Bacterial diversity exploring and functional prediction in ancient rice original-producing regions of Wannian County, China
-
摘要: 为探讨我国古稻原产区独特的土壤微生态环境, 本研究以江西省万年县古稻原产区及临近区域稻田为研究对象, 采用16S rDNA高通量测序技术和FAPROTAX功能预测分析了细菌群落结构及功能, 并探究影响细菌群落结构与功能特性的关键土壤理化因子。结果显示, 古稻原产区土壤除了包含更高含量的有效氮和Cu, 其他理化因子与临近区域并未表现出明显的差异。古稻原产区的细菌群落特征与其他区域的差异性主要体现在种群组成上, 而不是细菌丰度(基于16S rDNA 荧光定量PCR技术)和Alpha多样性。与临近区域相比, 古稻原产区土壤中包含更高相对丰度的厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidota), 酸杆菌门(Acidobacteriota)和硝化螺旋菌门(Nitrospirota)则相反。此外, 古稻原产区细菌类群表现出更强的碳代谢(包括甲醇氧化、发酵、纤维素分解和碳氢化合物降解等)能力和更弱的氮(包括硝化作用和N2O反硝化等)、硫代谢潜力。进一步的分析发现, 细菌的群落和功能潜力特征除了受土壤营养元素的影响, 还受pH和多种重金属元素(如Cd、Cu、Hg、Ni)的影响。本研究解析了古稻原产区微生态环境的特异性, 明确了其稻田土壤拥有更高的碳周转和氮储能力, 为未来推广优质水稻种植和改善农田生态系统提供了理论参考。Abstract: Rice (genus Oryza) is the world’s largest food crop, and China has a very long history of rice cultivation, with widespread rice distribution. This study investigated the unique soil microecological environment of ancient rice-producing regions in China by examining rice-producing areas around Wannian County. The study analyzed the structure and function of bacterial communities using 16S rDNA high-throughput sequencing technology and FAPROTAX function prediction while exploring the critical factors affecting them. The results showed that while there were no significant differences in physicochemical parameters (including pH, cation exchange capacity, organic matter, total phosphorus, available potassium, available phosphorus, Cr, Pb, Hg, Ni and As) between the ancient rice-producing area and the neighboring regions, this area had higher levels of total nitrogen (2.42 g∙kg−1), available nitrogen (289.57 mg∙kg−1) and copper (57.60 mg∙kg−1). The bacteria community characteristics were primarily different in composition rather than abundance (based on 16S rDNA fluorescence quantitative PCR technology) and Alpha diversities (including ACE index, Chao1index, Shannon index, Simpson index, and PD_whole_tree index), with 51 bacterial phyla found in the study area, and Proteobacteria (22.17%), Chloroflexi (19.31%), Acidobacteriota (16.95%), and Actinobacteria (13.46%) being the most abundant. Specifically, soils in the original rice-producing area contained a higher relative abundance of Firmicutes (5.80%) and Bacteroidota (2.98%), while Acidobacteriota (13.83%) and Nitrospirota(2.24%) were opposite. For the dominant bacterial genus (>1%), soils in the original rice-producing area had a higher relative abundance of Xanthobacteraceae_unclassified (3.44%), Conexibacter (1.79%) and Methylocystis (1.83%), while Acidobacteriales_norank (3.09%), Thermofovibrionia_norank (1.37%), Candidatus_Solibacter(0.08%), Bryobacter(0.88%) and Holophagae_Subgroup_7_norank (0.88%) were low (not significant, P>0.05). In addition, the bacterial taxa in the ancient rice-producing area displayed a higher capacity for carbon metabolism (including methanol oxidation, fermentation, cellulolysis, methanotrophy, hydrocarbon degradation, and methylotrophy) but a weaker potential for nitrogen (such as denitrification, nitrous oxide denitrification, nitrite denitrification, nitrate denitrification, nitrite respiration, nitrate respiration, nitrogen respiration) and sulfur metabolism (such as anoxygenic photoautotrophy sulfur-oxidizing and dark oxidation of sulfur compounds). Further analysis revealed that both soil nutrient elements (e.g., cation exchange capacity, organic matter, total nitrogen, available nitrogen, available potassium, and available phosphorus) and pH, as well as heavy metal elements (e.g., Cd, Cu, Hg, and Ni), influenced the characteristics and functional potential of the bacterial community. In conclusion, the distinctiveness of the soil environment in the ancient rice-producing area primarily stemmed from a higher availability of nitrogen and Cu, with the bacterial community showing a higher potential for carbon metabolism than nitrogen metabolism. Our study found that not only were the physical and chemical environments of paddy soil in ancient rice original-producing regions different from those in other study areas but that the microorganisms enriched there had higher carbon turnover and nitrogen storage capacity. These factors together constitute the unique soil microecological environment in the ancient rice original-producing regions. This study provides a valuable theoretical reference for high-quality rice cultivation and environmentally friendly field management practices.
-
Key words:
- Ancient rice /
- Paddy soil /
- High-throughput sequencing /
- Bacterial community /
- Functional prediction
-
图 2 不同区域细菌群落的基于OTU水平的主坐标分析(a)、基于Adonis的组间差异分析(b)和基于Bray-curtis距离的物种组内差异分析(c)
ZTN: 珠田北; ZTS: 珠田南; SFE: 上坊东; SFW: 上坊西; PME: 裴梅东; PMW: 裴梅西。ZTN: north of Zhutian Township; ZTS: south of Zhutian Township; SFE: east of Shangfang Township; SFW: west of Shangfang Township; PME: west of Peimei Township; PMW: east of Peimei Township.
Figure 2. (a) ordination of soil bacterial communities via principal coordinate analysis (PCoA) of bacterial communities at the OTU level; (b) analysis of differences between groups based on Adonis; (c) analysis of differences within species groups based on Bray-curtis distances.
图 3 不同区域水稻土壤优势(>1%)细菌门(a)和属(b)水平的相对丰度
ZTN: 珠田北; ZTS: 珠田南; SFE: 上坊东; SFW: 上坊西; PME: 裴梅东; PMW: 裴梅西。ZTN: north of Zhutian Township; ZTS: south of Zhutian Township; SFE: east of Shangfang Township; SFW: west of Shangfang Township; PME: west of Peimei Township; PMW: east of Peimei Township.
Figure 3. Relative abundances of the soil bacterial communities of paddy in different areas at the dominant (>1%) phylum (a) and genus (b)
图 4 不同研究区土壤微生物菌群预测功能分组
ZTN: 珠田北; ZTS: 珠田南; SFE: 上坊东; SFW: 上坊西; PME: 裴梅东; PMW: 裴梅西。ZTN: north of Zhutian Township; ZTS: south of Zhutian Township; SFE: east of Shangfang Township; SFW: west of Shangfang Township; PME: west of Peimei Township; PMW: east of Peimei Township.
Figure 4. Functional prediction of the microbial flora in different study areas.
图 5 细菌群落结构、功能与土壤性质的关系
Clay: 黏粒; Silt: 粉粒; Sand: 砂粒; CEC: 阳离子交换量; OM: 有机质; TN: 总氮; TP: 总磷; AN: 有效氮; AK: 有效钾; AP: 有效磷。CEC: cation exchange capacity; OM: organic matter; TN: total nitrogen; TP: total phosphorus; AN: available nitrogen; AK: available potassium; AP: available phosphorus.
Figure 5. Relationship between bacterial communities, functional and soil properties
表 1 不同研究区域土壤理化指标
Table 1. Physicochemical parameters of soil samples from different areas
指标
Index附近普通稻产区
Normal rice growing regions nearby古稻原产区
Ancient rice original
producing regionZTN (珠田北) ZTS (珠田南) SFE (上坊东) SFW (上坊西) PME (裴梅东) PMW (裴梅西) 黏粒 Clay (%) 5.45±2.93b 2.75±1.75b 4.57±1.79b 0.69±0.62b 31.36±15.55a 2.1±1.39b 粉粒 Silt (%) 59.52±8.10a 63.02±10.02a 62.02±8.44a 61.62±10.66a 50.85±11.32a 69.3±4.6a 砂粒 Sand (%) 35.03±9.57a 34.23±9.66a 33.41±7.64a 37.69±11.12a 17.79±5.32a 28.6±5.08a pH 5.45±0.29a 5.4±0.14a 5.14±0.07a 5.22±0.08a 5.24±0.07a 5.13±0.07a 阳离子交换量
Cation exchange capacity (cmol∙kg−1)8.21±0.36a 9.65±1.33a 7.34±0.39a 7.49±0.30a 8.06±0.63a 9.40±0.35a 有机质 Organic matter (g∙kg−1) 24.79±6.32a 37.74±5.35a 28.67±4.44a 34.58±3.36a 32.05±8.21a 31.10±3.85a 总氮 Total nitrogen (g∙kg−1) 1.19±0.18a 1.99±0.35a 1.67±0.28a 2.17±0.13a 1.95±0.53a 2.41±0.20a 总磷 Total phosphorus (g∙kg−1) 0.56±0.07a 0.58±0.06a 0.54±0.04a 0.46±0.06a 0.44±0.07a 0.51±0.05a 有效氮 Available nitrogen (mg∙kg−1) 106.93±16.53b 160.85±23.00b 137.87±22.56b 177.82±7.00b 154.19±37.94b 289.57±41.24a 有效钾 Available potassium (mg∙kg−1) 114.70±27.33a 93.38±27.86a 105.92±19.84a 112.58±19.74a 113.45±12.21a 109.79±16.04a 有效磷 Available phosphorus (mg∙kg−1) 21.77±2.46a 16.78±2.96a 13.59±1.10a 18.41±3.98a 16.15±2.70a 15.69±1.19a 镉 Cd (mg∙kg−1) 0.27±0.02a 0.17±0.01b 0.15±0.01ab 0.27±0.05a 0.17±0.02ab 0.16±0.01ab 铬 Cr (mg∙kg−1) 44.4±5.66a 43.2±5.43a 45.6±4.18a 42.0±1.26a 58.6±3.17a 44.2±3.01a 铅 Pb (mg∙kg−1) 27.82±3.54a 30.34±5.71a 33.00±5.32a 32.40±2.96a 32.00±4.53a 32.40±3.64a 锌 Zn (mg∙kg−1) 80.2±9.3ab 97.6±5.31ab 83.6±6.72ab 103.2±11.00a 80.6±10.64ab 64.6±3.89b 铜 Cu (mg∙kg−1) 26.0±5.19b 34.8±5.81b 40.8±5.03ab 45.0± 4.44ab 41.8±5.95ab 57.6±5.37a 汞 Hg (mg∙kg−1) 0.14±0.04a 0.07±0.01a 0.08±0.01a 0.08±0.01a 0.08±0.01a 0.08±0.01a 镍 Ni (mg∙kg−1) 30.8±6.19a 41.4±3.19a 36.8±2.82a 45.4±1.44a 31.8±1.85a 32.4±3.31a 砷 As (mg∙kg−1) 2.79±0.74a 2.43±0.81a 2.36±1.07a 1.72±0.26a 1.78±0.28a 1.86±0.3a 数据为平均值±标准误, 同行不同字母表示差异显著(P<0.05)。Values are mean±SD. Different lowercase letters in each row are significantly different (P<0.05). 表 2 不同研究区域细菌群落丰度及多样性
Table 2. Bacterial community abundance and diversity of soil samples from different areas
指标
Index附近普通稻产区
Normal rice growing regions nearby古稻原产区
Ancient rice original
producing regionZTN (珠田北) ZTS (珠田南) SFE (上坊东) SFW (上坊西) PME (裴梅东) PMW (裴梅西) 细菌丰度
Bacterial abundance (1010 copies∙g−1)1.91±0.36a 3.22±0.56a 2.22±0.46a 2.62±0.48a 1.84±0.53a 2.51±0.19a 物种丰富度指数
ACE index5042.44±759.8a 5268.53±374.29a 6168.65±266.56a 6256.8±126.56a 5529.5±140.48a 6055.51±182.27a 物种丰富度指数
Chao1 index4995.17±739.35a 5238.03±380.39a 6048.62±278.81a 6147.41±117.5a 5486.65±128.56a 5938.04±193.99a 香农-威纳指数
Shannon index6.91±0.27a 7.12±0.06a 7.34±0.09a 7.27±0.04a 7.24±0.04a 7.28±0.05a 辛普森指数
Simpson index0.0041±0.0013a 0.0023±0.0001a 0.002±0.0003a 0.0022±0.0002a 0.002±0.0001a 0.0024±0.0001a 谱系多样性指数
PD_whole_tree index190.17±24.76a 205.71±10.91a 230.53±7.39a 233.82±4.48a 215.89±4.44a 233.64±5.76a 数据为平均值±标准误, 同行不同小写字母表示差异显著(P<0.05)。Values are mean±SD. Different lowercase letters in each row are significantly different (P<0.05). -
[1] CHU Q N, XU S H, XING Y, et al. The Current fertilizer regimes cause phosphorus deficit in paddy soils and decreased rice phosphorus uptake: a study in Shanghai, China[J]. Land Degradation & Development, 2023, 34: 3375−3387 [2] 王盈盈, 夏龙龙, 蔡思源, 等. 长期不施氮肥下稻麦轮作农田残留化肥氮的后效及去向[J]. 土壤学报, 2022, 59(6): 1626−1639WANG Y Y, XIA L L, CAI S Y, et al. Long-term fate and availability of residual fertilizer nitrogen in rice-wheat cropping system in Taihu Lake region of China[J]. Acta Pedologica Sinica, 2022, 59(6): 1626−1639 [3] 曾艺. 野稻驯化, 万年之源−认识江西万年稻[J]. 农村·农业·农民(A版), 2021(5): 57−59ZENG Y. Domestication of wild rice, the source of ten thousand years — Understanding Jiangxi Wannian rice[J]. Country Agriculture Farmers (A), 2021(5): 57−59 [4] 钱泳其, 熊鹏, 王玥凯, 等. 不同耕作方式对砂姜黑土孔隙结构特征的影响[J]. 土壤学报. 2023,https://kns.cnki.net/kcms/detail/32.1119.p.20220713.1314.002.htmlQIAN Y Q, XIONG P, WANG Y K, et al. Effect of Tillage Practices on Soil Pore Structure Characteristics in Shajiang Black Soil[J]. Acta Pedologica Sinica. 2023,https://kns.cnki.net/kcms/detail/32.1119.p.20220713.1314.002.html [5] JIN H F, HUANG S S, SHI D M, et al. Effects of different tillage practices on soil stability and erodibility for red soil sloping farmland in southern China[J]. Agronomy, 2023, 13(5): 1310 doi: 10.3390/agronomy13051310 [6] LIU W J, GRAHAM E B, ZHONG L H, et al. Dynamic microbial assembly processes correspond to soil fertility in sustainable paddy agroecosystems[J]. Functional Ecology, 2020, 34(6): 1244−1256 doi: 10.1111/1365-2435.13550 [7] WEI X M, ZHU Z K, LIU Y, et al. C∶N∶P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil[J]. Biology and Fertility of Soils, 2020, 56(8): 1093−1107 doi: 10.1007/s00374-020-01468-7 [8] QASWAR M, AHMED W, HUANG J, et al. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil[J]. Journal of Integrative Agriculture, 2022, 21(7): 2134−2144 doi: 10.1016/S2095-3119(21)63733-4 [9] RAHMAN M M, KHANOM A, BISWAS S K. Effect of pesticides and chemical fertilizers on the nitrogen cycle and functional microbial communities in paddy soils: Bangladesh perspective[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(2): 243−249 doi: 10.1007/s00128-020-03092-5 [10] WANG J L, LIU K L, ZHAO X Q, et al. Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil[J]. Science of the Total Environment, 2021, 793: 148664 doi: 10.1016/j.scitotenv.2021.148664 [11] KÖRSCHENS M, ALBERT E, ARMBRUSTER M, et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century[J]. Archives of Agronomy and Soil Science, 2013, 59(8): 1017−1040 doi: 10.1080/03650340.2012.704548 [12] HARTMANN M, FREY B, MAYER J, et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. The ISME Journal, 2015, 9(5): 1177−1194 doi: 10.1038/ismej.2014.210 [13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000LU R K. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agriculture Scientech Press, 2000 [14] LOUCA S, PARFREY L W, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272−1277 doi: 10.1126/science.aaf4507 [15] LAZCANO C, ZHU-BARKER X, DECOCK C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: a review[J]. Microorganisms, 2021, 9(5): 983−1001 doi: 10.3390/microorganisms9050983 [16] SUN L J, LIU Q L, XUE Y, et al. Dynamic influence of S fertilizer on Cu bioavailability in rice (Oryza sativa L. ) rhizosphere soil during the whole life cycle of rice plants[J]. Journal of Soils and Sediments, 2019, 19(1): 198−210 doi: 10.1007/s11368-018-2009-0 [17] ZOU M M, ZHOU S L, ZHOU Y J, et al. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: a review[J]. Environmental Pollution, 2021, 280: 116965 doi: 10.1016/j.envpol.2021.116965 [18] 吴佳, 纪雄辉, 魏维, 等. Zn肥基施对水稻吸收转运Cd的影响[J]. 华北农学报, 2017, 32(S1): 313−318WU J, JI X H, WEI W, et al. Effect of zinc fertilization on cadmium absorption and transport in rice[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(S1): 313−318 [19] BASTIDA F, ELDRIDGE D J, GARCÍA C, et al. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes[J]. The ISME Journal, 2021, 15(7): 2081−2091 doi: 10.1038/s41396-021-00906-0 [20] GAVANDE P V, BASAK A, SEN S, et al. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization[J]. Scientific Reports, 2021, 11: 3032 doi: 10.1038/s41598-021-82163-x [21] KRISTENSEN J M, SINGLETON C, CLEGG L A, et al. High diversity and functional potential of undescribed acidobacteriota in Danish wastewater treatment plants[J]. Frontiers in Microbiology, 2021, 12: 643950 doi: 10.3389/fmicb.2021.643950 [22] YÁÑEZ L, RODRÍGUEZ Y, SCOTT F, et al. Production of (R)-3-hydroxybutyric acid from methane by in vivo depolymerization of polyhydroxybutyrate in Methylocystis parvus OBBP[J]. Bioresource Technology, 2022, 353: 127141 doi: 10.1016/j.biortech.2022.127141 [23] LEI H X, ZHANG J Y, HUANG J, et al. New insights into lincomycin biodegradation by Conexibacter sp. LD01: Genomics characterization, biodegradation kinetics and pathways[J]. Journal of Hazardous Materials, 2023, 441: 129824 doi: 10.1016/j.jhazmat.2022.129824 [24] 陈章鑫, 林海, 应兴华, 等. 万年稻作农业文化系统的开发、保护及发展对策[J]. 中国稻米, 2012, 18(6): 23−26CHEN Z X, LIN H, YING X H, et al. Development, protection and development countermeasures of agricultural cultural system of rice cultivation in ten thousand years[J]. China Rice, 2012, 18(6): 23−26 [25] LI Q J, ZHANG D Q, SONG Z X, et al. Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation[J]. Environmental Pollution, 2022, 295: 118653 doi: 10.1016/j.envpol.2021.118653 [26] ASHRAF M N, GAO J S, WU L, et al. Soil microbial biomass and extracellular enzyme-mediated mineralization potentials of carbon and nitrogen under long-term fertilization (>30 years) in a rice-rice cropping system[J]. Journal of Soils and Sediments, 2021, 21(12): 3789−3800 doi: 10.1007/s11368-021-03048-0 [27] 李新悦, 李冰, 王昌全, 等. 长期秸秆还田对水稻土团聚体有机碳及胞外酶的影响[J]. 土壤学报, 2023: 1–12LI X Y, LI B, WANG C Q, et al. Effects of long-term straw returning on organic carbon and extracellular enzymes in paddy soil aggregates[J]. Acta Pedologica Sinica, 2023: 1–12 [28] 刘晏汝, 张建伟, 包远远, 等. 区域尺度下水稻土微生物群落对施肥的一致响应[J]. 土壤, 2022, 54(5): 968−977LIU Y R, ZHANG J W, BAO Y Y, et al. Convergent responses of paddy soil microbial community to fertilization at regional scale[J]. Soils, 2022, 54(5): 968−977 [29] WANG C, MA X F, SHEN J L, et al. Reduction in net greenhouse gas emissions through a combination of pig manure and reduced inorganic fertilizer application in a double-rice cropping system: three-year results[J]. Agriculture, Ecosystems & Environment, 2022, 326: 107799 [30] HANSON C A, FUHRMAN J A, HORNER-DEVINE M C, et al. Beyond biogeographic patterns: processes shaping the microbial landscape[J]. Nature Reviews Microbiology, 2012, 10(7): 497−506 doi: 10.1038/nrmicro2795 [31] CLARK D R, UNDERWOOD G J C, MCGENITY T J, et al. What drives study-dependent differences in distance-decay relationships of microbial communities?[J]. Global Ecology and Biogeography, 2021, 30(4): 811−825 doi: 10.1111/geb.13266 [32] LORI M, HARTMANN M, KUNDEL D, et al. Soil microbial communities are sensitive to differences in fertilization intensity in organic and conventional farming systems[J]. FEMS Microbiology Ecology, 2023, 99(6): fiad046 doi: 10.1093/femsec/fiad046 [33] HOU J Y, WU L H, LIU W X, et al. Biogeography and diversity patterns of abundant and rare bacterial communities in rice paddy soils across China[J]. Science of the Total Environment, 2020, 730: 139116 doi: 10.1016/j.scitotenv.2020.139116 [34] AI C, LIANG G Q, SUN J W, et al. The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition[J]. Biology and Fertility of Soils, 2015, 51(4): 465−477 doi: 10.1007/s00374-015-0994-3 [35] SHUAIB M, AZAM N, BAHADUR S, et al. Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism[J]. Microbial Pathogenesis, 2021, 150: 104713 doi: 10.1016/j.micpath.2020.104713 -