Climate resource allocation and evolution of rice-oilseed rape double cropping system under different planting patterns in Anhui Province
-
摘要: 安徽沿江地区稻-油复种模式下茬口衔接紧密、光温资源紧张, 季节间气候资源配置备受关注。移栽和直播是补充和调配气候资源的有效种植方式, 而稻油两熟制中不同种植方式下各生长季气候资源配置、演变特征以及对未来气候变化的适应性尚不清晰。本研究以安徽沿江地区27个气象站1992—2022年的气温、日照时数、总辐射和降水等气象资料为基础, 分析了不同种植方式下稻-油复种季节间气候资源配置与演变特征以及光温生产潜力。结果表明, 近30年稻-油复种模式下季节间总辐射量、日照时数和光合生产潜力均呈下降趋势, 气温、降水量和光温生产潜力呈上升趋势。水稻季移栽和直播方式下总辐射量倾向率分别为−27.9 MJ·m−2·(10a)−1和−28.8 MJ·m−2·(10a)−1, 油菜季分别为−40.5 MJ·m−2·(10a)−1和−26.6 MJ·m−2·(10a)−1。水稻季移栽和直播方式下平均日最高气温倾向率分别为0.30 ℃·(10a)−1 (P<0.05)和0.24 ℃·(10a)−1, 最高达32.70 ℃ (2022年, 青阳)。油菜季移栽和直播方式下平均气温倾向率分别为0.36 ℃·(10a)−1 (P<0.01)和0.39 ℃·(10a)−1 (P<0.01), 移栽方式下平均气温较直播方式高0.96~1.43 ℃。稻油两熟制两季均面临光资源持续下降和气温不断上升等问题, 采用移栽方式可通过延长作物生育期增加光、温资源配置, 提高光温生产潜力。同时, 适当推迟移栽期将有利于应对油菜苗期和水稻花期增温。直播方式下宜采用高光效品种和构建温光资源高效利用作物群体。Abstract: Because the rice-oilseed rape double cropping system along the Yangtze River in Anhui Province shows tight stubble convergence together with light and temperature resources, it has attracted a lot of attention with regard to inter-seasonal climate resource allocation. Although transplanting and direct seeding are effective planting strategies for supplementing and deploying climate resources, the climate resource allocation and evolutionary characteristics in each growing season of rice-oilseed rape double cropping systems under different planting patterns as well as their adaptation to future climate change remain unclear. In this study, the inter-seasonal climate resource allocation and evolution characteristics as well as radiation-temperature production potential of the rice-oilseed rape double cropping system under different planting patterns were analyzed on the basis of meteorological datasets, such as those of air temperature, sunshine hours, total radiation, and precipitation, recorded from 1992 to 2022 at 27 meteorological stations along the Yangtze River in Anhui Province. The results showed that in the last 30 years, the inter-seasonal total radiation, sunshine hours, and photosynthetic production potential had decreased while the air temperature, rainfall, and radiation-temperature production potential had increased under the rice-oilseed rape double cropping system. Under the transplanting and direct seeding patterns, the total radiation tendency rates were respectively −27.9 MJ·m−2·(10a)−1 and −28.8 MJ·m−2·(10a)−1 in the rice season and −40.5 MJ·m−2·(10a)−1 and −26.6 MJ·m−2·(10a)−1 in the oilseed rape season. During the rice season, the mean daily maximum temperature tendency rates were 0.30 °C·(10a)−1 (P<0.05) and 0.24 °C·(10a)−1 under the two patterns, respectively. The highest mean daily maximum temperature in the rice season reached 32.70 °C (2022, Qingyang County, Chizhou City, Anhui Province, China). During the oilseed rape season, the mean temperature tendency rates were 0.36 °C·(10a)−1 (P<0.01) and 0.39 °C·(10a)−1 (P<0.01) under the two patterns, respectively, with the mean temperature being higher under the transplanting pattern than under direct seeding. The radiation-temperature production potential was lower in the rice season than in the oilseed rape season, with the value in the oilseed rape season being significantly increased at a rate of 170.22 kg·hm−2·(10a)−1 under direct seeding. Thus, it appears that the direct seeding pattern has more potential to be explored for increasing yields in the oilseed rape season in the future. Both crop seasons within this double cropping system have faced problems, such as a continuous decline in light resources and a constant rise in air temperature. Adopting the transplanting pattern could increase the allocation of light and temperature resources to improve the radiation-temperature production potential by extending the crop reproductive period. Hence, the adoption of transplanting in both crop seasons would be an effective measure to cope with climate change and yield more production potential along the Yangtze River in Anhui Province. Meanwhile, delaying the transplanting date would be helpful to cope with warming at the oilseed rape seedling and rice flowering stages. Direct seeding resulted in less allocation of climatic resources than transplanting, and using high light-efficient varieties and building crop populations with efficient use of temperature and light resources are desirable.
-
表 1 不同种植方式下水稻季和油菜季气候生产潜力
Table 1. Climate production potential of rice season and oilseed rape season under different cultivation patterns
种植季
Cropping season种植方式
Planting pattern生产潜力
Production potential最小值
Minimum value
(kg·hm−2)最大值
Maximum value
(kg·hm−2)均值
Mean value
(kg·hm−2)倾向率
Tendency rate
[kg·hm−2·(10a)−1]水稻季
Rice seasonT Yp 8 361.2 17 951.3 13 601.9 −165.0 Ypt 6 592.8 14 139.0 10 532.4 48.2 D Yp 8 136.5 16 977.8 12 657.2 −170.2 Ypt 6 376.5 13 355.2 9 819.4 8.3 油菜季
Oilseed rape seasonT Yp 6 902.7 15 223.3 10 085.8 −160.0 Ypt 3 423.0 8 585.0 4 895.0 156.4 D Yp 5 415.1 12 677.7 8 696.1 −105.3 Ypt 2 298.4 6 264.4 3 583.2 170.2* T和D分别表示移栽方式和直播方式, Yp和Ypt分别表示光合生产潜力和光温生产潜力, *表示回归模型在0.05水平显著。T and D indicate transplanting pattern and direct seeding pattern, respectively; Yp and Ypt indicate photosynthetic production potential and radiation-temperature production potential, respectively; * indicate significant of linear regression model at 0.05 level. -
[1] ZHANG B B, WANG Y J, LIU H J, et al. Optimal phosphorus management strategies to enhance crop productivity and soil phosphorus fertility in rapeseed–rice rotation[J]. Chemosphere, 2023, 337: 139392 doi: 10.1016/j.chemosphere.2023.139392 [2] 安徽省统计局. 安徽统计年鉴2004[M]. 北京: 中国统计出版社, 2004: 318ANHUI PROVINCIAL BUREAU OF STATISTICS. Anhui Statistical Yearbook 2004[M]. Beijing: China Statistics Press, 2004: 318 [3] 安徽省统计局. 安徽统计年鉴2022[M]. 北京: 中国统计出版社, 2022: 340ANHUI PROVINCIAL BUREAU OF STATISTICS. Anhui Statistical Yearbook 2022[M]. Beijing: China Statistics Press, 2022: 340 [4] 孟宇辉. 稻油和稻麦模式对作物氮素利用和土壤氮素转化影响[D]. 合肥: 安徽农业大学, 2019: 13MENG Y H. Effects of rice-rape rotation and rice-wheat rotation on nitrogen use of crop and nitrogen transformation of soil[D]. Hefei: Anhui Agricultural University, 2019: 13 [5] 刘磊. 安徽油菜生产现状与制约因素对策[J]. 安徽农学通报, 2016, 22(10): 61−62,64 doi: 10.3969/j.issn.1007-7731.2016.10.027LIU L. Situation of oilseed rape production and constraints countermeasures in Anhui Province[J]. Anhui Agricultural Science Bulletin, 2016, 22(10): 61−62,64 doi: 10.3969/j.issn.1007-7731.2016.10.027 [6] 付雪丽, 张惠, 贾继增, 等. 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究[J]. 作物学报, 2009, 35(9): 1708−1714 doi: 10.3724/SP.J.1006.2009.01708FU X L, ZHANG H, JIA J Z, et al. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system[J]. Acta Agronomica Sinica, 2009, 35(9): 1708−1714 doi: 10.3724/SP.J.1006.2009.01708 [7] 习敏, 杜祥备, 吴文革, 等. 稻麦两熟系统适期晚播对周年产量和资源利用效率的影响[J]. 应用生态学报, 2020, 31(1): 165−172 doi: 10.13287/j.1001-9332.202001.023XI M, DU X B, WU W G, et al. Effects of late sowing of two season crops on annual yield and resource use efficiency in rice-wheat double cropping system[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 165−172 doi: 10.13287/j.1001-9332.202001.023 [8] 杜祥备, 孔令聪, 习敏, 等. 江淮区域稻麦两熟制周年资源分配、利用特征[J]. 中国生态农业学报(中英文), 2019, 27(7): 1078−1087DU X B, KONG L C, XI M, et al. Characteristics of resource allocation and utilization of rice-wheat double cropping system in the Jianghuai Area[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1078−1087 [9] 龚德平, 赵永刚, 王天尧, 等. 不同播期对双低油菜品种产量及品质的影响[J]. 湖北农业科学, 2020, 59(S1): 263−265 doi: 10.14088/j.cnki.issn0439-8114.2020.S1.072GONG D P, ZHAO Y G, WANG T Y, et al. Effects of different sowing dates on yield and quality of double-low rapeseed varieties[J]. Hubei Agricultural Sciences, 2020, 59(S1): 263−265 doi: 10.14088/j.cnki.issn0439-8114.2020.S1.072 [10] 冯云艳, 冷锁虎, 冯倩南, 等. 油菜毯苗移栽与直播对比研究[J]. 广东农业科学, 2019, 46(2): 9−15 doi: 10.16768/j.issn.1004-874X.2019.02.002FENG Y Y, LENG S H, FENG Q N, et al. A Comparative study on transplanting and direct seeding of rapeseed blanket seedling[J]. Guangdong Agricultural Sciences, 2019, 46(2): 9−15 doi: 10.16768/j.issn.1004-874X.2019.02.002 [11] 陶玥玥, 盛雪雯, 徐坚, 等. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327−1338TAO Y Y, SHENG X W, XU J, et al. Characteristics of heat and solar resources allocation and utilization in rice-oilseed rape double cropping systems in the Yangtze River Delta[J]. Acta Agronomica Sinica, 2023, 49(5): 1327−1338 [12] 孟宇辉, 金文俊, 董召荣, 等. 江淮地区不同水旱轮作模式的资源利用效率与经济效益比较[J]. 生态学杂志, 2019, 38(11): 3357−3365 doi: 10.13292/j.1000-4890.201911.029MENG Y H, JIN W J, DONG Z R, et al. Comparison of resource utilization efficiency and economic benefit of different paddy-upland rotation systems in Jianghuai region[J]. Chinese Journal of Ecology, 2019, 38(11): 3357−3365 doi: 10.13292/j.1000-4890.201911.029 [13] XING Z P, WU P, ZHU M, et al. Temperature and solar radiation utilization of rice for yield formation with different mechanized planting methods in the lower reaches of the Yangtze River, China[J]. Journal of Integrative Agriculture, 2017, 16(9): 1923−1935 doi: 10.1016/S2095-3119(16)61596-4 [14] 匡炜, 魏征, 戴力, 等. 不同种植方式对双季稻生育期及产量的影响[J]. 华北农学报, 2022, 37(6): 142−149 doi: 10.7668/hbnxb.20193117KUANG W, WEI Z, DAI L, et al. Effects of different planting patterns on growth period and yield of double-cropping rice[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(6): 142−149 doi: 10.7668/hbnxb.20193117 [15] 池忠志, 姜心禄, 郑家国. 不同种植方式对水稻产量的影响及其经济效益比较[J]. 作物杂志, 2008(2): 73−75 doi: 10.3969/j.issn.1001-7283.2008.02.023CHI Z Z, JIANG X L, ZHENG J G. Comparison of yield and economic effect of rice under different planting patterns[J]. Crops, 2008(2): 73−75 doi: 10.3969/j.issn.1001-7283.2008.02.023 [16] ZHAO H Y, GUO J Q, ZHANG C J, et al. Climate change impacts and adaptation strategies in Northwest China[J]. Advances in Climate Change Research, 2014, 5(1): 7−16 doi: 10.3724/SP.J.1248.2014.007 [17] MORISON J I L. Climate change and crop growth[J]. Environmental Management and Health, 1996, 7(2): 24−27 doi: 10.1108/09566169610112980 [18] 刘二华, 周广胜, 武炳义, 等. 1981-2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应[J]. 作物学报, 2023, 49(5): 1305−1315LIU E H, ZHOU G S, WU B Y, et al. Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice[J]. Acta Agronomica Sinica, 2023, 49(5): 1305−1315 [19] 宣守丽, 石春林, 金之庆, 等. 长江中下游地区太阳辐射变化及其对光合有效辐射的影响[J]. 江苏农业学报, 2012, 28(6): 1444−1450XUAN S L, SHI C L, JIN Z Q, et al. Variation of solar radiation over the middle and lower reaches of the Yangtze River and its influence on photosynthetically active radiation[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(6): 1444−1450 [20] 文想成, 张泰, 王学梅, 等. 长江中下游地区气候生产潜力及粮食产量响应[J]. 江苏农业科学, 2021, 49(6): 196−203 doi: 10.15889/j.issn.1002-1302.2021.06.035WEN X C, ZHANG T, WANG X M, et al. Climate productivity potential and food production response in the middle and lower reaches of Yangtze River[J]. Jiangsu Agricultural Sciences, 2021, 49(6): 196−203 doi: 10.15889/j.issn.1002-1302.2021.06.035 [21] 卢燕宇, 王胜, 田红, 等. 近50年安徽省气候生产潜力演变及粮食安全气候承载力评估[J]. 长江流域资源与环境, 2017, 26(3): 428−435 doi: 10.11870/cjlyzyyhj201703013LU Y Y, WANG S, TIAN H, et al. Spatial and temporal variation of climatic potential productivity and its population capacity of food supply in Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2017, 26(3): 428−435 doi: 10.11870/cjlyzyyhj201703013 [22] 郭保卫, 唐闯, 王岩, 等. 两种机械化种植方式对优质晚籼稻产量和品质的影响[J]. 中国农业科学, 2022, 55(20): 3910−3925 doi: 10.3864/j.issn.0578-1752.2022.20.004GUO B W, TANG C, WANG Y, et al. Effects of two mechanical planting methods on the yield and quality of high-quality late Indica rice[J]. Scientia Agricultura Sinica, 2022, 55(20): 3910−3925 doi: 10.3864/j.issn.0578-1752.2022.20.004 [23] 邓根云, 冯雪华. 我国光温资源与气候生产潜力[J]. 自然资源, 1980(4): 11−16DENG G Y, FENG X H. The light and temperature resources and climate productivity of China[J]. Natural Resource, 1980(4): 11−16 [24] 王明田, 曲辉辉, 杨晓光, 等. 基于降水利用比较分析的四川省种植制度优化[J]. 生态学报, 2012, 32(7): 2099−2109 doi: 10.5846/stxb201106200886WANG M T, QU H H, YANG X G, et al. Cropping system optimization based on the comparative analysis of precipitation utilization in Sichuan Province[J]. Acta Ecologica Sinica, 2012, 32(7): 2099−2109 doi: 10.5846/stxb201106200886 [25] 牛文娟. 主要农作物秸秆组成成分和能源利用潜力[D]. 北京: 中国农业大学, 2015: 46-66NIU W J. Physicochemical composition and energy potential of main crop straw and stalk[D]. Beijing: China Agricultural University, 2015: 46-66 [26] 刘长坤, 王艳君, 郭媛. 1960年以来长江流域太阳总辐射的时空变化[J]. 南京信息工程大学学报(自然科学版), 2012, 4(3): 233−240LIU C K, WANG Y J, GUO Y. Spatial-temporal variations of global solar radiation over the Yangtze River basin since 1960[J]. Journal of Nanjing University of Information Science and Technology:Natural Science Edition, 2012, 4(3): 233−240 [27] 张立波, 娄伟平. 气候变暖对长江中下游地区热量资源分布的影响分析[J]. 自然资源学报, 2013, 28(8): 1361−1372 doi: 10.11849/zrzyxb.2013.08.009ZHANG L B, LOU W P. Impact of climate warming on the distribution of thermal resources in the lower-middle reaches of the Changjiang River[J]. Journal of Natural Resources, 2013, 28(8): 1361−1372 doi: 10.11849/zrzyxb.2013.08.009 [28] 李建, 江晓东, 杨沈斌, 等. 长江中下游地区水稻生长季节内农业气候资源变化[J]. 江苏农业学报, 2020, 36(1): 99−107 doi: 10.3969/j.issn.1000-4440.2020.01.014LI J, JIANG X D, YANG S B, et al. Changes of agricultural climate resources during rice growing season in the middle and lower reaches of the Yangtze River[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 99−107 doi: 10.3969/j.issn.1000-4440.2020.01.014 [29] FAHAD S, ADNAN M, HASSAN S, et al. Rice responses and tolerance to high temperature[M]//HASANUZZAMAN M, FUJITA M, NAHAR K, et al. Advances in Rice Research for Abiotic Stress Tolerance. Cambridge: Woodhead Publishing, 2019: 201-224 [30] KRISHNAN P, RAMAKRISHNAN B, RAJA REDDY K, et al. High-temperature effects on rice growth, yield, and grain quality[J]. Advances in Agronomy, 2011, 111: 87−206 [31] 侯雯嘉, 陈长青, 乔辉, 等. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(7): 1501−1508 doi: 10.11870/cjlyzyyhj201807009HOU W J, CHEN C Q, QIAO H, et al. Temporal-spatial characteristics of rape freezing injury in the lower reaches of the Yangtze River during 1980-2009[J]. Resources and Environment in the Yangtze Basin, 2018, 27(7): 1501−1508 doi: 10.11870/cjlyzyyhj201807009 [32] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响[J]. 中国油料作物学报, 2019, 41(6): 894−903 doi: 10.19802/j.issn.1007-9084.2019046CONG R H, ZHANG Z, LU J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(6): 894−903 doi: 10.19802/j.issn.1007-9084.2019046 [33] 李威, 王学林, 杨太明, 等. 江淮分水岭地区一季稻气候生产潜力评估[J]. 水土保持研究, 2022, 29(3): 276−283 doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203037LI W, WANG X L, YANG T M, et al. Climate production potential assessment of single-season rice in Jianghuai Watershed[J]. Research of Soil and Water Conservation, 2022, 29(3): 276−283 doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203037 [34] 罗海平, 邹楠, 王圣云. 1981~2015年我国粮食主产区气候生产潜力的时空分异与演化[J]. 长江流域资源与环境, 2021, 30(7): 1724−1733LUO H P, ZOU N, WANG S Y. Spatiotemporal differentiation and evolution of climatic production potential in Chinese major grain area from 1981 to 2015[J]. Resources and Environment in the Yangtze Basin, 2021, 30(7): 1724−1733 [35] 卢燕宇, 孙维, 方砚秋, 等. 基于种植结构的安徽省气候生产潜力估算及粮食安全气候承载力分析[J]. 生态环境学报, 2022, 31(7): 1293−1305LU Y Y, SUN W, FANG Y Q, et al. Estimating the climatic potential productivity and the climatic capacity of food security based on the cropping structure in Anhui Province[J]. Ecology and Environment, 2022, 31(7): 1293−1305 [36] ZHANG Z, WANG P, CHEN Y, et al. Global warming over 1960–2009 did increase heat stress and reduce cold stress in the major rice-planting areas across China[J]. European Journal of Agronomy, 2014, 59: 49−56 doi: 10.1016/j.eja.2014.05.008 [37] 黄稳清, 黄洪宇, 蒋范晨, 等. 气候变化影响下我国冬油菜物候期时空演变分析[J]. 贵州大学学报(自然科学版), 2022, 39(04): 34−41HUANG W Q, HUANG H Y, JIANG F C, et al. Spatial-temporal evolution of winter rapeseed phenology under climate change in China[J]. Journal of Guizhou University (Natural Sciences), 2022, 39(04): 34−41 [38] 张佩, 高苹, 钱忠海, 等. 油菜花期物候主要限制因子分析及预报模型的构建[J]. 气象, 2020, 46(02): 234−244 doi: 10.7519/j.issn.1000-0526.2020.02.009ZHANG P, GAO P, QIAN Z H, et al. Analysis on limiting factors and construction of prediction model of oilseed rape flowering phenology[J]. Meteorological Monthly, 2020, 46(02): 234−244 doi: 10.7519/j.issn.1000-0526.2020.02.009 [39] 赵政峰, 梁森, 张健, 等. 灌溉和栽培模式对水稻生长产量及倒伏性状的影响[J]. 江苏水利, 2023(6): 22−26,31 doi: 10.16310/j.cnki.jssl.2023.06.013ZHAO Z F, LIANG S, ZHANG J, et al. Effects of irrigation and cultivation mode on growth yield and lodging traits of rice[J]. Jiangsu Water Resources, 2023(6): 22−26,31 doi: 10.16310/j.cnki.jssl.2023.06.013 [40] 王寅, 汪洋, 鲁剑巍, 等. 直播和移栽冬油菜生长和产量形成对氮磷钾肥的响应差异[J]. 植物营养与肥料学报, 2016, 22(1): 132−142 doi: 10.11674/zwyf.14430WANG Y, WANG Y, LU J W, et al. Response differences in growth and yield formation of direct-sown and transplanted winter oilseed rape to N, P and K fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 132−142 doi: 10.11674/zwyf.14430 [41] 吴汉, 吴含, 钱娜, 等. 江淮地区不同灌溉与种植方式对水稻产量及水分利用效率的影响[J]. 灌溉排水学报, 2022, 41(6): 39-46, 71WU H, WU H, QIAN N, et al. The Effects of different combinations of irrigation and planting method on yield and water use efficiency of rice in Jianghuai Region[J]. Journal of Irrigation and Drainage. 2022, 41(6): 39-46, 71 [42] 陈秀芳. 油菜栽培方式与倒伏关系的研究[J]. 湖北农业科学, 1985(10): 20−23 doi: 10.14088/j.cnki.issn0439-8114.1985.10.010CHEN X F. Studies the relationship between cultivating and lodging of Brassica oil[J]. Hubei Agricultural Sciences, 1985(10): 20−23 doi: 10.14088/j.cnki.issn0439-8114.1985.10.010 [43] HE L, ASSENG S, ZHAO G, et al. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2015, 200: 135−143 doi: 10.1016/j.agrformet.2014.09.011 [44] HU X Y, HUANG Y, SUN W J, et al. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s[J]. Agricultural and Forest Meteorology, 2017, 247: 34−41 doi: 10.1016/j.agrformet.2017.07.014 [45] FRICKE U, REDLICH S, ZHANG J, et al. Earlier flowering of winter oilseed rape compensates for higher pest pressure in warmer climates[J]. Journal of Applied Ecology, 2023, 60(2): 365−375 doi: 10.1111/1365-2664.14335 [46] EVANS N, BAIERL A, SEMENOV M A, et al. Range and severity of a plant disease increased by global warming[J]. Journal of the Royal Society Interface, 2007, 5(22): 525−531 [47] LIN E D, XIONG W, JU H, et al. Climate change impacts on crop yield and quality with CO2 fertilization in China[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2005, 360(1463): 2149−2154 doi: 10.1098/rstb.2005.1743 [48] ZHU C W, WOLF J, ZHANG J S, et al. Rising temperatures can negate CO2 fertilization effects on global staple crop yields: A meta-regression analysis[J]. Agricultural and Forest Meteorology, 2023, 342: 109737 doi: 10.1016/j.agrformet.2023.109737 -