Effects of tillage measures and organic manure on soil heavy metal pollution in dryland wheat fields
-
摘要: 农田土壤重金属污染是当前突出的环境污染问题之一。为揭示不同耕作措施与长期施用有机肥对土壤重金属积累及生态效应的影响, 本研究以始于2007年的旱地小麦长期定位耕作与施肥试验为基础, 分析了深翻+化肥(T)、深翻+鸡粪+化肥(TM)、免耕+化肥(NT)、免耕+鸡粪+化肥(NTM) 4种处理对旱地小麦0~20 cm土壤pH、电导率(EC)、有机质和全氮含量以及铅(Pb)、镉(Cd)、砷(As)、汞(Hg)、铬(Cr)、铜(Cu)、锌(Zn)和镍(Ni)等重金属含量的影响, 并通过地累积指数法和潜在生态风险指数法对土壤重金属污染状况及生态风险进行评价。结果表明: 与T处理相比, TM、NT和NTM处理土壤pH显著降低1.10%~2.56%, 电导率提高6.19%~57.08%; NTM处理下土壤有机质含量较T处理显著提高33.22%。施鸡粪显著影响土壤重金属的含量, 其中TM和NTM处理土壤总Hg含量较T处理分别显著提高123.60%和150.56%, 有效态Cu、Zn和Cd含量分别显著增加16.89%~23.48%、219.04%~520.99%和2.90%~20.29%。耕作方式同样显著影响各土壤重金属含量, NTM处理下总Hg、总Zn、有效Cu、有效Zn、有效Cd含量较TM处理分别显著提高12.06%、8.11%、5.64%、94.65%和16.90%, 总Pb、有效Pb和总Cr含量分别显著降低63.74%、33.33%和3.14%。4个处理Hg的潜在生态风险指数最高, 表现为T(32.66)<NT(41.45)<TM(72.36)<NTM(81.09), 其他重金属为轻微级别; 综合潜在生态风险污染指数表现为T(79.05)<NT(82.33)<TM(115.27)<NTM(120.00), 为轻度风险级别。综上, 长期免耕和鸡粪施用能够显著降低土壤pH, 增加电导率、全氮和有机质含量, 并提高Cu、Zn和Cd的有效性; 其中, 鸡粪处理中Hg的潜在生态风险指数为中等-强级别, 其他重金属为轻微级别, 综合潜在生态风险污染指数为轻度风险级别, 因此在农业生产过程中应加强有机肥的安全施用技术。Abstract: Heavy metal pollution in agricultural soils has become a serious environmental problem. The aim of this study was to investigate the effects of different tillage measures and organic fertilizers on the accumulation and ecological efficiency of heavy metals in dryland wheat fields. A long-term tillage and fertilizer experiment (since 2007) with wheat cultivation was conducted. Four treatments were applied: deep tillage + chemical fertilizer (T), deep tillage + chicken manure + chemical fertilizer (TM), no tillage + chemical fertilizer (NT), and no tillage + chicken manure + chemical fertilizer (NTM). In this study, the effects of these treatments on the physicochemical properties of wheat soil at 0−20 cm depth (pH, EC, organic matter content, and total nitrogen) as well as heavy metal content (Pb, Cd, As, Hg, Cr, Cu, Zn, and Ni) were investigated. The heavy metal geoaccumulation index value and the potential ecological risk index were used to evaluate the heavy metal pollution and ecological risk. The results showed that TM, NT and NTM treatments significantly decreased pH by 1.10% to 2.56%, and increased EC by 6.19% to 57.08% compared to T; organic matter content increased by 33.22% in NTM treatment compared to T. Application of chicken manure significantly affects the heavy metal content of soil. The total Hg content of soil increased significantly by 123.60% and 150.56% in the TM and NTM treatments compared to T treatment, and the available Cu, Zn and Cd content increased significantly by 16.89% to 23.48%, 219.04%to 520.99% and 2.90%to 20.29%, respectively. The tillage method also had a significant effect on the heavy metal content of each treatment. Compared to the treatment TM, the contents of total Hg, total Zn, available Cu, available Zn and available Cd showed significant increase by 12.06%, 8.11%, 5.64%, 94.65% and 16.90% under NTM treatment, while the contents of total Pb, effective Pb and total Cr were significantly reduced by 63.74%, 33.33% and 3.14%, respectively. The contents of Hg showed the highest potential ecological risk index of all the treatments expressed as T (32.66) < NT (41.45) < TM (72.36) < NTM (81.09), and other heavy metals were at a low level with the comprehensive potential ecological risk pollution index expressed as T (79.05) < NT (82.33) < TM (115.27) < NTM (120.00). In summary, long-term no-tillage and chicken manure application significantly decreased pH, increased EC, organic matter and total nitrogen content, and increased Cu, Zn and Cd availability. The individual and potential ecological risk indices for Hg were at slight-mid level when treated with chicken manure, and the other heavy metals were at a slight level. In addition, the composite and potential ecological risk indices were also at a slight level. Therefore, there is a clear need to strengthen the safe application technology for organic fertilizers.
-
Key words:
- Tillage /
- Soil properties /
- Heavy metal /
- Ecological risk evaluation /
-
-
表 1 基于地累积指数(Iego)的农田土壤重金属污染程度分级[21]
Table 1. Heavy metal pollution classification of farmland soil based on the geo-accumulation index (Iego)
地累积指数
Geo-accumulation index分级
Classification污染程度
Pollution level5 <Iego≤ 10 6 极严重 Extremely serious 4 <Iego≤ 5 5 强—极严重
Strong-extremely serious3 < Iego≤ 4 4 强 Strong 2 <Iego≤ 3 3 中等-强 Moderate-strong 1<Iego≤2 2 中等 Moderate 0<Iego≤ 1 1 轻度-中等 Light-moderate Iego≦0 0 无污染 No pollution 表 2 基于潜在生态危害系数和危害指数的土壤重金属污染程度分级
Table 2. The relationship of pollution levels with the potential ecological hazard quotients and indexes
Eir与污染程度 Eir and pollution levels RIs与污染程度 RIs and pollution levels Eir< 40 轻微 Light RIs<150 低度 Underdegree 40 ≤Eir< 80 中等 Moderate 150≤RIs< 300 中度 Moderate 80 ≤Eir< 160 强 Strong 300≤RIs<600 重度 Severe 160 ≤Eir< 320 很强 Stronger RIs≥600 严重 Serious Eir≥320 极强 Fortissimo 表 3 不同耕作和施肥处理下0~20 cm土壤理化性状
Table 3. The physicochemical properties of soil (0−20 cm) under different tillage and fertilization treatments
处理 Treatment pH 电导率 Electric conductivity (mS∙m−1) 全氮 Total Nitrogen (%) 有机质 Organic matter (g∙kg−1) T 8.453±0.006a 167.00±2.65d 0.084±0.000a 20.47±1.74b TM 8.360±0.010b 202.33±2.08b 0.108±0.004a 21.80±1.37ab NT 8.353±0.015b 177.33±5.51c 0.119±0.037a 25.27±7.17ab NTM 8.237±0.006c 262.33±1.15a 0.125±0.033a 27.27±1.15a 小写字母表示不同处理在P<0.05水平差异显著。Different lowercase letters indicate significant differences among treatments at P<0.05 level. 表 4 不同耕作和施肥处理下0~20 cm土壤重金属总量
Table 4. The total amount of heavy metals in soil (0−20 cm) under different tillage and fertilization treatments
(mg·kg−1) 处理 Treatment Pb Cd As Hg Cr Cu Zn Ni T 38.33±0.58a 0.09±0.006a 12.90±0.06a 0.089±0.001d 107.67±2.89a 27.00±1.00b 71.67±2.31b 58.67±1.15b TM 26.67±2.08b 0.08±0.00a 12.93±0.09a 0.199±0.002b 95.67±0.58c 29.00±1.00ab 74.00±2.00b 63.33±1.15a NT 18.00±1.00c 0.08±0.00a 12.93±0.09a 0.114±0.001c 99.00±1.00b 28.67±1.15ab 73.33±0.58b 62.33±1.53a NTM 9.67±0.58d 0.08±0.006a 12.67±0.15a 0.223±0.001a 92.67±1.53d 30.00±1.00a 80.00±1.00a 61.33±1.53a pH>7.5 筛选值 Screening value 170 0.6 25 3.4 250 100 300 190 管制值 Control value 1000 4.0 100 6.0 1300 − − − 同列小写字母表示不同处理在P<0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among treatments at P<0.05 level. 表 5 不同处理0~20 cm土壤重金属有效态含量
Table 5. The available heavy metals contents of soil (0−20 cm) under different tillage and fertilization treatments (mg·kg−1)
(mg·kg−1) 处理 Treatment Cu Zn Pb Cd T 1.563±0.006c 0.767±0.012c 0.0018±0.0003b 0.0138±0.0002d TM 1.827±0.006b 2.447±0.188b 0.0040±0.0001a 0.0142±0.0002c NT 1.450±0.027c 0.807±0.015c 0.0014±0.0014b 0.0148±0.0002b NTM 1.930±0.012a 4.763±0.160a 0.0012±0.0002c 0.0166±0.0001a 同列小写字母表示不同处理在P<0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among treatments at P<0.05 level. 表 6 土壤理化性状与重金属有效态含量相关性分析
Table 6. The relationship between the soil physicochemical properties and available heavy metals contents
Cu Zn Pb Cd pH −0.67 −0.88* 0.26 −0.90* EC 0.87 0.99** −0.16 0.86 TN 0.37 0.61 −0.23 0.76 OM 0.30 0.63 −0.57 0.93* Cu 1.00 Zn 0.92* 1.00 Pb 0.30 −0.06 1.00 Cd 0.49 0.79 −0.61 1.00 EC: 电导率; TN: 全氮; OM: 有机质; *: P<0.05; **: P<0.01。EC: electrical conductivity; TN: total nitrogen; OM: organic matter. 表 7 不同耕作和施肥处理下0~20 cm土壤重金属地累积指数
Table 7. Heavy metal geo-accumulation index value of soil (0−20 cm) under different tillage and fertilization treatments
重金属
Heavy metalT TM NT NTM 指数值
Index value等级
Class指数值
Index value等级
Class指数值
Index value等级
Class指数值
Index value等级
ClassPb 0.19 1 −0.33 0 −0.90 0 −1.79 0 Cd −1.83 0 −2.04 0 −2.04 0 −2.04 0 As −0.37 0 −0.36 0 −0.36 0 −0.39 0 Hg −0.89 0 0.27 1 −0.53 0 0.43 1 Cr −0.36 0 −0.53 0 −0.48 0 −0.57 0 Cu −0.53 0 −0.43 0 −0.44 0 −0.38 0 Zn −0.41 0 −0.36 0 −0.38 0 −0.25 0 Ni −0.54 0 −0.43 0 −0.46 0 −0.48 0 表 8 不同耕作与施肥处理下土壤重金属污染指数比较
Table 8. The comparison of soil heavy metal pollution index among different tillage and fertilization treatments
处理
Treatment潜在生态风险指数 Potential ecological risk index 综合潜在生态风险指数
Comprehensively potential ecological risk indexPb Cd As Hg Cr Cu Zn Ni T 8.57 12.68 11.62 32.36 2.34 5.19 1.13 5.15 79.05 TM 5.97 10.91 11.65 72.36 2.08 5.58 1.17 5.56 115.27 NT 4.03 10.91 11.65 41.45 2.15 5.51 1.15 5.47 82.33 NTM 2.16 10.91 11.41 81.09 2.01 5.77 1.26 5.38 120.00 -
[1] 杨军, 陈同斌, 雷梅, 等. 北京市再生水灌溉对土壤、农作物的重金属污染风险[J]. 自然资源学报, 2011, 26(2): 209−217YANG J, CHEN T B, LEI M, et al. Assessing the effect of irrigation with reclaimed water: the soil and crop pollution risk of heavy metals[J]. Journal of Natural Resources, 2011, 26(2): 209−217 [2] 汤文光, 唐海明, 罗尊长, 等. 不同种植模式对稻田土壤重金属含量及晚稻稻米品质的影响[J]. 作物学报, 2011, 37(8): 1457−1464 doi: 10.3724/SP.J.1006.2011.01457TANG W G, TANG H M, LUO Z C, et al. Impacts of winter planting patterns on soil heavy metal content and grain quality in late rice in double cropping rice area[J]. Acta Agronomica Sinica, 2011, 37(8): 1457−1464 doi: 10.3724/SP.J.1006.2011.01457 [3] 王昌全, 代天飞, 李冰, 等. 稻麦轮作下水稻土重金属形态特征及其生物有效性[J]. 生态学报, 2007, 27(3): 889−897WANG C Q, DAI T F, LI B, et al. The speciation and bioavailability of heavy metals in paddy soils under the rice-wheat cultivation rotation[J]. Acta Ecologica Sinica, 2007, 27(3): 889−897 [4] 周利强, 尹斌, 吴龙华, 等. 有机物料对污染土壤上水稻重金属吸收的调控效应[J]. 土壤, 2013, 45(2): 1227−1232ZHOU L Q, YIN B, WU L H, et al. Effects of different organic amendments on uptake of heavy metals in rice from contaminated soil[J]. Soils, 2013, 45(2): 1227−1232 [5] 常同举, 崔孝强, 阮震, 等. 长期不同耕作方式对紫色水稻土重金属含量及有效性的影响[J]. 环境科学, 2014, 35(6): 2381−2391CHANG T J, CUI X Q, RUAN Z, et al. Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil[J]. Environmental Science, 2014, 35(6): 2381−2391 [6] 高明, 张磊, 魏朝富, 等. 稻田长期垄作免耕对水稻产量及土壤肥力的影响研究[J]. 植物营养与肥料学报, 2004, 10(4): 343−348,354GAO M, ZHANG L, WEI C F, et al. Study of the changes of the rice yield and soil fertility on the paddy field under long-term no-tillage and ridge culture conditions[J]. Plant Nutrition and Fertilizing Science, 2004, 10(4): 343−348,354 [7] 陈娟, 马忠明, 刘莉莉, 等. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响[J]. 植物营养与肥料学报, 2016, 22(3): 667−675CHEN J, MA Z M, LIU L L, et al. Effect of tillage system on soil organic carbon, microbial biomass and enzyme activities[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 667−675 [8] 崔孝强, 阮震, 刘丹, 等. 耕作方式对稻-油轮作系统土壤理化性质及重金属有效性的影响[J]. 水土保持学报, 2012, 26(5): 73−77CUI X Q, RUAN Z, LIU D, et al. Effects of tillage methods on physicochemical properties and heavy metal availability of soils in rice-rape rotation systems[J]. Journal of Soil and Water Conservation, 2012, 26(5): 73−77 [9] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261−272CHEN W P, YANG Y, XIE T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261−272 [10] 姚佳璇, 俄胜哲, 袁金华, 等. 施肥对灌漠土作物产量、土壤肥力与重金属含量的影响[J]. 中国生态农业学报(中英文), 2020, 28(6): 813−825YAO J X, E S Z, YUAN J H, et al. Effects of different organic matters on crop yields, soil quality and heavy metal content in irrigated desert soil[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 813−825 [11] 黄绍文, 唐继伟, 李春花. 我国商品有机肥和有机废弃物中重金属、养分和盐分状况[J]. 植物营养与肥料学报, 2017, 23(1): 162−173HUANG S W, TANG J W, LI C H. Status of heavy metals, nutrients, and total salts in commercial organic fertilizers and organic wastes in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 162−173 [12] NASIRU A, ISMAIL N, IBRAHIM M H. Vermicomposting: tool for sustainable ruminant manure management[J]. Journal of Waste Management, 2013, 2013: 1−7 [13] 李可, 谢厦, 孙彤, 等. 鸡粪有机肥对设施菜地土壤重金属和微生物群落结构的影响[J]. 生态学报, 2021, 41(12): 4827−4839LI K, XIE S, SUN T, et al. Effects of organic fertilizers from chicken manure on soil heavy metals and microbial community structure in facility vegetable soil[J]. Acta Ecologica Sinica, 2021, 41(12): 4827−4839 [14] 湛润生, 胡冬梅, 甄莉娜, 等. 山西省天镇县设施菜地土壤重金属污染评价及其源解析[J]. 环境污染与防治, 2021, 43(12): 1573−1577ZHAN R S, HU D M, ZHEN L N, et al. Pollution evaluation and source analysis of heavy metals in facility vegetable land soils of Tianzhen County of Shanxi Province[J]. Environmental Pollution & Control, 2021, 43(12): 1573−1577 [15] 席凯鹏, 席吉龙, 杨苏龙, 等. 长期秸秆配施鸡粪对棉田土壤重金属累积的影响及生态风险评价[J]. 棉花学报, 2022, 34(1): 48−59XI K P, XI J L, YANG S L, et al. Effect of long-term straw application with chicken manure on the accumulation of heavy metals in cotton field soil and ecological risk evaluation[J]. Cotton Science, 2022, 34(1): 48−59 [16] 丁光晔, 樊贵盛, 张艳. 山西省汾河再生水灌区土壤重金属污染及分布特征[J]. 灌溉排水学报, 2015, 34(2): 53−55DING G Y, FAN G S, ZHANG Y. Pollution and distribution characteristic of heavy metals in Fenhe River reclaimed water irrigation area of Shanxi Province[J]. Journal of Irrigation and Drainage, 2015, 34(2): 53−55 [17] 姚万程, 刘庚, 石瑛, 等. 山西省土壤重金属污染特征及生态风险评价[J]. 江西农业学报, 2021, 33(1): 91−97YAO W C, LIU G, SHI Y, et al. Heavy metal pollution characteristics and ecological risk assessment of soil in Shanxi Province[J]. Acta Agriculturae Jiangxi, 2021, 33(1): 91−97 [18] 郭掌珍, 张渊, 冯两蕊. 山西省太谷县农田土壤重金属污染特征及评价[J]. 山西农业大学学报(自然科学版), 2013, 33(2): 98−102GUO Z Z, ZHANG Y, FENG L R. Pollution characteristics and assessment of heavy metal in soil of Taigu Shanxi Province[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2013, 33(2): 98−102 [19] 孙冬晓, 曲仡, 邹祖有, 等. 基于地累积指数法的连平县林地土壤重金属污染评价[J]. 林业与环境科学, 2022, 38(2): 147−152SUN D X, QU Y, ZOU Z Y, et al. Heavy metal pollution evaluation of forest soil in Lianping based on geo-accumulation index method[J]. Forestry and Environmental Science, 2022, 38(2): 147−152 [20] 袁帅, 张思源, 张雪琼, 等. 内蒙古乌拉特前旗大佘太地区农田表层土壤重金属生态安全风险评价[J/OL]. 中国地质, 2022: 1−20 (2022-08-22). https://kns.cnki.net/kcms/detail/11.1167.p.20220822.0819.002.html.YUAN S, ZHANG S Y, ZHANG X Q, et al. Ecological health risk assessment of farmland surface soil heavy metals in Dashetai, Ulat Front Banner, Inner Mongolia[J/OL]. Geology in China, 2022: 1−20 (2022-08-22). https://kns.cnki.net/kcms/detail/11.1167.p.20220822.0819.002.html. [21] 黄鸿翔, 李书田, 李向林, 等. 我国有机肥的现状与发展前景分析[J]. 土壤肥料, 2006(1): 3−8HUANG H X, LI S T, LI X L, et al. Analysis on the status of organic fertilizer and its development strategies in China[J]. Soil and Fertilizer Sciences in China, 2006(1): 3−8 [22] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112−115XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2): 112−115 [23] 国家生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境出版社, 2018Ministry of Ecology and Environment of the People’s Republic of China. Soil environmental quality risk control standard for soil contamination of agricultural land: GB 15618—2018 [S]. Beijing: China Environmental Science Press, 2018 [24] 王昌全, 魏成明, 李廷强, 等. 不同免耕方式对作物产量和土壤理化性状的影响[J]. 四川农业大学学报, 2001, 19(2): 152−154,187WANG C Q, WEI C M, LI T Q, et al. Effect of different zero tillage on the crop yield and soil property[J]. Journal of Sichuan Agricultural University, 2001, 19(2): 152−154,187 [25] 刘世平, 张洪程, 戴其根, 等. 免耕套种与秸秆还田对农田生态环境及小麦生长的影响[J]. 应用生态学报, 2005, 16(2): 393−396LIU S P, ZHANG H C, DAI Q G, et al. Effects of no-tillage plus inter-planting and remaining straw on the field on cropland eco-environment and wheat growth[J]. Chinese Journal of Applied Ecology, 2005, 16(2): 393−396 [26] 杨培培, 杨明欣, 董文旭, 等. 保护性耕作对土壤养分分布及冬小麦吸收与分配的影响[J]. 中国生态农业学报, 2011, 19(4): 755−759YANG P P, YANG M X, DONG W X, et al. Effect of conservation tillage on wheat and soil nutrient distribution and absorption[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 755−759 [27] 王改玲, 李立科, 郝明德, 等. 长期定位施肥对土壤重金属含量的影响及环境评价[J]. 水土保持学报, 2010, 24(3): 60−63,70WANG G L, LI L K, HAO M D, et al. Effects of long-term fertilization on heavy-metal contents of soil and environmental quality evaluation[J]. Journal of Soil and Water Conservation, 2010, 24(3): 60−63,70 [28] 任顺荣, 邵玉翠, 高宝岩, 等. 长期定位施肥对土壤重金属含量的影响[J]. 水土保持学报, 2005, 19(4): 96−99REN S R, SHAO Y C, GAO B Y, et al. Effects of long-term located fertilization on heavy-metal content of soil[J]. Journal of Soil Water Conservation, 2005, 19(4): 96−99 [29] 徐明岗, 武海雯, 刘景. 长期不同施肥下我国3种典型土壤重金属的累积特征[J]. 农业环境科学学报, 2010, 29(12): 2319−2324XU M G, WU H W, LIU J. Evolution of heavy metal contents of three soils under long-term fertilizations[J]. Journal of Agro-Environment Science, 2010, 29(12): 2319−2324 [30] 刘树堂, 赵永厚, 孙玉林, 等. 25年长期定位施肥对非石灰性潮土重金属状况的影响[J]. 水土保持学报, 2005, 19(1): 164−167LIU S T, ZHAO Y H, SUN Y L, et al. Effects of 25 years long-term located fertilization on status of heavy metals in non-calcareous fluro-aquic soil[J]. Journal of Soil Water Conservation, 2005, 19(1): 164−167 [31] 茹淑华, 徐万强, 侯利敏, 等. 连续施用有机肥后重金属在土壤-作物系统中的积累与迁移特征[J]. 生态环境学报, 2019, 28(10): 2070−2078RU S H, XU W Q, HOU L M, et al. Effects of continuous application of organic fertilizer on the accumulation and migration of heavy metals in soil-crop systems[J]. Ecology and Environmental Sciences, 2019, 28(10): 2070−2078 [32] 常同举. 耕作方式对紫色水稻土重金属积累和有效性的影响研究[D]. 重庆: 西南大学, 2014CHANG T J. Effects of tillage methods on heavy metal accumulation and availability in purple paddy soil[D]. Chongqing: Southwest University, 2014 [33] 章明奎, 郑顺安, 王丽平. 土壤中颗粒状有机质对重金属的吸附作用[J]. 土壤通报, 2007, 38(6): 1100−1104ZHANG M K, ZHENG S A, WANG L P. Adsorption of heavy metals by soil particulate organic matter[J]. Chinese Journal of Soil Science, 2007, 38(6): 1100−1104 [34] CLARK G J, DODGSHUN N, SALE P W G, et al. Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments[J]. Soil Biology and Biochemistry, 2007, 39(11): 2806−2817 doi: 10.1016/j.soilbio.2007.06.003 [35] 白庆中, 宋燕光, 王晖. 有机物对重金属在粘土中吸附行为的影响[J]. 环境科学, 2000, 21(5): 64−67BAI Q Z, SONG Y G, WANG H. Effect of organic acids on heavy metal migration in clay[J]. Chinese Journal of Enviromental Science, 2000, 21(5): 64−67 [36] 孙嘉龙, 肖唐付, 周连碧, 等. 微生物与重金属的相互作用机理研究进展[J]. 地球与环境, 2007, 35(4): 367−374SUN J L, XIAO T F, ZHOU L B, et al. Studies on the mechanisms of interaction between microboes and heavy metals[J]. Earth and Environment, 2007, 35(4): 367−374 [37] LI H G, LU J W, ZHANG Y H, et al. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 133−140 doi: 10.1016/j.jaap.2018.09.010 [38] 李可. 施用鸡粪有机肥对菜地土壤重金属累积特征及其环境风险研究[D]. 北京: 中国农业科学院, 2021LI K. Accumulation characteristics and environmental risk of heavy metals in vegetable soil after applying chicken manure organic fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021 [39] 王飞, 邱凌, 沈玉君, 等. 华北地区饲料和畜禽粪便中重金属质量分数调查分析[J]. 农业工程学报, 2015, 31(5): 261−267WANG F, QIU L, SHEN Y J, et al. Investigation and analysis of heavy metal contents from livestock feed and manure in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 261−267 [40] REN Z L, TELLA M, BRAVIN M N, et al. Effect of dissolved organic matter composition on metal speciation in soil solutions[J]. Chemical Geology, 2015, 398: 61−69 doi: 10.1016/j.chemgeo.2015.01.020 [41] 段德超, 戴露莹, 徐劼, 等. 某冶炼厂周边土壤碳组分与铜形态的相关性[J]. 环境科学学报, 2016, 36(8): 3027−3032DUAN D C, DAI L Y, XU J, et al. Relationship between organic carbon fractions and copper speciation in soil around the smelting area[J]. Acta Scientiae Circumstantiae, 2016, 36(8): 3027−3032 [42] 谭长银, 吴龙华, 骆永明, 等. 不同肥料长期施用下稻田镉、铅、铜、锌元素总量及有效态的变化[J]. 土壤学报, 2009, 46(3): 412−418TAN C Y, WU L H, LUO Y M, et al. Variations of total and available Cd, Pb, Cu and Zn in red paddy soils under long-term fertilization[J]. Acta Pedologica Sinica, 2009, 46(3): 412−418 [43] 欧芙容, 吕殿青, 赵丹丹. 东洞庭湖湖滨带土壤酸碱度的分布及对重金属含量的影响[J]. 环境科学导刊, 2014, 33(5): 10−13OU F R, LYU D Q, ZHAO D D. Effects of the distribution of pH value on the content of heavy metal in soil of the Eastern Dongting lakeside belt[J]. Environmental Science Survey, 2014, 33(5): 10−13 [44] 武文飞. 干旱区绿洲土壤重金属(Cd、Pb、Zn)交互作用实验研究[D]. 兰州: 兰州大学, 2012WU W F. Experiment study on interaction of heavy metals (Cd, Pb and Zn) in arid oasis soil[D]. Lanzhou: Lanzhou University, 2012 -

计量
- 文章访问数: 60
- HTML全文浏览量: 35
- PDF下载量: 4
- 被引次数: 0