[1] |
RILLIG M C, LEHMANN A. Microplastic in terrestrial ecosystems[J]. Science, 2020, 368(6498): 1430−1431 doi: 10.1126/science.abb5979
|
[2] |
COLTON Jr J B, BURNS B R, KNAPP F D. Plastic particles in surface waters of the northwestern Atlantic[J]. Science, 1974, 185(4150): 491−497 doi: 10.1126/science.185.4150.491
|
[3] |
RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12): 6453−6454
|
[4] |
HORTON A A, SVENDSEN C, WILLIAMS R J, et al. Large microplastic particles in sediments of tributaries of the River Thames, UK-Abundance, sources and methods for effective quantification[J]. Marine Pollution Bulletin, 2017, 114(1): 218−226 doi: 10.1016/j.marpolbul.2016.09.004
|
[5] |
COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988−995 doi: 10.1111/gcb.12113
|
[6] |
WANG X, XING Y, LV M J, et al. Recent advances on the effects of microplastics on elements cycling in the environment[J]. Science of the Total Environment, 2022, 849: 157884 doi: 10.1016/j.scitotenv.2022.157884
|
[7] |
PADARIAN J, STOCKMANN U, MINASNY B, et al. Monitoring changes in global soil organic carbon stocks from space[J]. Remote Sensing of Environment, 2022, 281: 113260 doi: 10.1016/j.rse.2022.113260
|
[8] |
CAMENZIND T, MASON-JONES K, MANSOUR I, et al. Formation of necromass-derived soil organic carbon determined by microbial death pathways[J]. Nature Geoscience, 2023, 16(2): 115−122 doi: 10.1038/s41561-022-01100-3
|
[9] |
徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报(中英文), 2022, 30(4): 658−670XU Y D. Conservation agriculture-mediated soil carbon sequestration: a review[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658−670
|
[10] |
MARTIN J P, HAIDER K. Microbial activity in relation to soil humus formation[J]. Soil Science, 1971, 111(1): 54−63 doi: 10.1097/00010694-197101000-00007
|
[11] |
KONONOVA M M. Soil Organic Matter, Its Nature, Its Role in Soil Formation and in Soil Fertility[M]. Oxford: Pergamon Press, 1967, 18(1): 92
|
[12] |
HATCHER P G, WAGGONER D C, CHEN H M. Evidence for the existence of humic acids in peat soils based on solid-state 13C NMR[J]. Journal of Environmental Quality, 2019, 48(6): 1571−1577 doi: 10.2134/jeq2019.02.0083
|
[13] |
COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776−779 doi: 10.1038/ngeo2520
|
[14] |
LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105
|
[15] |
YANG J, LI L Z, LI R J, et al. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: a field study[J]. Environmental Pollution, 2021, 289: 117943 doi: 10.1016/j.envpol.2021.117943
|
[16] |
骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究 防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021−1030LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021−1030
|
[17] |
WONG J K H, LEE K K, TANG K H D, et al. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions[J]. Science of the Total Environment, 2020, 719: 137512 doi: 10.1016/j.scitotenv.2020.137512
|
[18] |
XIONG X, ZHANG K, CHEN X C, et al. Sources and distribution of microplastics in China’s largest inland lake—Qinghai Lake[J]. Environmental Pollution, 2018, 235: 899−906 doi: 10.1016/j.envpol.2017.12.081
|
[19] |
VIAROLI S, LANCIA M, RE V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review[J]. Science of the Total Environment, 2022, 824: 153851 doi: 10.1016/j.scitotenv.2022.153851
|
[20] |
GATIDOU G, ARVANITI O S, STASINAKIS A S. Review on the occurrence and fate of microplastics in Sewage Treatment Plants[J]. Journal of Hazardous Materials, 2019, 367: 504−512 doi: 10.1016/j.jhazmat.2018.12.081
|
[21] |
LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142: 75−85 doi: 10.1016/j.watres.2018.05.034
|
[22] |
DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1/2): 290−293
|
[23] |
EVANGELIOU N, GRYTHE H, KLIMONT Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions[J]. Nature Communications, 2020, 11(1): 3381 doi: 10.1038/s41467-020-17201-9
|
[24] |
AVES A R, REVELL L E, GAW S, et al. First evidence of microplastics in Antarctic snow[J]. The Cryosphere, 2022, 16(6): 2127−2145 doi: 10.5194/tc-16-2127-2022
|
[25] |
GAO B, YAO H Y, LI Y Y, et al. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil[J]. Environmental Toxicology and Chemistry, 2021, 40(2): 352−365 doi: 10.1002/etc.4916
|
[26] |
BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496−11506
|
[27] |
LI X N, YAO S, WANG Z Y, et al. Polyethylene microplastic and biochar interactively affect the global warming potential of soil greenhouse gas emissions[J]. Environmental Pollution, 2022, 315: 120433 doi: 10.1016/j.envpol.2022.120433
|
[28] |
NG E L, LIN S Y, DUNGAN A M, et al. Microplastic pollution alters forest soil microbiome[J]. Journal of Hazardous Materials, 2021, 409: 124606 doi: 10.1016/j.jhazmat.2020.124606
|
[29] |
LIU Y, HU W, HUANG Q, et al. Plastic mulch debris in rhizosphere: interactions with soil-microbe-plant systems[J]. Science of the Total Environment, 2022, 807: 151435 doi: 10.1016/j.scitotenv.2021.151435
|
[30] |
LI R F, XI B D, TAN W B, et al. Spatiotemporal heterogeneous effects of microplastics input on soil dissolved organic matter (DOM) under field conditions[J]. Science of the Total Environment, 2022, 847: 157605 doi: 10.1016/j.scitotenv.2022.157605
|
[31] |
CHEN M, ZHAO X, WU D, et al. Addition of biodegradable microplastics alters the quantity and chemodiversity of dissolved organic matter in latosol[J]. Science of the Total Environment, 2022, 816: 151960 doi: 10.1016/j.scitotenv.2021.151960
|
[32] |
ZHANG Y X, LI X, XIAO M, et al. Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil[J]. Science of the Total Environment, 2022, 806: 150714 doi: 10.1016/j.scitotenv.2021.150714
|
[33] |
LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907−917 doi: 10.1016/j.chemosphere.2017.07.064
|
[34] |
ZHOU J, JIA R, BROWN R W, et al. The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health[J]. Journal of Hazardous Materials, 2023, 442: 130055 doi: 10.1016/j.jhazmat.2022.130055
|
[35] |
ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12−20 doi: 10.1016/j.scitotenv.2018.06.004
|
[36] |
RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8: 1805 doi: 10.3389/fpls.2017.01805
|
[37] |
KOSKEI K, MUNYASYA A N, WANG Y B, et al. Effects of increased plastic film residues on soil properties and crop productivity in agro-ecosystem[J]. Journal of Hazardous Materials, 2021, 414: 125521 doi: 10.1016/j.jhazmat.2021.125521
|
[38] |
WANG Z C, LI W L, LI W P, et al. Effects of microplastics on the water characteristic curve of soils with different textures[J]. Chemosphere, 2023, 317: 137762 doi: 10.1016/j.chemosphere.2023.137762
|
[39] |
QI Y L, OSSOWICKI A, YANG X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387: 121711 doi: 10.1016/j.jhazmat.2019.121711
|
[40] |
BROWN R W, CHADWICK D R, ZANG H D, et al. Bioplastic (PHBV) addition to soil alters microbial community structure and negatively affects plant-microbial metabolic functioning in maize[J]. Journal of Hazardous Materials, 2023, 441: 129959 doi: 10.1016/j.jhazmat.2022.129959
|
[41] |
ZHOU J, GUI H, BANFIELD C C, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156: 108211 doi: 10.1016/j.soilbio.2021.108211
|
[42] |
WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254: 126791 doi: 10.1016/j.chemosphere.2020.126791
|
[43] |
HODSON M E, DUFFUS-HODSON C A, CLARK A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 2017, 51(8): 4714−4721
|
[44] |
CHEN H P, WANG Y H, SUN X, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function[J]. Chemosphere, 2020, 243: 125271 doi: 10.1016/j.chemosphere.2019.125271
|
[45] |
EVANGELIOU N, GRYTHE H, KLIMONT Z, et al. Microbial degradation of microplastics by enzymatic processes: a review[J]. Environmental Chemistry Letters, 2021, 19(4): 3057−3073 doi: 10.1007/s10311-021-01197-9
|
[46] |
ZANG H D, ZHOU J, MARSHALL M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?[J]. Soil Biology and Biochemistry, 2020, 148: 107926 doi: 10.1016/j.soilbio.2020.107926
|
[47] |
ZHANG J R, REN S Y, XU W, et al. Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis[J]. Journal of Hazardous Materials, 2022, 435: 129065 doi: 10.1016/j.jhazmat.2022.129065
|
[48] |
RUMMEL C D, JAHNKE A, GOROKHOVA E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 2017, 4(7): 258−267
|
[49] |
JIANG P L, ZHAO S Y, ZHU L X, et al. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary[J]. Science of the Total Environment, 2018, 624: 48−54 doi: 10.1016/j.scitotenv.2017.12.105
|
[50] |
BAO R Q, CHENG Z R, HOU Y P, et al. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media[J]. Journal of Hazardous Materials, 2022, 439: 129686 doi: 10.1016/j.jhazmat.2022.129686
|
[51] |
VAN BAALEN M, HUNEMAN P. Organisms as ecosystems/ecosystems as organisms[J]. Biological Theory, 2014, 9(4): 357−360 doi: 10.1007/s13752-014-0194-7
|
[52] |
FARRELL P, NELSON K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177: 1−3 doi: 10.1016/j.envpol.2013.01.046
|
[53] |
LI T T, LU M T, XU B H, et al. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: insights into community signatures of gut bacteria and their translocation[J]. Science of the Total Environment, 2022, 838: 156352 doi: 10.1016/j.scitotenv.2022.156352
|
[54] |
CHEN K Y, TANG R G, LUO Y M, et al. Transcriptomic and metabolic responses of earthworms to contaminated soil with polypropylene and polyethylene microplastics at environmentally relevant concentrations[J]. Journal of Hazardous Materials, 2022, 427: 128176 doi: 10.1016/j.jhazmat.2021.128176
|
[55] |
HUERTA L E, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523−531 doi: 10.1016/j.envpol.2016.09.096
|
[56] |
LWANGA E H, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5): 2685−2691
|
[57] |
陈云峰, 韩雪梅, 李钰飞, 等. 线虫区系分析指示土壤食物网结构和功能研究进展[J]. 生态学报, 2014, 34(5): 1072−1084CHEN Y F, HAN X M, LI Y F, et al. Approach of nematode fauna analysis indicate the structure and function of soil food web[J]. Acta Ecologica Sinica, 2014, 34(5): 1072−1084
|
[58] |
LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620: 1−8 doi: 10.1016/j.scitotenv.2017.11.103
|
[59] |
KIM H M, LEE D K, LONG N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans[J]. Environmental Pollution, 2019, 246: 578−586 doi: 10.1016/j.envpol.2018.12.043
|
[60] |
KIYAMA Y, MIYAHARA K, OHSHIMA Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans[J]. Journal of Experimental Biology, 2012, 215(7): 1178−1183 doi: 10.1242/jeb.067199
|
[61] |
BOYERO L, LÓPEZ-ROJO N, BOSCH J, et al. Microplastics impair amphibian survival, body condition and function[J]. Chemosphere, 2020, 244: 125500 doi: 10.1016/j.chemosphere.2019.125500
|
[62] |
ZHAO S L, ZHANG Z Q, CHEN L, et al. Review on migration, transformation and ecological impacts of microplastics in soil[J]. Applied Soil Ecology, 2022, 176: 104486 doi: 10.1016/j.apsoil.2022.104486
|
[63] |
QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 2018, 645: 1048−1056 doi: 10.1016/j.scitotenv.2018.07.229
|
[64] |
BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774−781 doi: 10.1016/j.chemosphere.2019.03.163
|
[65] |
DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044−6052
|
[66] |
LOZANO Y M, RILLIG M C. Legacy effect of microplastics on plant-soil feedbacks[J]. Frontiers in Plant Science, 2022, 13: 965576 doi: 10.3389/fpls.2022.965576
|
[67] |
ZHAO S Y, ZHU L X, LI D J. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers[J]. Science of the Total Environment, 2016, 550: 1110−1115 doi: 10.1016/j.scitotenv.2016.01.112
|
[68] |
LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929−937 doi: 10.1038/s41893-020-0567-9
|
[69] |
LOZANO Y M, RILLIG M C. Effects of microplastic fibers and drought on plant communities[J]. Environmental Science & Technology, 2020, 54(10): 6166−6173
|
[70] |
RILLIG M C, BONKOWSKI M. Microplastic and soil protists: A call for research[J]. Environmental Pollution, 2018, 241: 1128−1131 doi: 10.1016/j.envpol.2018.04.147
|
[71] |
NELSON T F, BAUMGARTNER R, JAGGI M, et al. Biodegradation of poly (butylene succinate) in soil laboratory incubations assessed by stable carbon isotope labelling[J]. Nature Communications, 2022, 13(1): 5691 doi: 10.1038/s41467-022-33064-8
|