Effects of fertilizers application on soil nematode communities and oat yield in saline-alkali dryland
-
摘要: 本研究以线虫作为指示生物, 探索不同肥料长期施用对旱作盐碱瘠薄土壤微食物网的影响。依托5年定位试验, 设置单施醋糟(VR)、有机肥(OM)、菌肥(BM)、化肥(CF)及醋糟-粉煤灰配施(VRF)和有机肥-化肥配施(OCF)、不施肥(CK) 7个处理, 选取燕麦苗期、抽穗期和收获期的耕层土壤样品, 分析土壤线虫群落、土壤性状及燕麦产量。结果表明: 大部分施肥处理降低了土壤pH和容重, 显著提升了有效磷、有机质、硝态氮含量以及微生物数量(P<0.05)。除BM外, 各施肥处理的燕麦均显著增产(P<0.05), 增幅为44.5%~92.3%, 其中OM和CF显著高于其他施肥处理(P<0.05)。施肥显著提高了土壤线虫的数量和丰富度(P<0.05), OM处理线虫群落达到结构化状态, 食物网稳定, 但植物寄生线虫占比较高(36.2%); CF处理则会显著增加线虫优势属数量, 显著降低线虫多样性(P<0.05); 而两者配施的OCF一定程度上弥补了各自的不足。VRF和VR处理均显著提高了食微线虫占比(P<0.05), 降低了植物寄生性线虫占比, VRF处理自由生活线虫成熟度指数显著最高(P<0.05)。土壤有机质、有效磷和微生物是土壤线虫数量变化的主要因素, 土壤pH、EC、容重是燕麦增产的主要限制因素, 而土壤线虫数量与燕麦产量无显著相关。有机肥/化肥和醋糟/粉煤灰配施较肥料单施更利于土壤微生态环境的健康稳定。Abstract: Saline-alkali land is of great significance to the improvement of cultivated land quality, nematode is a critical fauna of the soil food web, which are morphologically and functionally diverse, widely used to indicate soil quality. However, the ecological indicator function of nematode community on oat saline-alkali land, especially the application of industrial waste on saline-alkali land, has not been reported. In this study, soil nematodes were investigated as an indicator of soil ecological environment to explore the effects of long-term application of different fertilizers on the micro-food web of saline-alkali barren soil under dry farming. Based on the 5-year experiment, seven treatments were set as: vinegar residue/ fly ash (VRF), vinegar residue (VR), organic manure (OM), bacterial manure (BM), organic manure/ chemical fertilizer (OCF), chemical fertilizer (CF) and no fertilizer (CK). Soil samples were collected from plough layer at seedling, heading and harvest stage of oat, the soil nematode community, soil traits and oat productivity under long-term application of different fertilizers were analyzed. The results showed that most fertilizers reduced soil pH and bulk density, and significantly increased available phosphorus, organic matter, nitrate nitrogen and microbial quantity (bacterial, fungi and actinomycete). With the exception of BM, the yield of oat increased significantly by 44.5%-92.3% under other fertilizer treatments, OM and CF had the significantly highest oat yield (P<0.05). The total number of soil nematodes were significantly increased by fertilization, OM was the highest at seedling and heading stage, and VR was the highest at maturity stage (P<0.05). The enrichment index (EI) of each treatment and the structure index (SI) of most treatments were lower than 50, indicating that the soil nutrient was poor, and soil food web was in a stress state or in a degraded state in this experimental field. While the nematode community under OM application reached a structured state at harvesting (SI>50), the food web was relatively stable, but the proportion of plant-parasitic nematodes was higher (36.2%). CF significantly increased the number of dominant species, and the nematode diversity was the lowest (P<0.05). The combined application of OCF made up for their shortcomings to some extent; VRF and VR significantly increased the proportion of microbial-feeding nematodes and decreased the proportion of plant-feeding nematodes. The Wasilewska index (WI) under VRF and VR treatments were higher than CK during 3 growth periods, the Maturity index (MI) of free-living nematodes under VRF treatment was always the highest (P<0.05), which indicated that the organic carbon mineralization was dominated by microbial-feeding nematodes under VRF and VR, and the food web was mature and stable with less disturbance under VRF treatment. Soil organic matter, available phosphorus and microorganisms were the main factors for the number of soil nematodes. Soil pH, EC and bulk density were the main limiting factors for oat yield, but there was no significant correlation between the number of nematodes and oat yield, but β-glucan content was negatively correlated with the number of plant parasitic nematodes (r=−0.52*). The combined application of organic manure/ chemical fertilizer and vinegar residue/ fly ash were more beneficial to the health and stability of soil micro-ecological environment.
-
图 1 长期不同施肥处理对燕麦不同生育时期土壤线虫总数的影响
VR: 单施醋糟; OM: 单施有机肥; BM: 单施菌肥; VRF: 醋糟-粉煤灰配施; OCF: 有机肥-化肥配施; CF: 单施化肥; CK: 不施肥。不同小写字母表示同一生育时期不同处理间差异显著(P<0.05)。P: 生育时期; F: 施肥; P×F: 生育时期×施肥; *: P<0.05。VR: vinegar residue application; OM: organic manure application; BM: bacterial manure application; VRF: combined application of vinegar residue and fly ash; OCF: combined application of organic and chemical fertilizer; CF: chemical fertilizer; CK: no fertilization. Different lowercase letters indicate significant differences among treatments in the same growth stage (P<0.05). P: growth stage; F: fertilization; P×F: growth stage × fertilization; *: P<0.05.
Figure 1. Effects of different long term fertilization treatments on the total number of soil nematodes at different growth periods of oat
图 3 长期不同肥料处理下土壤线虫区系分析图
VR: 单施醋糟; OM: 单施有机肥; BM: 单施菌肥; VRF: 醋糟-粉煤灰配施; OCF: 有机肥-化肥配施; CF: 单施化肥; CK: 不施肥。VR: vinegar residue application; OM: organic manure application; BM: bacterial manure application; VRF: combined application of vinegar residue and fly ash; OCF: combined application of organic and chemical fertilizer; CF: chemical fertilizer; CK: no fertilization. SI: structure index; El: enrichment index.
Figure 3. Soil food web based on the nematode faunal analysis under long-term different fertilization treatments
图 4 土壤线虫群落特征与土壤性状、燕麦产量及构成因素的关系
*、**和***分别代表在P<0.05、P<0.01和P<0.001水平显著相关。Ba、Fu、Pp和Po分别代表食细菌线虫、食真菌线虫、植物寄生线虫、杂食/捕食性线虫相对丰度; TN和Fung、Bact、Acti分别代表线虫总数和真菌、细菌、放线菌数量; EI、Gs、Egw、1000gw、GY、β-gc分别代表燕麦穗长、穗粒数、穗粒重、千粒重、产量、β-葡聚糖含量; EC、BD、SAP、SAK、SOM分别代表壤电导率、容重及有效磷、速效钾、有机质含量。*, ** and *** represent significant correlation at P<0.05, P<0.01, and P<0.001 levels, respectively. Ba, Fu, Pp, Po represent relative abundances of bacterivores, fungivores, plant-parasites, predators-omnivores nematodes, respectively. TN, represent total number of nematodes. Fung, Bact, Acti represent amounts of fungi, bacteria, actinomycetes, respectively. EI, Gs, Egw, 1000gw, GY, β-gc represent oat ear length, grains per spike, ear grain weight, thousand grain weight, grain yield, β-glucan content, respectively. EC, BD, SAP, SAK, SOM represent soil electircal conductivity, bulk density, available phosphorus content, available potassium content, organic matter content, respectively.
Figure 4. Correlation among soil nematodes community characteristics, soil properties and oat yield and yield components
表 1 5年定位试验后不同施肥处理的土壤性状
Table 1. Soil physical-chemical properties under different fertilization treatments after 5-year fixed position experiment
处理
TreatmentpH 电导度
Electrical
conductivity
(μS·cm−1)容重
Bulk density
(g·cm−3)有效磷
Available
phosphorus
(mg·kg−1)速效钾
Available
potassium
(mg·kg−1)有机质
Organic
matter
(g·kg−1)硝态氮
Nitrate
nitrogen
(mg·kg−1)铵态氮
Ammonium
nitrogen
(mg·kg−1)细菌
Bacteria
(×108 cfu·g−1)真菌
Fungi
(×104 cfu·g−1)放线菌
Actinomycete
(×107 cfu·g−1)VR 8.46b 101.83c 1.20c 9.00bc 96.03b 7.79b 31.83b 16.38a 7.43b 9.03ab 11.50b OM 8.42b 102.13c 1.21c 9.50ab 100.87a 8.57a 33.42a 13.08b 10.27a 10.70a 10.25b BM 8.75a 163.10a 1.39a 7.98c 96.80b 7.00d 34.38a 12.80b 7.80b 7.03b 12.75b VRF 8.49b 111.93c 1.24c 8.52bc 83.03c 7.17d 34.38a 14.29ab 8.17b 10.63a 14.75a OCF 8.48b 100.33c 1.29b 8.84bc 95.33b 7.57c 34.44a 13.26b 7.60b 9.93a 10.00b CF 8.46b 137.07b 1.32b 10.39a 97.84b 7.47c 32.19b 13.78b 7.13b 6.77b 9.50b CK 8.82a 145.67b 1.42a 7.96c 95.37b 6.43e 30.30c 12.45b 3.77c 5.03c 6.00c VR: 单施醋糟; OM: 单施有机肥; BM: 单施菌肥; VRF: 醋糟-粉煤灰配施; OCF: 有机肥-化肥配施; CF: 单施化肥; CK: 不施肥。不同小写字母表示不同处理间差异显著(P<0.05)。VR: vinegar residue application; OM: organic manure application; BM: bacterial manure application; VRF: combined application of vinegar residue and fly ash; OCF: combined application of organic and chemical fertilizer; CF: chemical fertilizer; CK: no fertilization. Different lowercase letters indicate significant differences among different treatments (P <0.05). 表 2 长期不同施肥处理下燕麦不同生育时期土壤线虫生态指数
Table 2. Soil nematodes ecological indices at different oats growth periods under long-term different fertilization treatments
生育期
Growth period处理
Treatment丰富度
Species richness (SR)均匀度
Evenness (J)多样性
Shannon-Wiener index (H')瓦斯乐斯卡指数
Wasilewska index (WI)自由生活线虫成熟指数
Maturity index (MI)苗期
SeedlingVRF 2.42d 0.39b 1.19c 1.90b 1.77a VR 2.61c 0.29c 0.89d 3.07a 0.46d OM 3.50a 0.37b 1.15c 1.73c 0.60c BM 2.38d 0.43a 1.32b 1.84bc 0.69b OCF 2.34d 0.27c 0.82e 2.00b 0.53cd CF 3.01b 0.38b 1.17c 3.02a 0.60c CK 2.10e 0.45a 1.39a 1.92b 0.51cd 抽穗期
HeadingVRF 3.16c 0.28ab 0.99ab 5.82b 2.08a VR 3.22b 0.28ab 0.98ab 6.57a 0.08d OM 3.60a 0.29ab 1.03a 2.94e 0.23c BM 2.91c 0.27bc 0.94ab 3.98d 0.04d OCF 3.23b 0.30a 1.05a 5.06c 0.52b CF 3.50a 0.22d 0.79c 4.03d 0.54b CK 2.20d 0.24cd 0.86bc 3.02e 0.09d 收获期
HarvestingVRF 3.44b 0.34a 1.16a 8.28a 2.51a VR 3.23c 0.30bc 1.04ab 5.64b 0.97b OM 3.27bc 0.32ab 1.12a 1.49e 0.86bc BM 3.98a 0.32ab 1.12a 1.58e 0.76c OCF 2.78d 0.35a 1.22a 4.77c 0.94b CF 2.49e 0.23d 0.80b 3.44d 0.83bc CK 1.54f 0.28c 0.95ab 4.61c 0.88bc 效应
EffectP * * * * * F * ns ns * * P×F * ns ns * ns VR: 单施醋糟; OM: 单施有机肥; BM: 单施菌肥; VRF: 醋糟-粉煤灰配施; OCF: 有机肥-化肥配施; CF: 单施化肥; CK: 不施肥。同列不同小写字母表示同一时期各处理间差异显著(P<0.05); P: 生育时期; F: 施肥; P×F: 生育时期×施肥; *: P<0.05; ns: P>0.05。VR: vinegar residue application; OM: organic manure application; BM: bacterial manure application; VRF: combined application of vinegar residue and fly ash; OCF: combined application of organic and chemical fertilizer; CF: chemical fertilizer; CK: no fertilization. Different lowercase letters indicate significant differences among treatments in the same growth stage (P<0.05). P: growth stage; F: fertilization; P×F: growth stage × fertilization; *: P<0.05; ns: P>0.05. 表 3 长期不同肥料处理对燕麦产量及构成和β-葡聚糖含量的影响
Table 3. Effect of long-term different fertilization treatments on yield, yield components and β-glucan content of oats
处理
Treatment穗长
Ear length
(cm)穗粒数
Grains per
spike穗粒重
Ear grain weight
(g)千粒重
1000-grain
weight (g)实际产量
Grain yield
(kg·hm−2)β-葡聚糖含量
Beta glucan content
(%)VRF 12.73±0.32b 27.83±2.36b 0.60±0.03c 21.37±0.51d 1445.98±8.51b 8.74±1.12ab VR 15.40±0.75a 33.33±1.76a 0.80±0.05b 24.57±0.76bc 1380.03±13.21bc 7.90±0.21b OM 13.63±0.81b 32.00±3.91a 0.97±0.05a 30.90±0.85a 1763.88±5.38a 8.51±0.76ab BM 8.23±0.40d 11.33±1.26d 0.19±0.05d 20.80±0.80d 733.20±2.59e 3.86±0.38c OCF 10.63±0.78c 23.17±1.76c 0.58±0.03c 23.13±0.12c 1324.88±2.73c 8.28±0.07b CF 11.53±0.45c 25.83±1.61bc 0.77±0.02b 25.60±1.61b 1716.10±6.57a 9.56±0.40a CK 11.00±0.89c 22.33±1.04c 0.57±0.03c 20.90±0.75d 917.15±9.70d 8.32±0.57b VR: 单施醋糟; OM: 单施有机肥; BM: 单施菌肥; VRF: 醋糟-粉煤灰配施; OCF: 有机肥-化肥配施; CF: 单施化肥; CK: 不施肥。同列不同小写字母表示不同处理间差异显著(P<0.05)。VR: vinegar residue application; OM: organic manure application; BM: bacterial manure application; VRF: combined application of vinegar residue and fly ash; OCF: combined application of organic and chemical fertilizer; CF: chemical fertilizer; CK: no fertilization. Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05). -
[1] 王亚南, 乔月静, 范雅琦, 等. 燕麦与不同作物间作对土壤线虫群落结构及作物产量的影响[J]. 中国生态农业学报(中英文), 2023, 31(4): 505−515WANG Y N, QIAO Y J, FAN Y Q, et al. Effects of intercropping oat with different crops on the community structure of soil nematodes and crop yields[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 505−515 [2] 杨迎月. 施肥对碱化土壤燕麦生长及种子产量的影响[D]. 银川: 宁夏大学, 2023YANG Y Y. Effects of fertilization on oat growth and seed yield in alkaline soil[D]. Yinchuan: Ningxia University, 2023 [3] 高阳, 赵力兴, 朱铁霞, 等, 施氮量对科尔沁沙地燕麦生物量及物质分配规律的影响[J]. 草地学报, 2018, 26(5): 1168–1172GAO Y, ZHAO L X, ZHU T X, et al. Effects of nitrogen application rate on Avena sativa biomass and substance distribution in Horgin Sandy Land[J]. Acta Agrestia Sinica, 2018, 26(5): 1168–1172 [4] 侯龙鱼, 朱泽义, 杨杰, 等, 我国饲草用燕麦现状、问题和潜力[J]. 西南民族大学学报(自然科学版), 2019, 45(3): 248–253HOU L Y, ZHU Z Y, YANG J, et al. Current status, problems and potentials of forage oat in China[J]. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(3): 248–253 [5] 崔耀明, 董晓芳, 佟建明, 等. 山西老陈醋醋糟营养成分分析[J]. 饲料工业, 2015, 36(1): 24−29CUI Y M, DONG X F, TONG J M, et al. Analysis on the nutrient composition of vinegar residues in Shanxi Province[J]. Feed Industry, 2015, 36(1): 24−29 [6] 李博琦, 谢贤, 吕晋芳, 等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(5): 153−160LI B Q, XIE X, LYU J F, et al. Progress and prospect of research on comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 153−160 [7] 张亚蕾. 醋糟-粉煤灰基质对青稞生长状况及土壤理化性状的影响[J]. 现代农业科技, 2019(11): 19,21ZHANG Y L. Effects of vinegar residue-fly ash substrate on the growth of highland barley and soil physical and chemical properties[J]. Modern Agricultural Science and Technology, 2019(11): 19,21 [8] 姚淑姣. 醋糟和粉煤灰对苏打盐碱土的改良效果研究[D]. 太谷: 山西农业大学, 2016YAO S J. Effects of vinegar lees and fly ash on soda salinized soil[D]. Taigu: Shanxi Agricultural University, 2016 [9] 范娜, 白文斌, 王海燕, 等. 醋糟、粉煤灰对盐渍地高粱生长及土壤性状影响的研究[J]. 农业资源与环境学报, 2017, 34(6): 531−535FAN N, BAI W B, WANG H Y, et al. Effects of vinegar bad and flyash on the growth of Sorghum and the improvement of saline soils[J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 531−535 [10] LAZCANO C, DENISTON-SHEETS H M, STUBLER C, et al. Soil management induced shifts in nematode food webs within a Mediterranean vineyard in the central coast of California (USA)[J]. Applied Soil Ecology, 2021, 157: 103756 doi: 10.1016/j.apsoil.2020.103756 [11] TU C W, LU Q Q, ZHANG Y, et al. The soil nematode community indicates the soil ecological restoration of the Pinus massoniana plantation gap replanted with Cinnamomum longipaniculatum[J]. Ecological Indicators, 2022, 136: 108678 doi: 10.1016/j.ecolind.2022.108678 [12] ZHANG K L, SCHUMACHER L, MALTAIS-LANDRY G, et al. Integrating perennial bahiagrass into the conventional rotation of cotton and peanut enhances interactions between microbial and nematode communities[J]. Applied Soil Ecology, 2022, 170: 104254 doi: 10.1016/j.apsoil.2021.104254 [13] PAN F J, YAN R R, ZHAO J L, et al. Effects of grazing intensity on soil nematode community structure and function in different soil layers in a meadow steppe[J]. Plant and Soil, 2022, 471(1): 33−46 [14] 乔月静, 刘琪, 曾昭海, 等. 轮作方式对甘薯根际土壤线虫群落结构及甘薯产量的影响[J]. 中国生态农业学报(中英文),9, 27(1): 20–29 QIAO Y J, LIU Q, ZENG Z H, et al. Effect of rotation on nematode community diversity in rhizosphere soils and yield of sweet potato[J]. Chinese Journal of Eco-Agriculture, 2019, 27(1): 20–29 [15] 姚涛. 燕麦压青还田对低产田土壤性状的影响[D]. 太谷: 山西农业大学, 2022YAO T. Effects of oats as green manure returning on soil properties in low-yield fields[D]. Taigu: Shanxi Agricultural University, 2022 [16] CHEN Y F, XIA X G, HU C, et al. Effects of long-term straw incorporation on nematode community composition and metabolic footprint in a rice-wheat cropping system[J]. Journal of Integrative Agriculture, 2021, 20(8): 2265−2276 doi: 10.1016/S2095-3119(20)63435-9 [17] 赵一, 杨贝贝, 朱新萍, 等. 氮肥减施与配施有机肥对冬小麦土壤线虫群落结构的影响[J]. 应用生态学报, 2021, 32(4): 1433−1440ZHAO Y, YANG B B, ZHU X P, et al. Effects of reduction of nitrogen fertilizer application and combined organic fertilizer on soil nematode community in winter wheat field[J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1433−1440 [18] LI J M, WANG D C, FAN W, et al. Comparative effects of different organic materials on nematode community in continuous soybean monoculture soil[J]. Applied Soil Ecology, 2018, 125: 12−17 doi: 10.1016/j.apsoil.2017.12.013 [19] 李其胜, 张顺涛, 赵贺, 等. 化肥减量配施有机物料对油菜地土壤线虫群落结构的影响[J]. 生态学杂志, 2021, 40(12): 3970−3981LI Q S, ZHANG S T, ZHAO H, et al. Effects of reduced chemical fertilizer application combined with organic materials on soil nematode community structure in rape field[J]. Chinese Journal of Ecology, 2021, 40(12): 3970−3981 [20] 尹文英. 中国土壤动物检索图鉴[M]. 北京: 科学出版社, 1998YIN W Y. Pictorical Keys to Soil Animals of China[M]. Beijing: Science Press, 1998 [21] YEATES G W. Nematodes as soil indicators: functional and biodiversity aspects[J]. Biology and Fertility of Soils, 2003, 37(4): 199−210 doi: 10.1007/s00374-003-0586-5 [22] BONGERS T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1): 14−19 doi: 10.1007/BF00324627 [23] BONGERS T, VAN DER MEULEN H, KORTHALS G. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions[J]. Applied Soil Ecology, 1997, 6(2): 195−199 doi: 10.1016/S0929-1393(96)00136-9 [24] FERRIS H, BONGERS T, DE GOEDE R G M. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept[J]. Applied Soil Ecology, 2001, 18(1): 13−29 doi: 10.1016/S0929-1393(01)00152-4 [25] LIU T, CHEN X Y, HU F, et al. Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities[J]. Agriculture, Ecosystems & Environment, 2016, 232: 199−207 [26] GRABAU Z J, VETSCH J A, CHEN S Y. Effects of fertilizer, nematicide, and tillage on plant-parasitic nematodes and yield in corn and soybean[J]. Agronomy Journal, 2017, 109(4): 1651−1662 doi: 10.2134/agronj2016.09.0548 [27] 刘婷, 叶成龙, 陈小云, 等. 不同有机肥源及其与化肥配施对稻田土壤线虫群落结构的影响[J]. 应用生态学报, 2013, 24(12): 3508−3516LIU T, YE C L, CHEN X Y, et al. Effects of different organic manure sources and their combinations with chemical fertilization on soil nematode community structure in a paddy field of East China[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3508−3516 [28] 杨盼盼, 黄菁华, 张欣玥, 等. 长期施肥对渭北旱塬麦田土壤线虫群落特征的影响[J]. 干旱地区农业研究, 2022, 40(5): 242−251 doi: 10.7606/j.issn.1000-7601.2022.05.26YANG P P, HUANG J H, ZHANG X Y, et al. Effects of long-term fertilization on soil nematode community of wheat field in Weibei dryland, China[J]. Agricultural Research in the Arid Areas, 2022, 40(5): 242−251 doi: 10.7606/j.issn.1000-7601.2022.05.26 [29] ZHANG Z Y, ZHANG X K, MAHAMOOD M, et al. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates[J]. Scientific Reports, 2016, 6: 31118 doi: 10.1038/srep31118 [30] 苏兰茜, 白亭玉, 鱼欢, 等. 有机无机肥配施对菠萝蜜种植土壤线虫群落的影响[J]. 土壤学报, 2020, 57(6): 1504−1513SU L X, BAI T Y, YU H, et al. Effects of inorganic fertilizer combined with organic manure on soil nematode community under jackfruit trees[J]. Acta Pedologica Sinica, 2020, 57(6): 1504−1513 [31] TRIVEDI P, ROCHESTER I J, TRIVEDI C, et al. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities[J]. Soil Biology and Biochemistry, 2015, 91: 169−181 doi: 10.1016/j.soilbio.2015.08.034 [32] 王笃超, 吴景贵, 李建明. 不同有机物料对连作大豆根际土壤线虫的影响[J]. 土壤学报, 2018, 55(2): 490−502WANG D C, WU J G, LI J M. Effect of organic manure on nematodes in rhizosphere soil of soybean under continuous cropping[J]. Acta Pedologica Sinica, 2018, 55(2): 490−502 [33] ZHANG S X, CUI S Y, MCLAUGHLIN N B, et al. Tillage effects outweigh seasonal effects on soil nematode community structure[J]. Soil and Tillage Research, 2019, 192: 233−239 doi: 10.1016/j.still.2019.05.017 [34] 田波, 赵顺华, 张俊红, 等. 醋糟资源化利用研究进展[J]. 中国酿造, 2017, 36(3): 1−4 doi: 10.11882/j.issn.0254-5071.2017.03.001TIAN B, ZHAO S H, ZHANG J H, et al. Research advance on utilization of vinegar residue[J]. China Brewing, 2017, 36(3): 1−4 doi: 10.11882/j.issn.0254-5071.2017.03.001 [35] 李琴, 杨岳斌, 刘君, 等. 我国粉煤灰利用现状及展望[J]. 能源研究与管理, 2022(1): 29−34LI Q, YANG Y B, LIU J, et al. Present status and prospect of fly ash utilization in China[J]. Energy Research and Management, 2022(1): 29−34 [36] 张晓珂, 梁文举, 李琪. 我国土壤线虫生态学研究进展和展望[J]. 生物多样性, 2018, 26(10): 1060−1073 doi: 10.17520/biods.2018082ZHANG X K, LIANG W J, LI Q. Recent progress and future directions of soil nematode ecology in China[J]. Biodiversity Science, 2018, 26(10): 1060−1073 doi: 10.17520/biods.2018082 [37] JIANG Y J, LIU M Q, ZHANG J B, et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level[J]. The ISME Journal, 2017, 11(12): 2705−2717 [38] WANG X T, XIAO S, YANG X L, et al. Dominant plant species influence nematode richness by moderating understory diversity and microbial assemblages[J]. Soil Biology and Biochemistry, 2019, 137: 107566 doi: 10.1016/j.soilbio.2019.107566 [39] 耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征[J]. 应用生态学报, 2020, 31(4): 1365−1377GENG D Z, HUANG J H, HUO N, et al. Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslands with different cultivation years in semi-arid region of Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1365−1377 -