillage preparation播种
SowingCK 秸秆不还田, 在播种前20 d左右进行灭茬、旋耕、起垄和施肥作业, 并进行镇压达到播种状态。
Straw was not be returned to the field, stubble elimination, rotary tillage, ridging and fertilization operations were carried out about 20 days before sowing, and repression was carried out to achieve sowing status.采用机械播种, 播种后及时镇压。
Adopt mechanical sowing, timely repression after sowing.T1 机械收获时将全部秸秆粉碎长度小于20 cm喷撒于地表。
During mechanical harvest, all the straw crushed less than 20 cm in length will be sprayed on the surface.翌年直接免耕播种, 同时一次性输入底肥。
Direct no-till seeding in the following year with a one-time input of base fertilizer.T2 机械收获时留高茬20~30 cm, 上部秸秆全部粉碎喷撒于地表。
During mechanical harvest, 20−30 cm of high stubble was left, and the upper straw was pulverized and sprayed on the surface.与T1相同。
Same as T1.T3 机械收获时将全部秸秆粉碎长度小于20 cm喷撒于地表, 播种前采用秸秆归行机将秸秆清理为条带状, 宽度约为70~80 cm和50~60 cm(无秸秆)。
During mechanical harvest, all the straw shall be pulverized with a length of less than 20 cm and sprayed on the surface. Before sowing, the straw shall be cleaned into strips with a width of about 70−80 cm and 50−60 cm (no straw) by straw cleaning machine.播种采用宽窄行模式, 播种时用免耕播种机在清理的50~60 cm无秸秆条带处播种(苗带宽度为40 cm), 同时一次性施入底肥。
The wide/narrow row mode was used for sowing, and the no-till seeder was used to sow the 50−60 cm of cleared straw strip (the width of the strip was 40 cm), and the base fertilizer was applied at one time.表 2 不同处理玉米产量及产量构成因素
Table 2. Maize yield and yield components of different treatments
年份
Year处理
Treatment产量
Yield (kg hm-2)穗数
Ear number (×104 hm−2)穗粒数
Kernel number百粒重
100-kernel weight (g)2018 CK 11786.5±225.8 a 5.21±0.13 a 643.1±8.47 a 37.9±0.30 a T1 10902.2±461.5 b 5.14±0.19 a 606.1±3.25 c 36.0±0.74 b T2 11155.5±35.5 b 5.12±0.04 a 617.8±9.31 bc 36.2±0.27 b T3 11309.0±150.2 ab 5.21±0.15 a 628.2±11.32 b 37.1±0.49 ab 2019 CK 11092.2±144.6 ab 5.08±0.04 ab 673.7±13.16 a 37.4±0.83 a T1 9365.8±455.6 b 4.85±0.07 c 643.6±3.80 b 34.3±0.11 c T2 9658.7±198.8 b 4.90±0.15 bc 640.9±15.89 b 35.8±0.50 b T3 11419.3±183.2 a 5.27±0.06 a 655.5±10.01 ab 37.6±0.10 a 2020 CK 10854.3±197.9 a 5.44±0.10 a 652.9±5.88 a 34.8±0.34 a T1 9798.0±228.7 b 5.21±0.11 b 638.9±9.90 ab 33.2±0.10 b T2 9577.2±119.2 b 5.13±0.04 b 636.0±1.68 b 33.3±0.31 b T3 10759.3±174.0 a 5.46±0.09 a 640.5±0.72 ab 34.8±0.41 a 方差分析
ANOVA年 Year (Y) ** ** ** ** 处理 Treatment (T) ** * ** ** Y×T * ns ns * 同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance. 表 3 不同处理0~20 cm土壤理化性质差异
Table 3. Differences in physical and chemical properties of 0~20 cm soil under different treatments
年
Year处理
Treatment土壤容重
Soil bulk density (g cm−3)土壤有机质
Soil organic matter (g kg−1)土壤含水量
Soil water content (%)土壤温度
Soil temperature (℃)2018 CK 1.39±0.01a 29.88±1.08a 27.58±0.83b 12.10±0.36a T1 1.35±0.04ab 30.27±1.50a 29.73±0.89a 9.54±0.29c T2 1.38±0.06a 30.27±0.64a 29.02±0.87ab 9.83±0.29c T3 1.29±0.06b 30.57±0.39a 28.95±0.87ab 11.16±0.33b 2019 CK 1.36±0.02ab 24.29±0.64b 26.12±0.79d 15.13±0.45a T1 1.32±0.02b 27.14±0.64a 33.65±1.01a 12.02±0.36c T2 1.33±0.02ab 25.11±0.43b 28.48±0.86c 13.03±0.39b T3 1.36±0.03a 24.66±0.20b 30.63±0.92b 13.20±0.40b 2020 CK 1.39±0.01a 24.83±0.60c 21.36±0.05c 14.22±0.62a T1 1.36±0.06a 28.10±0.54a 27.85±0.19a 11.28±0.51b T2 1.38±0.05a 25.95±0.66b 25.36±0.33b 12.20±0.92b T3 1.37±0.02a 25.28±0.05bc 25.63±0.05b 13.94±0.76a 方差分析
ANOVA年 Year (Y) ns ** ** ** 处理 Treatment (T) ns ** ** ** Y×T ns * ** ns 同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance. 表 4 不同处理玉米各生育时期(月-日)的差异
Table 4. Difference of times (month-day) of maize growth stages under different treatments
年 Year 处理 Treatment 播种期(月-日) Sowing date 出苗期 Emergence 吐丝期 Silk 成熟期 Maturity 2018 CK 04-26 05-16 07-20 10-01 T1 04-26 05-21 07-22 10-04 T2 04-26 05-20 07-21 10-03 T3 04-26 05-18 07-20 10-02 2019 CK 05-09 05-26 07-24 10-02 T1 05-09 05-31 07-28 10-06 T2 05-09 05-31 07-28 10-05 T3 05-09 05-28 07-26 10-04 2020 CK 05-07 05-22 07-23 10-02 T1 05-07 05-29 07-28 10-06 T2 05-07 05-28 07-26 10-05 T3 05-07 05-24 07-25 10-04 同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance. 表 5 不同处理玉米出苗率差异
Table 5. Difference of maize emergence rates under different treatments (%)
处理
Treatment2018 2019 2020 出苗率
Emergence
rate (%)变异系数
CV (%)出苗率
Emergence
rate (%)变异系数
CV (%)出苗率
Emergence
rate (%)变异系数
CV (%)处理
TreatmentCK 92.0±2.75 a 2.99 80.1±5.03 b 6.28 92.2±2.84 ab 3.08 T1 88.2±6.53 a 7.41 78.8±10.92 b 13.86 86.4±7.06 ab 8.18 T2 85.6±12.22 a 14.28 80.8±5.55 b 6.86 86.1±3.77 b 4.38 T3 87.0±3.81 a 4.38 92.3±2.98 a 3.23 93.4±2.72 a 2.92 方差分析
ANOVA年 Year (Y) * 处理 Treatment (T) * Y×T ns 同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance. 表 6 不同处理玉米干物质积累差异
Table 6. Difference in dry matter accumulation of maize under different treatments (g plant−1)
年
Year处理
Treatment生育时期 Growth stage 6叶期 Sixth leaf collar 12叶期 Twelfth leaf collar 吐丝期 Silk 乳熟期 Milk 成熟期 Maturity 2018 CK 10.44±1.09a 79.12±3.89a 180.14±13.34a 278.84±17.34a 385.32±15.94a T1 5.68±1.08c 47.64±4.75c 156.28±12.84b 244.84±26.80b 343.38±19.24b T2 7.05±0.89c 51.56±5.96bc 166.86±15.57ab 264.36±24.42ab 363.50±20.58ab T3 8.52±1.11b 55.66±4.50b 175.14±12.76ab 277.30±14.71a 376.64±15.38a 2019 CK 16.61±3.00a 103.27±6.73a 205.68±17.11a 306.08±13.11a 404.84±18.96a T1 7.96±0.75b 61.44±12.48b 159.96±13.11c 262.31±12.84c 353.35±33.53b T2 5.38±0.70c 66.45±9.32b 163.72±20.55c 273.64±19.28bc 364.34±28.69b T3 8.82±1.21b 97.72±12.34a 177.00±15.35bc 286.24±15.19ab 405.19±20.80a 2020 CK 6.16±1.21a 71.39±11.42a 207.31±24.81a 319.75±31.44a 412.52±32.50a T1 3.23±0.63b 42.96±8.52b 160.48±31.30b 272.17±28.80b 389.89±35.56a T2 3.89±0.60b 51.03±5.50b 180.63±29.25ab 289.00±32.98ab 382.13±30.02a T3 5.26±1.07a 75.50±7.76a 203.61±9.98a 313.03±23.72ab 390.65±24.42a 同一列不同小写字母表示达到5%水平显著性差异, *和**分别表示在0.05和0.01水平差异显著性, ns表示差异不显著。Values followed by different lowercase letters in the same column are significantly different at 0.05 probability level. * and ** indicate significant at 0.05 and 0.01 probability level, ns indicates no significance. -
[1] 韩晓增, 邹文秀. 东北黑土地保护利用研究足迹与科技研发展望[J]. 土壤学报, 2021, 58(6): 1341−1358HAN X Z, ZOU W X. Research perspectives and footprint of utilization and protection of black soil in northeast China[J]. Acta Pedologica Sinica, 2021, 58(6): 1341−1358 [2] 李保国, 刘忠, 黄峰, 等. 巩固黑土地粮仓 保障国家粮食安全[J]. 中国科学院院刊, 2021, 36(10): 1184−1193LI B G, LIU Z, HUANG F, et al. Ensuring national food security by strengthening high-productivity black soil granary in northeast China[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1184−1193 [3] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2022 [4] YANG X M, ZHANG X P, DENG W, et al. Black soil degradation by rainfall erosion in Jilin, China[J]. Land Degradation & Development, 2003, 14(4): 409−420 [5] LIU X B, ZHANG X Y, WANG Y X, et al. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China[J]. Plant, Soil and Environment, 2010, 56(2): 87−97 doi: 10.17221/155/2009-PSE [6] 马守义, 景尚友. 美国农业保护性耕作技术的启示[J]. 黑龙江农业科学, 2016(12): 138−140MA S Y, JING S Y. Enlightenment agriculture conservation tillage of America[J]. Heilongjiang Agricultural Sciences, 2016(12): 138−140 [7] WANG X B, CAI D X, HOOGMOED W B, et al. Developments in conservation tillage in rainfed regions of North China[J]. Soil and Tillage Research, 2007, 93(2): 239−250 doi: 10.1016/j.still.2006.05.005 [8] LI R, HOU X Q, JIA Z K, et al. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China[J]. Agricultural Water Management, 2013, 116: 101−109 doi: 10.1016/j.agwat.2012.10.001 [9] SIHU A S, SEKHON N K, THIND S S, et al. Soil temperature, growth and yield of maize (Zea mays L. ) as affected by wheat straw mulch[J]. Archives of Agronomy and Soil Science, 2007, 53(1): 95−102 doi: 10.1080/00036810601108467 [10] 邬小春, 马向峰, 杨晓军, 等. 不同耕作方式对西北地区春玉米土壤物理性状及产量的影响[J]. 玉米科学, 2020, 28(3): 127−134WU X C, MA X F, YANG X J, et al. Effects of different tillage methods on soil physical properties and yield of spring maize in northwest China[J]. Journal of Maize Sciences, 2020, 28(3): 127−134 [11] ZHANG S X, CHEN X W, JIA S X, et al. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China[J]. Soil and Tillage Research, 2015, 154: 84−90 doi: 10.1016/j.still.2015.06.002 [12] 冯艳春, 罗洋, 李瑞平, 等. 耕作方式对玉米出苗率、干物质积累及产量的影响[J]. 玉米科学, 2018, 26(5): 85−90FENG Y C, LUO Y, LI R P, et al. Effect of different tillage systems on the seeding emergence rate, dry matter accumulation and yield of maize[J]. Journal of Maize Sciences, 2018, 26(5): 85−90 [13] DRURY C F, TAN C S, WELACKY T W, et al. Red clover and tillage influence on soil temperature, water content, and corn emergence[J]. Agronomy Journal, 1999, 91(1): 101−108 doi: 10.2134/agronj1999.00021962009100010016x [14] 董智. 秸秆覆盖免耕对土壤有机质转化积累及玉米生长的影响[D]. 沈阳: 沈阳农业大学, 2013DONG Z. Accumulation of soil organic matter and maize growing process by different stover mulching quantity in no-tillage system[D]. Shenyang: Shenyang Agricultural University, 2013: 1–3 [15] TURMEL M S, SPERATTI A, BAUDRON F, et al. Crop residue management and soil health: a systems analysis[J]. Agricultural Systems, 2015, 134: 6−16 doi: 10.1016/j.agsy.2014.05.009 [16] 谢瑞芝, 李少昆, 李小君, 等. 中国保护性耕作研究分析−保护性耕作与作物生产[J]. 中国农业科学, 2007, 40(9): 1914−1924XIE R Z, LI S K, LI X J, et al. The analysis of conservation tillage in china−conservation tillage and crop production: reviewing the evidence[J]. Scientia Agricultura Sinica, 2007, 40(9): 1914−1924 [17] 谢瑞芝, 李少昆, 金亚征, 等. 中国保护性耕作试验研究的产量效应分析[J]. 中国农业科学, 2008, 41(2): 397−404XIE R Z, LI S K, JIN Y Z, et al. The trends of crop yield responses to conservation tillage in China[J]. Scientia Agricultura Sinica, 2008, 41(2): 397−404 [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000LU, R. K. Methods of Soil Agricultural Chemical Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000: 107, 269 [19] 李少昆, 王振华, 高增贵. 北方春玉米田间种植手册[M]. 北京: 中国农业出版社, 2011LI S K, WANG Z H, GAO Z G. Handbook of Field Planting of Spring Maize in Northern China[M]. Beijing: China Agriculture Press, 2011 [20] 董智, 解宏图, 张立军, 等. 东北玉米带秸秆覆盖免耕对土壤性状的影响[J]. 玉米科学, 2013, 21(5): 100−103,108DONG Z, XIE H T, ZHANG L J, et al. Effects of no-tillage practice with corn stalk mulching on soil properties in the northeast of China[J]. Journal of Maize Sciences, 2013, 21(5): 100−103,108 [21] 王玥凯, 郭自春, 张中彬, 等. 不同耕作方式对砂姜黑土物理性质和玉米生长的影响[J]. 土壤学报, 2019, 56(6): 1370−1380 doi: 10.11766/trxb201902280624WANG Y K, GUO Z C, ZHANG Z B, et al. Effect of tillage practices on soil physical properties and maize growth in Shajiang black soil (vertisol)[J]. Acta Pedologica Sinica, 2019, 56(6): 1370−1380 doi: 10.11766/trxb201902280624 [22] KUMAR S, KADONO A, LAL R, et al. Long-term no-till impacts on organic carbon and properties of two contrasting soils and corn yields in Ohio[J]. Soil Science Society of America Journal, 2012, 76(5): 1798−1809 doi: 10.2136/sssaj2012.0055 [23] 李洪文, 陈君达, 高焕文. 旱地农业三种耕作措施的对比研究[J]. 干旱地区农业研究, 1997, 15(1): 7−11 doi: 10.3321/j.issn:1000-7601.1997.01.002LI H W, CHEN J D, GAO H W. A comparison of three tillage methods in dryland farming[J]. Agricultural Research in the Arid Areas, 1997, 15(1): 7−11 doi: 10.3321/j.issn:1000-7601.1997.01.002 [24] ADETUNJI A T, NCUBE B, MULIDZI R, et al. Management impact and benefit of cover crops on soil quality: a review[J]. Soil and Tillage Research, 2020, 204: 104717 doi: 10.1016/j.still.2020.104717 [25] 张兴义, 陈强, 陈渊, 等. 东北北部冷凉区免耕土壤的特性及作物效应[J]. 中国农业科学, 2013, 46(11): 2271−2277ZHANG X Y, CHEN Q, CHEN Y, et al. Influences of no-tillage on soil and crop performance in the north cool region of northeast China[J]. Scientia Agricultura Sinica, 2013, 46(11): 2271−2277 [26] USSIRI D A N, LAL R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio[J]. Soil and Tillage Research, 2009, 104(1): 39−47 doi: 10.1016/j.still.2008.11.008 [27] 邱琛, 韩晓增, 陆欣春, 等. 东北黑土区玉米秸秆还田对土壤肥力及作物产量的影响[J]. 土壤与作物, 2020, 9(3): 277−286LI C, HAN X Z, LU X C, et al. Effects of maize straw incorporation on soil fertility and crop production in the black soil region of northeast China[J]. Soils and Crops, 2020, 9(3): 277−286 [28] 宋振伟, 郭金瑞, 邓艾兴, 等. 耕作方式对东北春玉米农田土壤水热特征的影响[J]. 农业工程学报, 2012, 28(16): 108−114SONG Z W, GUO J R, DENG A X, et al. Effects of surface tillage regimes on soil moisture and temperature of spring corn farmland in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16): 108−114 [29] CHEN Y, LIU S, LI H, et al. Effects of conservation tillage on corn and soybean yield in the humid continental climate region of Northeast China[J]. Soil and Tillage Research, 2011, 115/116: 56−61 doi: 10.1016/j.still.2011.06.007 [30] 杨永辉, 武继承, 张洁梅, 等. 耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响[J]. 中国生态农业学报, 2017, 25(2): 258−266YANG Y H, WU J C, ZHANG J M, et al. Effect of tillage method on soil water infiltration, organic carbon content and structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 258−266 [31] LI R P, ZHENG J Y, XIE R Z, et al. Potential mechanisms of maize yield reduction under short-term no-tillage combined with residue coverage in the semi-humid region of Northeast China[J]. Soil and Tillage Research, 2022, 217: 105289 doi: 10.1016/j.still.2021.105289 [32] 陈素英, 张喜英, 刘孟雨. 玉米秸秆覆盖麦田下的土壤温度和土壤水分动态规律[J]. 中国农业气象, 2002, 23(4): 34−37CHEN S Y, ZHANG X Y, LIU M Y. Soil temperature and soil water dynamics in wheat field mulched with maize straw[J]. Agricultural Meteorology, 2002, 23(4): 34−37 [33] YAN Q Y, DONG F, LOU G, et al. Alternate row mulching optimizes soil temperature and water conditions and improves wheat yield in dryland farming[J]. Journal of Integrative Agriculture, 2018, 17(11): 2558−2569 doi: 10.1016/S2095-3119(18)61986-0 [34] 丛聪. 耕作方式及有机物还田对黑土坡耕地土壤物理性质和玉米生长的影响[D]. 北京: 中国农业科学院, 2019: 34–39CONG C. Effect of tillage practices and organic material application on soil physical properties and maize growth in sloping farmland of Mollisol[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019: 34–39 [35] 张昊, 于海秋, 依兵, 等. 整秸秆覆盖免耕对土壤水热状况和玉米生长发育的影响[J]. 沈阳农业大学学报, 2011, 42(1): 90−93ZHANG H, YU H Q, YI B, et al. Effect of whole straw-mulching no-tillage on soil water content and temperature and growth of maize[J]. Journal of Shenyang Agricultural University, 2011, 42(1): 90−93 [36] 谷思玉, 朱玉伟, 郭兴军, 等. 不同耕作方式下黑土物理性状及其对玉米苗期生长的影响[J]. 华北农学报, 2018, 33(4): 226−231GU S Y, ZHU Y W, GUO X J, et al. Effects of different tillage ways on seedling growth of maize and soil physical properties in Mollisol region[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(4): 226−231 [37] 张丽华, 徐晨, 于江, 等. 半湿润区秸秆还田对土壤水分、温度及玉米产量的影响[J]. 水土保持学报, 2021, 35(4): 299−306ZHANG L H, XU C, YU J, et al. Effects of straw returning on soil moisture, temperature and maize yield in semi humid area[J]. Journal of Soil and Water Conservation, 2021, 35(4): 299−306 [38] 蒋发辉, 钱泳其, 郭自春, 等. 基于Meta分析评价东北黑土地保护性耕作与深耕的区域适宜性: 以作物产量为例[J]. 土壤学报, 2022, 59(4): 935−952JIANG F H, QIAN Y Q, GUO Z C, et al. Evaluating the regional suitability of conservation tillage and deep tillage based on crop yield in the black soil of northeast China: a meta-analysis[J]. Acta Pedologica Sinica, 2022, 59(4): 935−952 [39] STONE P J, SORENSEN I B, JAMIESON P D. Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate[J]. Field Crops Research, 1999, 63(2): 169−178 doi: 10.1016/S0378-4290(99)00033-7 [40] 王玉珑, 于爱忠, 吕汉强, 等. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响[J]. 作物学报, 2022, 48(10): 2671−2679WANG Y L, YU A Z, LYU H Q, et al. Effects of wheat straw returning and tillage practices on corn yield in oasis irrigation area[J]. Acta Agronomica Sinica, 2022, 48(10): 2671−2679 [41] 高旺盛. 论保护性耕作技术的基本原理与发展趋势[J]. 中国农业科学, 2007, 40(12): 2702−2708 doi: 10.3321/j.issn:0578-1752.2007.12.006GAO W S. Development trends and basic principles of conservation tillage[J]. Scientia Agricultura Sinica, 2007, 40(12): 2702−2708 doi: 10.3321/j.issn:0578-1752.2007.12.006 [42] Food and Agriculture Organization of the United Nations. Conservation Agriculture: Three Principles of Conservation Agriculture[EB/OL]. http://www.fao.org/ag/ca/ -