Calculation of agricultural production efficiency based on a three-stage Data Envelopment Analysis model and analysis of the spatial-temporal characteristics: An example from the Yangtze River Economic Belt
-
摘要: 为响应长江经济带"大保护"的战略号召和完成国家赋予长江经济带各省市的重大历史任务,长江经济带正在推进农业产业结构调整、优化投入产出比例,保障稳定可持续的农业生产。本文基于三阶段DEA模型和聚类分析相结合的方法,以2008-2018年的长江经济带为例,测算其农业生产效率并分析时空特征。研究表明,外生环境因素对长江经济带农业生产效率的影响显著,存在明显的时空差异。其中:1)剔除环境因素后,长江经济带农业生产效率整体向好,四川省和江苏省处于效率前沿面,上海市的农业生产效率值出现明显下降;2)长江经济带农业生产效率逐年波动发展,长江中游地区相对上游和下游地区的农业生产效率更具优势,个别省份的农业生产效率水平与其经济社会发展程度不匹配;3)劳动力、土地、灌溉等投入要素的增加均会引起农业生产效率的增加,财政投入力度及人均GDP与农业生产效率之间不存在明显的正向相关关系,受灾面积对农业生产效率有显著负面影响。Abstract: In response to the strategic call for the "Great Protection" of the Yangtze River Economic Belt and to fulfill the important historical tasks assigned by the state to the provinces and cities of the area, the Yangtze River Economic Belt is adjusting the agricultural industry structure, optimizing the input-output ratio, and ensuring stable and sustainable agricultural production. Based on the combination of the three-stage Data Envelopment Analysis (DEA) model and cluster analysis, this study examined the Yangtze River Economic Belt from 2008 to 2018 to measure its agricultural production efficiency and to analyze its temporal and spatial characteristics. Studies shown that exogenous environmental factors significantly (P < 5%) impact agricultural production efficiency in the Yangtze River Economic Zone, and there were temporal and spatial differences. These include: 1) after excluding environmental factors, the overall agricultural production efficiency of the Yangtze River Economic Zone had improved. Sichuan and Jiangsu Provinces were at the forefront of efficiency, whereas the agricultural production efficiency of Shanghai had obviously declined. 2) The agricultural production efficiency of the Yangtze River Economic Belt varied year by year, with fluctuating development. The middle reaches of the Yangtze River had advanced agricultural production efficiency more than the upstream and downstream regions, and the agricultural production efficiency of the individual provinces did not match their economic and social development. 3) Increases in labor, land, irrigation, and other input factors increased agriculture production efficiency, there was no correlation between fiscal investment per capita gross domestic product (GDP) and agricultural production efficiency. The disaster-affected area had a significant negative impact on agricultural production efficiency.
-
表 1 长江经济带农业生产效率相关变量及其统计性描述
Table 1. Variables related to agricultural production efficiency in the Yangtze River Economic Belt and their statistical description
变量类型
Variable type名称
Name单位
Unit符号
Symbolic均值
Mean标准差
Standard deviation产出变量
Output variable农业总产值Total agricultural output value 108 ¥ OP 3181.44 1864.72 投入变量
Input variable农业机械总动力Total power of agricultural machinery 104 kW I1 3188.36 1728.36 农用化肥施用量Amount of agricultural fertilizer 104 t I2 192.14 107.74 第一产业劳动力Primary industry labor 104 peoples I3 1116.14 562.09 农作物播种面积Sown area of crops 103 hm2 I4 4954.79 2780.96 有效灌溉面积Effective irrigation area 103 hm2 I5 2127.21 1178.15 环境变量
Environment variable财政对农业的支持Financial support for agriculture 108 ¥ E1 474.32 251.24 人均GDP GDP per capita ¥ E2 46 181.66 20 614.85 受灾面积Disaster-affected area 103 hm2 E3 823.50 908.06 表 2 2008 —2018年长江经济带省市的农业产出与投入的Pearson相关系数检验
Table 2. Pearson correlation coefficient test of agricultural output and input in provinces and cities of the Yangtze River Economic Belt from 2008 to 2018
OP I1 I2 I3 I4 I5 OP 1.000 I1 0.754*** 1.000 I2 0.793** 0.832*** 1.000 I3 0.547*** 0.663*** 0.725*** 1.000 I4 0.296*** 0.692*** 0.639*** 0.518*** 1.000 I5 0.809*** 0.925*** 0.885*** 0.592*** 0.581*** 1.000 OP、I1-I5为表 1中的投入及产出变量。*和**表示P < 0.05和P < 0.01水平显著相关。OP and I1-I5 are the input and output variables shown in the table 1. * and ** represent significant correlations at P < 0.05 and P < 0.01 levels, respectively. 表 3 一阶段DEA-BCC模型下的2008 —2018年长江经济带的农业生产效率
Table 3. Agricultural production efficiencies of provinces (cities) of the Yangtze River Economic Belt Region from 2008 to 2018 based on the one-stage DEA-BCC model
省(市) Province (city) 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 均值Mean 安徽Anhui 0.557 0.519 0.560 0.552 0.561 0.468 0.503 0.508 0.509 0.502 0.474 0.512 贵州Guizhou 0.620 0.563 0.554 0.518 0.572 0.526 0.514 0.494 0.494 0.518 0.535 0.537 江西Jiangxi 0.723 0.664 0.676 0.665 0.644 0.646 0.702 0.741 0.804 0.820 0.752 0.712 湖南Hunan 0.759 0.819 0.896 0.892 0.821 0.787 0.813 0.440 0.482 0.533 0.638 0.716 云南Yunnan 0.706 0.747 0.703 0.620 0.754 0.829 0.822 0.792 0.723 0.717 0.914 0.757 湖北Hubei 0.933 0.935 0.981 0.994 0.969 0.995 1.000 0.868 0.906 0.920 0.898 0.945 重庆Chongqing 0.899 0.929 0.932 0.963 0.942 1.000 1.000 1.000 1.000 1.000 1.000 0.970 江苏Jiangsu 0.869 0.869 0.964 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.973 浙江Zhejiang 1.000 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 四川Sichuan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 上海Shanghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 表 4 长江经济带的农业生产效率二阶段似SFA前沿回归调整结果
Table 4. SFA forward regression adjustment results in two-stage of agricultural production efficiency in the Yangtze River Economic Belt
环境变量Environment variable 松弛变量Slack
variableI1 I2 I3 I4 I5 E1 –0.171 –0.001 0.034** –0.133 –0.013 E2 0.001** 0.001* 0.000 0.214* 0.000 E3 0.0561 0.008 –0.0084** –0.0046** 0.0474 C –163.570* –8.870*** 25.910** –195.410** –92.770* LR test 72.45 45.45 42.89 85.35 83.96 Prob > chi 0.00 0.00 0.00 0.00 0.00 log likelihood –998.98 –611.87 –851.67 –1088.88 –929.67 E1-E3、I1-I5见表 1中的环境变量和投入变量。*、**和***表示P < 0.1、P < 0.05和P < 0.01水平显著相关。E1-E3 and I1-I5 are the environmental and output variables shown in the table 1. *, ** and *** represent significant correlations at P < 0.1, P < 0.05 and P < 0.01 levels, respectively. 表 5 2008 —2018年三阶段DEA-BCC调整后长江经济带各省市的农业生产效率值
Table 5. Agricultural production efficiencies of provinces (cities) of the Yangtze River Economic Belt from 2008 to 2018 based on the three-stage DEA-BCC model
地区Area 省(市) Province (city) 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 均值Mean 上游
Upstream云南Yunnan 0.734 0.802 0.759 0.632 0.826 0.858 0.926 0.908 0.876 0.830 0.965 0.829 四川Sichuan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 贵州Guizhou 0.646 0.535 0.724 0.679 0.571 0.643 0.634 0.444 0.502 0.527 0.583 0.590 重庆Chongqing 0.805 0.856 0.824 0.814 0.804 0.896 0.864 0.878 0.905 1.000 1.000 0.877 中游
Midstream湖北Hubei 0.989 0.988 0.979 0.949 0.981 1.000 1.000 0.972 1.000 1.000 1.000 0.987 湖南Hunan 0.961 0.997 1.000 0.999 1.000 0.996 0.970 0.572 0.650 0.797 0.766 0.883 江西Jiangxi 0.982 0.872 0.856 0.807 0.836 0.943 0.962 0.796 0.951 0.843 0.910 0.887 下游
Downstream江苏Jiangsu 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 安徽Anhui 0.814 0.894 0.755 0.767 0.731 0.750 0.741 0.704 0.752 0.752 0.691 0.759 浙江Zhejiang 1.000 0.983 1.000 1.000 0.956 1.000 1.000 0.927 0.832 0.864 0.956 0.956 上海Shanghai 0.480 0.240 1.000 1.000 0.660 1.000 0.460 0.515 0.680 0.130 0.230 0.581 表 6 剔除环境变量后长江经济带农业生产效率聚类分析结果比较
Table 6. Comparison of cluster analysis results of agricultural production efficiencies in the Yangtze River Economic Belt after excluding environmental variables
地区分类Area class 第1阶段The first stage 第3阶段The third stage Ⅰ 四川、上海Sichuan, Shanghai 四川、江苏Sichuan, Jiangsu Ⅱ 湖北、重庆、江苏、浙江Hubei, Chongqing, Jiangsu, Zhejiang 重庆、湖南、江西、浙江、湖北Chongqing, Hunan, Jiangxi, Zhejiang, Hubei Ⅲ 云南、江西、湖南Yunnan, Jiangxi, Hunan 云南、安徽Yunnan, Anhui Ⅳ 安徽、贵州Anhui, Guizhou 贵州、上海Guizhou, Shanghai -
[1] 秦清芝, 杨雪英. 挖掘乡村综合价值促进城乡融合发展[J]. 人民论坛, 2019, (34): 76-77 doi: 10.3969/j.issn.1004-3381.2019.34.023QIN Q Z, YANG X Y. Exploring the comprehensive value of rural areas to promote the integrated development of urban and rural areas[J]. People's Tribune, 2019, (34): 76-77 doi: 10.3969/j.issn.1004-3381.2019.34.023 [2] 李裕瑞, 杨乾龙, 曹智. 长江经济带农业发展的现状特征与模式转型[J]. 地理科学进展, 2015, 34(11): 1458-1469 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201511014.htmLI Y R, YANG Q L, CAO Z. Current status and pattern transformation of agricultural development in the Yangtze River Economic Belt[J]. Progress in Geography, 2015, 34(11): 1458-1469 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201511014.htm [3] 华德亚, 汤龙. 产业结构与就业结构协调性及地区趋同研究[J]. 统计与决策, 2019, 35(9): 145-149 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201909035.htmHUA D Y, TANG L. Research on the coordination of industrial structure and employment structure and regional convergence[J]. Statistics & Decision, 2019, 35(9): 145-149 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201909035.htm [4] FARRELL M J. The measurement of productive efficiency[J]. Journal of the Royal Statistical Society Series A: General, 1957, 120(3): 253 doi: 10.2307/2343100 [5] MOLL P. The intercountry agricultural production function and productivity differences among countries: Comment[J]. Journal of Development Economics, 1988, 28(1): 121-124 doi: 10.1016/0304-3878(88)90018-1 [6] RUTTAN V W. Productivity growth in world agriculture: sources and constraints[J]. Journal of Economic Perspectives, 2002, 16(4): 161-184 doi: 10.1257/089533002320951028 [7] CHEN S E, BHAGOWALIA P, SHIVELY G. Input choices in agriculture: Is there a gender bias?[J]. World Development, 2011, 39(4): 561-568 doi: 10.1016/j.worlddev.2010.09.012 [8] 赵蕾, 王怀明. 中国农业生产率的增长及收敛性分析[J]. 农业技术经济, 2007, (2): 93-98 doi: 10.3969/j.issn.1000-6370.2007.02.016ZHAO L, WANG H M. Analysis on the growth and convergence of China's agricultural productivity[J]. Journal of Agrotechnical Economics, 2007, (2): 93-98 doi: 10.3969/j.issn.1000-6370.2007.02.016 [9] 熊崇俊. 中国农业生产效率评价研究[J]. 农业经济, 2008, (11): 3-5 doi: 10.3969/j.issn.1001-6139.2008.11.001XIONG C J. Research on China's agricultural production efficiency evaluation[J]. Agricultural Economy, 2008, (11): 3-5 doi: 10.3969/j.issn.1001-6139.2008.11.001 [10] 高强, 丁慧媛, 李宪宝. 沿海地区农业生产效率及变动趋势研究[J]. 财经问题研究, 2011, (12): 10-15 doi: 10.3969/j.issn.1000-176X.2011.12.002GAO Q, DING H Y, LI X B. Research on agricultural production efficiency and its changing trend in coastal areas[J]. Research on Financial and Economic Issues, 2011, (12): 10-15 doi: 10.3969/j.issn.1000-176X.2011.12.002 [11] 任世鑫, 谢志祥, 杨洋, 等. 基于超效率DEA的中原经济区农业生产效率研究[J]. 华中师范大学学报: 自然科学版, 2016, 50(2): 282-287 doi: 10.3969/j.issn.1000-1190.2016.02.021REN S X, XIE Z X, YANG Y, et al. Study on agricultural production efficiency based on super-efficiency DEA model in Central Plains Economic Region[J]. Journal of Central China Normal University: Natural Sciences, 2016, 50(2): 282-287 doi: 10.3969/j.issn.1000-1190.2016.02.021 [12] 焦源. 山东省农业生产效率评价研究[J]. 中国人口·资源与环境, 2013, 23(12): 105-110 doi: 10.3969/j.issn.1002-2104.2013.12.016JIAO Y. Evaluation research of agricultural production efficiency in Shandong Province[J]. China Population, Resources and Environment, 2013, 23(12): 105-110 doi: 10.3969/j.issn.1002-2104.2013.12.016 [13] 郭军华, 倪明, 李帮义. 基于三阶段DEA模型的农业生产效率研究[J]. 数量经济技术经济研究, 2010, 27(12): 27-38 https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201012003.htmGUO J H, NI M, LI B Y. Research on agricultural production efficiency based on three-stage DEA model[J]. The Journal of Quantitative & Technical Economics, 2010, 27(12): 27-38 https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201012003.htm [14] 陈鸣, 邓荣荣. 农业R&D投入与农业全要素生产率——一个空间溢出视角的解释与证据[J]. 江西财经大学学报, 2020, (2): 86-97CHEN M, DENG R R. Agricultural R & D input and agricultural total factor productivity: an explanation and evidence from the perspective of spatial spillover[J]. Journal of Jiangxi University of Finance and Economics, 2020, (2): 86-97 [15] FRIED H O, LOVELL C A K, SCHMIDT S S, et al. Accounting for environmental effects and statistical noise in data envelopment analysis[J]. Journal of Productivity Analysis, 2002, 17(1/2): 157-174 [16] 叶文忠, 刘俞希. 长江经济带农业生产效率及其影响因素研究[J]. 华东经济管理, 2018, 32(3): 83-88 https://www.cnki.com.cn/Article/CJFDTOTAL-HDJJ201803012.htmYE W Z, LIU Y X. Agricultural productivity and influential factors in the Yangtze River economic belt[J]. East China Economic Management, 2018, 32(3): 83-88 https://www.cnki.com.cn/Article/CJFDTOTAL-HDJJ201803012.htm [17] 王振, 周海旺, 王晓娟. 长江经济带发展报告(2017-2018)[M]. 北京: 社会科学文献出版社, 2018WANG Z, ZHOU H W, WANG X J. Report on the Development of the Yangtze River Economic Belt: 2017-2018[M]. Beijing: Social Sciences Literature Publishing House, 2008 [18] 吴传清. 黄金水道——长江经济带[M]. 重庆: 重庆大学出版社, 2019WU C Q. Golden Waterway-Yangtze River Economic Belt[M]. Chongqing: Chongqing University Press, 2008 [19] 陈卫平. 中国农业生产率增长、技术进步与效率变化: 1990-2003年[J]. 中国农村观察, 2006, (1): 18-23 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCG200601002.htmCHEN W P. Productivity growth, technical progress and efficiency change in Chinese agriculture: 1990-2003[J]. China Rural Survey, 2006, (1): 18-23 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCG200601002.htm [20] 李谷成. 技术效率、技术进步与中国农业生产率增长[J]. 经济评论, 2009, (1): 60-68 https://www.cnki.com.cn/Article/CJFDTOTAL-JJPL200901011.htmLI G C. Technical efficiency, technological progress and China's agricultural productivity growth[J]. Economic Review, 2009, (1): 60-68 https://www.cnki.com.cn/Article/CJFDTOTAL-JJPL200901011.htm [21] 周锦, 赵正玉. 乡村振兴战略背景下的文化建设路径研究[J]. 农村经济, 2018, (9): 9-15 https://www.cnki.com.cn/Article/CJFDTOTAL-NCJJ201809003.htmZHOU J, ZHAO Z Y. Research on the path of cultural construction under the background of rural revitalization strategy[J]. Rural Economy, 2018, (9): 9-15 https://www.cnki.com.cn/Article/CJFDTOTAL-NCJJ201809003.htm [22] 宫少颖, 汤进华, 吴永兴. 上海市农业产业结构及竞争力的区域差异分析[J]. 上海农业学报, 2012, 28(4): 110-114 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201204040.htmGONG S Y, TANG J H, WU Y X. Analysis on the regional differences in Shanghai agricultural structure and competitiveness[J]. Acta Agriculturae Shanghai, 2012, 28(4): 110-114 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201204040.htm [23] 张凡凡, 张启楠, 李福夺, 等. 基于三阶段DEA-Windows的主产区粮食生产效率评价[J]. 中国农业资源与区划, 2019, 40(5): 158-165 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201905022.htmZHANG F F, ZHANG Q N, LI F D, et al. Evaluation of grain production efficiency in the main production area based on the three stage DEA-Windows[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(5): 158-165 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201905022.htm [24] 胡海, 庄天慧. 共生理论视域下农村产业融合发展: 共生机制、现实困境与推进策略[J]. 农业经济问题, 2020, 41(8): 68-76 https://www.cnki.com.cn/Article/CJFDTOTAL-NJWT202008007.htmHU H, ZHUANG T H. On the integration development of rural industry from the perspective of symbiosis theory: symbiosis mechanism practical dilemma and promotion strategy[J]. Issues in Agricultural Economy, 2020, 41(8): 68-76 https://www.cnki.com.cn/Article/CJFDTOTAL-NJWT202008007.htm [25] 程翠云, 任景明, 王如松. 我国农业生态效率的时空差异[J]. 生态学报, 2014, 34(1): 142-148 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201401018.htmCHENG C Y, REN J M, WANG R S. Spatial-temporal distribution of agricultural eco-efficiency in China[J]. Acta Ecologica Sinica, 2014, 34(1): 142-148 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201401018.htm -