留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微塑料参与下的土壤碳循环过程评述

朱芷宏 张琎 高晓丹 陶招 马南 徐英德

朱芷宏, 张琎, 高晓丹, 陶招, 马南, 徐英德. 微塑料参与下的土壤碳循环过程评述[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−9 doi: 10.12357/cjea.20230460
引用本文: 朱芷宏, 张琎, 高晓丹, 陶招, 马南, 徐英德. 微塑料参与下的土壤碳循环过程评述[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−9 doi: 10.12357/cjea.20230460
ZHU Z H, ZHANG J, GAO X D, TAO Z, MA N, XU Y D. Review of soil carbon cycling processes involving microplastics[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−9 doi: 10.12357/cjea.20230460
Citation: ZHU Z H, ZHANG J, GAO X D, TAO Z, MA N, XU Y D. Review of soil carbon cycling processes involving microplastics[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−9 doi: 10.12357/cjea.20230460

微塑料参与下的土壤碳循环过程评述

doi: 10.12357/cjea.20230460
基金项目: 国家自然科学基金青年项目(42207383)、辽宁省科学研究经费面上项目(LJKZ0662)和国家重点研发计划项目(2021YFD1500202)资助
详细信息
    作者简介:

    朱芷宏, 主要从事土壤肥力与土壤生态研究。E-mail: zhongdiyidai@stu.syau.edu.cn

    通讯作者:

    徐英德, 主要从事土壤肥力与土壤生态研究。E-mail: yingdexu@126.com

  • 中图分类号: S154.1

Review of soil carbon cycling processes involving microplastics

Funds: This study was supported by the National Natural Science Foundation of China (42207383), the Scientific Research Funds Project of Education Department of Liaoning Province (LJKZ0662), and the National Key R&D Program of China (2021YFD1500202).
More Information
  • 摘要: 土壤有机碳固定是驱动土壤肥力演变和陆地生态系统碳平衡的关键过程。鉴于微塑料在土壤生态系统中的持久性和生态环境风险, 其对土壤性质和过程的影响日益受到关注, 但基于土壤碳循环视角关注微塑料介导作用的研究仍相对匮乏。赋存于土壤中的微塑料能够通过间接影响土壤理化性质和直接参与碳循环的方式影响土壤有机碳固存、矿化与消长, 这进一步加剧了土壤有机碳循环过程的不确定性, 也突出了相关研究的迫切性。以此为背景, 本文概述了土壤有机碳固定途径的理论发展, 总结了土壤中微塑料的来源特征, 阐述了微塑料对不同土壤碳库的影响, 并深入探讨了微塑料调控土壤碳循环的可能机制, 最后对微塑料参与下的土壤有机碳循环相关研究进行了展望。结果表明微塑料能够通过影响土壤物理结构的形成与破坏、微生物群落结构多样性、酶活性与功能基因、生物膜的形成、动物的繁殖与生长、植物的生长和根系沉积等对土壤碳的平衡起到介导作用, 同时通过自身参与到土壤全链条生物地球化学循环中而直接影响土壤有机碳循环, 但相关研究仍处于起步阶段, 如何选取科学方法将微塑料周转与有机碳循环过程进行区分与耦合是未来研究的难点。因此, 在现有研究基础上, 通过先进土壤学研究手段的嵌套与改良, 以及研究思路的革新与交叉, 进一步精准区分微塑料源碳在不同有机碳库中的贡献潜力, 探明微塑料直接和间接影响土壤有机碳循环的耦合作用机制, 并推进多因素影响下微塑料参与土壤碳循环过程的研究。
  • 图  1  微塑料影响土壤碳循环的可能机制

    Figure  1.  Possible mechanisms of the impacts of microplastics on soil carbon cycle

  • [1] RILLIG M C, LEHMANN A. Microplastic in terrestrial ecosystems[J]. Science, 2020, 368(6498): 1430−1431 doi: 10.1126/science.abb5979
    [2] COLTON Jr J B, BURNS B R, KNAPP F D. Plastic particles in surface waters of the northwestern Atlantic[J]. Science, 1974, 185(4150): 491−497 doi: 10.1126/science.185.4150.491
    [3] RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12): 6453−6454
    [4] HORTON A A, SVENDSEN C, WILLIAMS R J, et al. Large microplastic particles in sediments of tributaries of the River Thames, UK-Abundance, sources and methods for effective quantification[J]. Marine Pollution Bulletin, 2017, 114(1): 218−226 doi: 10.1016/j.marpolbul.2016.09.004
    [5] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988−995 doi: 10.1111/gcb.12113
    [6] WANG X, XING Y, LV M J, et al. Recent advances on the effects of microplastics on elements cycling in the environment[J]. Science of the Total Environment, 2022, 849: 157884 doi: 10.1016/j.scitotenv.2022.157884
    [7] PADARIAN J, STOCKMANN U, MINASNY B, et al. Monitoring changes in global soil organic carbon stocks from space[J]. Remote Sensing of Environment, 2022, 281: 113260 doi: 10.1016/j.rse.2022.113260
    [8] CAMENZIND T, MASON-JONES K, MANSOUR I, et al. Formation of necromass-derived soil organic carbon determined by microbial death pathways[J]. Nature Geoscience, 2023, 16(2): 115−122 doi: 10.1038/s41561-022-01100-3
    [9] 徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报(中英文), 2022, 30(4): 658−670

    XU Y D. Conservation agriculture-mediated soil carbon sequestration: a review[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658−670
    [10] MARTIN J P, HAIDER K. Microbial activity in relation to soil humus formation[J]. Soil Science, 1971, 111(1): 54−63 doi: 10.1097/00010694-197101000-00007
    [11] KONONOVA M M. Soil Organic Matter, Its Nature, Its Role in Soil Formation and in Soil Fertility[M]. Oxford: Pergamon Press, 1967, 18(1): 92
    [12] HATCHER P G, WAGGONER D C, CHEN H M. Evidence for the existence of humic acids in peat soils based on solid-state 13C NMR[J]. Journal of Environmental Quality, 2019, 48(6): 1571−1577 doi: 10.2134/jeq2019.02.0083
    [13] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776−779 doi: 10.1038/ngeo2520
    [14] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105
    [15] YANG J, LI L Z, LI R J, et al. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: a field study[J]. Environmental Pollution, 2021, 289: 117943 doi: 10.1016/j.envpol.2021.117943
    [16] 骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究 防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021−1030

    LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021−1030
    [17] WONG J K H, LEE K K, TANG K H D, et al. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions[J]. Science of the Total Environment, 2020, 719: 137512 doi: 10.1016/j.scitotenv.2020.137512
    [18] XIONG X, ZHANG K, CHEN X C, et al. Sources and distribution of microplastics in China’s largest inland lake—Qinghai Lake[J]. Environmental Pollution, 2018, 235: 899−906 doi: 10.1016/j.envpol.2017.12.081
    [19] VIAROLI S, LANCIA M, RE V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review[J]. Science of the Total Environment, 2022, 824: 153851 doi: 10.1016/j.scitotenv.2022.153851
    [20] GATIDOU G, ARVANITI O S, STASINAKIS A S. Review on the occurrence and fate of microplastics in Sewage Treatment Plants[J]. Journal of Hazardous Materials, 2019, 367: 504−512 doi: 10.1016/j.jhazmat.2018.12.081
    [21] LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142: 75−85 doi: 10.1016/j.watres.2018.05.034
    [22] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1/2): 290−293
    [23] EVANGELIOU N, GRYTHE H, KLIMONT Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions[J]. Nature Communications, 2020, 11(1): 3381 doi: 10.1038/s41467-020-17201-9
    [24] AVES A R, REVELL L E, GAW S, et al. First evidence of microplastics in Antarctic snow[J]. The Cryosphere, 2022, 16(6): 2127−2145 doi: 10.5194/tc-16-2127-2022
    [25] GAO B, YAO H Y, LI Y Y, et al. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil[J]. Environmental Toxicology and Chemistry, 2021, 40(2): 352−365 doi: 10.1002/etc.4916
    [26] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496−11506
    [27] LI X N, YAO S, WANG Z Y, et al. Polyethylene microplastic and biochar interactively affect the global warming potential of soil greenhouse gas emissions[J]. Environmental Pollution, 2022, 315: 120433 doi: 10.1016/j.envpol.2022.120433
    [28] NG E L, LIN S Y, DUNGAN A M, et al. Microplastic pollution alters forest soil microbiome[J]. Journal of Hazardous Materials, 2021, 409: 124606 doi: 10.1016/j.jhazmat.2020.124606
    [29] LIU Y, HU W, HUANG Q, et al. Plastic mulch debris in rhizosphere: interactions with soil-microbe-plant systems[J]. Science of the Total Environment, 2022, 807: 151435 doi: 10.1016/j.scitotenv.2021.151435
    [30] LI R F, XI B D, TAN W B, et al. Spatiotemporal heterogeneous effects of microplastics input on soil dissolved organic matter (DOM) under field conditions[J]. Science of the Total Environment, 2022, 847: 157605 doi: 10.1016/j.scitotenv.2022.157605
    [31] CHEN M, ZHAO X, WU D, et al. Addition of biodegradable microplastics alters the quantity and chemodiversity of dissolved organic matter in latosol[J]. Science of the Total Environment, 2022, 816: 151960 doi: 10.1016/j.scitotenv.2021.151960
    [32] ZHANG Y X, LI X, XIAO M, et al. Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil[J]. Science of the Total Environment, 2022, 806: 150714 doi: 10.1016/j.scitotenv.2021.150714
    [33] LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907−917 doi: 10.1016/j.chemosphere.2017.07.064
    [34] ZHOU J, JIA R, BROWN R W, et al. The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health[J]. Journal of Hazardous Materials, 2023, 442: 130055 doi: 10.1016/j.jhazmat.2022.130055
    [35] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12−20 doi: 10.1016/j.scitotenv.2018.06.004
    [36] RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8: 1805 doi: 10.3389/fpls.2017.01805
    [37] KOSKEI K, MUNYASYA A N, WANG Y B, et al. Effects of increased plastic film residues on soil properties and crop productivity in agro-ecosystem[J]. Journal of Hazardous Materials, 2021, 414: 125521 doi: 10.1016/j.jhazmat.2021.125521
    [38] WANG Z C, LI W L, LI W P, et al. Effects of microplastics on the water characteristic curve of soils with different textures[J]. Chemosphere, 2023, 317: 137762 doi: 10.1016/j.chemosphere.2023.137762
    [39] QI Y L, OSSOWICKI A, YANG X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387: 121711 doi: 10.1016/j.jhazmat.2019.121711
    [40] BROWN R W, CHADWICK D R, ZANG H D, et al. Bioplastic (PHBV) addition to soil alters microbial community structure and negatively affects plant-microbial metabolic functioning in maize[J]. Journal of Hazardous Materials, 2023, 441: 129959 doi: 10.1016/j.jhazmat.2022.129959
    [41] ZHOU J, GUI H, BANFIELD C C, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156: 108211 doi: 10.1016/j.soilbio.2021.108211
    [42] WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254: 126791 doi: 10.1016/j.chemosphere.2020.126791
    [43] HODSON M E, DUFFUS-HODSON C A, CLARK A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 2017, 51(8): 4714−4721
    [44] CHEN H P, WANG Y H, SUN X, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function[J]. Chemosphere, 2020, 243: 125271 doi: 10.1016/j.chemosphere.2019.125271
    [45] EVANGELIOU N, GRYTHE H, KLIMONT Z, et al. Microbial degradation of microplastics by enzymatic processes: a review[J]. Environmental Chemistry Letters, 2021, 19(4): 3057−3073 doi: 10.1007/s10311-021-01197-9
    [46] ZANG H D, ZHOU J, MARSHALL M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?[J]. Soil Biology and Biochemistry, 2020, 148: 107926 doi: 10.1016/j.soilbio.2020.107926
    [47] ZHANG J R, REN S Y, XU W, et al. Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis[J]. Journal of Hazardous Materials, 2022, 435: 129065 doi: 10.1016/j.jhazmat.2022.129065
    [48] RUMMEL C D, JAHNKE A, GOROKHOVA E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 2017, 4(7): 258−267
    [49] JIANG P L, ZHAO S Y, ZHU L X, et al. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary[J]. Science of the Total Environment, 2018, 624: 48−54 doi: 10.1016/j.scitotenv.2017.12.105
    [50] BAO R Q, CHENG Z R, HOU Y P, et al. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media[J]. Journal of Hazardous Materials, 2022, 439: 129686 doi: 10.1016/j.jhazmat.2022.129686
    [51] VAN BAALEN M, HUNEMAN P. Organisms as ecosystems/ecosystems as organisms[J]. Biological Theory, 2014, 9(4): 357−360 doi: 10.1007/s13752-014-0194-7
    [52] FARRELL P, NELSON K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177: 1−3 doi: 10.1016/j.envpol.2013.01.046
    [53] LI T T, LU M T, XU B H, et al. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: insights into community signatures of gut bacteria and their translocation[J]. Science of the Total Environment, 2022, 838: 156352 doi: 10.1016/j.scitotenv.2022.156352
    [54] CHEN K Y, TANG R G, LUO Y M, et al. Transcriptomic and metabolic responses of earthworms to contaminated soil with polypropylene and polyethylene microplastics at environmentally relevant concentrations[J]. Journal of Hazardous Materials, 2022, 427: 128176 doi: 10.1016/j.jhazmat.2021.128176
    [55] HUERTA L E, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523−531 doi: 10.1016/j.envpol.2016.09.096
    [56] LWANGA E H, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5): 2685−2691
    [57] 陈云峰, 韩雪梅, 李钰飞, 等. 线虫区系分析指示土壤食物网结构和功能研究进展[J]. 生态学报, 2014, 34(5): 1072−1084

    CHEN Y F, HAN X M, LI Y F, et al. Approach of nematode fauna analysis indicate the structure and function of soil food web[J]. Acta Ecologica Sinica, 2014, 34(5): 1072−1084
    [58] LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620: 1−8 doi: 10.1016/j.scitotenv.2017.11.103
    [59] KIM H M, LEE D K, LONG N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans[J]. Environmental Pollution, 2019, 246: 578−586 doi: 10.1016/j.envpol.2018.12.043
    [60] KIYAMA Y, MIYAHARA K, OHSHIMA Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans[J]. Journal of Experimental Biology, 2012, 215(7): 1178−1183 doi: 10.1242/jeb.067199
    [61] BOYERO L, LÓPEZ-ROJO N, BOSCH J, et al. Microplastics impair amphibian survival, body condition and function[J]. Chemosphere, 2020, 244: 125500 doi: 10.1016/j.chemosphere.2019.125500
    [62] ZHAO S L, ZHANG Z Q, CHEN L, et al. Review on migration, transformation and ecological impacts of microplastics in soil[J]. Applied Soil Ecology, 2022, 176: 104486 doi: 10.1016/j.apsoil.2022.104486
    [63] QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 2018, 645: 1048−1056 doi: 10.1016/j.scitotenv.2018.07.229
    [64] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774−781 doi: 10.1016/j.chemosphere.2019.03.163
    [65] DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044−6052
    [66] LOZANO Y M, RILLIG M C. Legacy effect of microplastics on plant-soil feedbacks[J]. Frontiers in Plant Science, 2022, 13: 965576 doi: 10.3389/fpls.2022.965576
    [67] ZHAO S Y, ZHU L X, LI D J. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers[J]. Science of the Total Environment, 2016, 550: 1110−1115 doi: 10.1016/j.scitotenv.2016.01.112
    [68] LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929−937 doi: 10.1038/s41893-020-0567-9
    [69] LOZANO Y M, RILLIG M C. Effects of microplastic fibers and drought on plant communities[J]. Environmental Science & Technology, 2020, 54(10): 6166−6173
    [70] RILLIG M C, BONKOWSKI M. Microplastic and soil protists: A call for research[J]. Environmental Pollution, 2018, 241: 1128−1131 doi: 10.1016/j.envpol.2018.04.147
    [71] NELSON T F, BAUMGARTNER R, JAGGI M, et al. Biodegradation of poly (butylene succinate) in soil laboratory incubations assessed by stable carbon isotope labelling[J]. Nature Communications, 2022, 13(1): 5691 doi: 10.1038/s41467-022-33064-8
  • 加载中
图(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  71
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 录用日期:  2023-09-27
  • 修回日期:  2023-10-02
  • 网络出版日期:  2023-10-15

目录

    /

    返回文章
    返回