[1] |
APPELS R, EVERSOLE K, FEUILLET C, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361: eaar7191 doi: 10.1126/science.aar7191
|
[2] |
SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution, 2019, 3(3): 430−439
|
[3] |
WATERHOUSE W L. Australian rust studies. Ⅲ. Initial results of breeding for rust resistance[J]. Proceedings of the Linnean Society of New South Wales, 1930, 55: 596−636
|
[4] |
MCINTOSH R A, DUBCOVSKY J, ROGERS W J, et al. Catalogue of gene symbols for wheat: 2019 supplement[M]// RAUPP W J, ed. Annual Wheat Newsletter. Manhattan, KS: Wheat Genetic and Genomic Resources at Kansas State University, 2019: 98–113
|
[5] |
HE H G, LIU R K, MA P T, et al. Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796[J]. Theoretical and Applied Genetics, 2021, 134(1): 53−62 doi: 10.1007/s00122-020-03681-2
|
[6] |
HEWITT T, MÜLLER M C, MOLNÁR I, et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis[J]. The New Phytologist, 2021, 229(5): 2812−2826 doi: 10.1111/nph.17075
|
[7] |
SÁNCHEZ-MARTÍN J, STEUERNAGEL B, GHOSH S, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing[J]. Genome Biology, 2016, 17(1): 1−7 doi: 10.1186/s13059-015-0866-z
|
[8] |
BRUNNER S, HURNI S, HERREN G, et al. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field[J]. Plant Biotechnology Journal, 2011, 9(8): 897−910 doi: 10.1111/j.1467-7652.2011.00603.x
|
[9] |
SÁNCHEZ-MARTÍN J, WIDRIG V, HERREN G, et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins[J]. Nature Plants, 2021, 7(3): 327−341 doi: 10.1038/s41477-021-00869-2
|
[10] |
XIE J Z, GUO G H, WANG Y, et al. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat[J]. The New Phytologist, 2020, 228(3): 1011−1026 doi: 10.1111/nph.16762
|
[11] |
HURNI S, BRUNNER S, BUCHMANN G, et al. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew[J]. The Plant Journal, 2013, 76(6): 957−969 doi: 10.1111/tpj.12345
|
[12] |
SINGH S P, HURNI S, RUINELLI M, et al. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity[J]. Plant Molecular Biology, 2018, 98(3): 249−260 doi: 10.1007/s11103-018-0780-3
|
[13] |
XING L P, HU P, LIU J Q, et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat[J]. Molecular Plant, 2018, 11(6): 874−878 doi: 10.1016/j.molp.2018.02.013
|
[14] |
LU P, GUO L, WANG Z Z, et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew[J]. Nature Communications, 2020, 11: 680 doi: 10.1038/s41467-020-14294-0
|
[15] |
FU D L, UAUY C, DISTELFELD A, et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust[J]. Science, 2009, 323(5919): 1357−1360 doi: 10.1126/science.1166289
|
[16] |
LI M M, DONG L L, LI B B, et al. A CNL protein in wild emmer wheat confers powdery mildew resistance[J]. The New Phytologist, 2020, 228(3): 1027−1037 doi: 10.1111/nph.16761
|
[17] |
MOORE J W, HERRERA-FOESSEL S, LAN C X, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat[J]. Nature Genetics, 2015, 47(12): 1494−1498 doi: 10.1038/ng.3439
|
[18] |
ZOU S H, WANG H, LI Y W, et al. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat[J]. The New Phytologist, 2018, 218(1): 298−309 doi: 10.1111/nph.14964
|
[19] |
ZELLER F J, KONG L, HARTL L, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova[J]. Euphytica, 2002, 123(2): 187−194 doi: 10.1023/A:1014944619304
|
[20] |
李桂萍, 陈佩度, 张守忠, 等. 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响[J]. 植物遗传资源学报, 2011, 12(5): 744−749LI G P, CHEN P D, ZHANG S Z, et al. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat[J]. Journal of Plant Genetic Resources, 2011, 12(5): 744−749
|
[21] |
曹廷杰, 陈永兴, 李丹, 等. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J]. 作物学报, 2015, 41(8): 1172−1182 doi: 10.3724/SP.J.1006.2015.01172CAO T J, CHEN Y X, LI D, et al. Identification and molecular detection of powdery mildew resistance of new bred wheat varieties (lines) in Henan Province, China[J]. Acta Agronomica Sinica, 2015, 41(8): 1172−1182 doi: 10.3724/SP.J.1006.2015.01172
|
[22] |
PUGSLEY A T, CARTER M V. The resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici[J]. Australian Journal of Biological Sciences, 1953, 6(3): 335−346 doi: 10.1071/BI9530335
|
[23] |
BRIGGLE L W. Three loci in wheat involving resistance to Erysiphe graminis f. sp. tritici 1[J]. Crop Science, 1966, 6(5): 461−465 doi: 10.2135/cropsci1966.0011183X000600050021x
|
[24] |
MCINTOSH R A, BAKER E P. Cytogenetical studies in wheat iv. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance[J]. Euphytica, 1970, 19(1): 71−77 doi: 10.1007/BF01904668
|
[25] |
MA Z Q, SORRELLS M E, TANKSLEY S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat[J]. Genome, 1994, 37(5): 871−875 doi: 10.1139/g94-123
|
[26] |
QIU Y C, SUN X L, ZHOU R H, et al. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat[J]. Cereal Research Communications, 2006, 34(4): 1267−1273 doi: 10.1556/CRC.34.2006.4.268
|
[27] |
赵军. 小麦抗白粉病基因的分子标记[D]. 北京: 中国农业大学, 2006: 30−40ZHAO J. Molecular markers of powdery mildew resistance genes in wheat[D]. Beijing: China Agricultural University, 2006: 30−40
|
[28] |
李根桥, 房体麟, 朱婕, 等. 普通小麦品种‘Brock’抗白粉病基因分子标记定位[J]. 作物学报, 2009, 35(9): 1613−1619 doi: 10.3724/SP.J.1006.2009.01613LI G Q, FANG T L, ZHU J, et al. Molecular identification of a powdery mildew resistance gene from common wheat cultivar ‘Brock’[J]. Acta Agronomica Sinica, 2009, 35(9): 1613−1619 doi: 10.3724/SP.J.1006.2009.01613
|
[29] |
HUANG J, ZHAO Z H, SONG F J, et al. Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66[J]. Molecular Breeding, 2012, 30(4): 1737−1745 doi: 10.1007/s11032-012-9757-0
|
[30] |
宋伟, 孙会改, 孙艳玲, 等. 小麦品种汶农14抗白粉病基因的染色体定位[J]. 作物学报, 2014, 40(5): 798−804 doi: 10.3724/SP.J.1006.2014.00798SONG W, SUN H G, SUN Y L, et al. Chromosomal localization of the gene for resistance to powdery mildew in the wheat cultivar Wennong 14[J]. Acta Agronomica Sinica, 2014, 40(5): 798−804 doi: 10.3724/SP.J.1006.2014.00798
|
[31] |
SUN H G, SONG W, SUN Y L, et al. Resistance of ‘Zhongmai 155’ wheat to powdery mildew: effectiveness and detection of the resistance gene[J]. Crop Science, 2015, 55(3): 1017−1025 doi: 10.2135/cropsci2014.05.0355
|
[32] |
SUN Y L, ZOU J W, SUN H G, et al. PmLX66 and PmW14: new alleles of Pm2 for resistance to powdery mildew in the Chinese winter wheat cultivars Liangxing 66 and Wennong 14[J]. Plant Disease, 2015, 99(8): 1118−1124 doi: 10.1094/PDIS-10-14-1079-RE
|
[33] |
李丹, 袁成国, 吴海彬, 等. 普通小麦品种农大399抗白粉病基因SSR和AFLP-SCAR分子标记[J]. 植物遗传资源学报, 2013, 14(1): 104−108, 114 doi: 10.3969/j.issn.1672-1810.2013.01.016LI D, YUAN C G, WU H B, et al. SSR and AFLP-derived SCAR markers associated with the powdery mildew resistance gene in common wheat cultivar ND399[J]. Journal of Plant Genetic Resources, 2013, 14(1): 104−108, 114 doi: 10.3969/j.issn.1672-1810.2013.01.016
|
[34] |
管昌英, 郭军, 薛凤博, 等. 普通小麦DH155抗白粉病基因的分子作图及应用分子标记辅助选择将其转移[J]. 作物学报, 2015, 41(8): 1183−1190 doi: 10.3724/SP.J.1006.2015.01183GUAN C Y, GUO J, XUE F B, et al. Molecular mapping of powdery mildew resistance gene MlDH155 in hexaploid wheat DH155 and its transfer by marker assisted selection[J]. Acta Agronomica Sinica, 2015, 41(8): 1183−1190 doi: 10.3724/SP.J.1006.2015.01183
|
[35] |
MA P T, XU H X, XU Y F, et al. Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939[J]. Theoretical and Applied Genetics, 2015, 128(4): 613−622 doi: 10.1007/s00122-015-2457-5
|
[36] |
XU H X, YI Y J, MA P T, et al. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat Landrace Niaomai[J]. Theoretical and Applied Genetics, 2015, 128(10): 2077−2084 doi: 10.1007/s00122-015-2568-z
|
[37] |
MA P T, ZHANG H X, XU H X, et al. The gene PmYB confers broad-spectrum powdery mildew resistance in the multi-allelic Pm2 chromosome region of the Chinese wheat cultivar Yingbo 700[J]. Molecular Breeding, 2015, 35(5): 1−10
|
[38] |
MA P T, XU H, ZHANG H X, et al. The gene PmWFJ is a new member of the complex Pm2 locus conferring unique powdery mildew resistance in wheat breeding line Wanfengjian 34[J]. Molecular Breeding, 2015, 35(11): 1−9
|
[39] |
MA P T, XU H X, XU Y F, et al. Characterization of a powdery mildew resistance gene in wheat breeding line 10V-2 and its application in marker-assisted selection[J]. Plant Disease, 2018, 102(5): 925−931 doi: 10.1094/PDIS-02-17-0199-RE
|
[40] |
MA P T, XU H X, LUO Q L, et al. Inheritance and genetic mapping of a gene for seedling resistance to powdery mildew in wheat line X3986-2[J]. Euphytica, 2014, 200(1): 149−157 doi: 10.1007/s10681-014-1178-1
|
[41] |
MA P T, XU H, LI L H, et al. Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1[J]. Frontiers in Plant Science, 2016, 7: 546
|
[42] |
JIN Y L, XU H X, MA P T, et al. Characterization of a new Pm2 allele associated with broad-spectrum powdery mildew resistance in wheat line Subtil[J]. Scientific Reports, 2018, 8: 475 doi: 10.1038/s41598-017-18827-4
|
[43] |
CHEN F, JIA H Y, ZHANG X J, et al. Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat[J]. The Crop Journal, 2019, 7(6): 771−783 doi: 10.1016/j.cj.2019.08.004
|
[44] |
JIN Y L, SHI F Y, LIU W H, et al. Identification of resistant germplasm and detection of genes for resistance to powdery mildew and leaf rust from 2,978 wheat accessions[J]. Plant Disease, 2021. DOI: 10.1094/PDIS-03-21-0532-RE
|
[45] |
MANSER B, KOLLER T, PRAZ C R, et al. Identification of specificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2[J]. The Plant Journal, 2021, 106(4): 993−1007 doi: 10.1111/tpj.15214
|
[46] |
BOURRAS S, MCNALLY K E, MÜLLER M C, et al. Avirulence genes in cereal powdery mildews: the gene-for-gene hypothesis 2.0[J]. Frontiers in Plant Science, 2016, 7: 241
|
[47] |
DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 2010, 11(8): 539−548 doi: 10.1038/nrg2812
|
[48] |
JIA Y, MCADAMS S A, BRYAN G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19(15): 4004−4014 doi: 10.1093/emboj/19.15.4004
|
[49] |
PRAZ C R, BOURRAS S, ZENG F S, et al. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus[J]. The New Phytologist, 2017, 213(3): 1301−1314 doi: 10.1111/nph.14372
|
[50] |
贾梦淑. 小麦品种济麦23白粉病抗性的分子鉴定及标记辅助育种[D]. 烟台: 烟台大学, 2020: 33–38JIA M S. Molecular identification of the powdery mildew resistance in wheat cultivar Jimai 23 and marker-assisted breeding[D]. Yantai: Yantai University, 2020: 33–38
|
[51] |
胡娜, 王永玖, 黄琼瑞, 等. 小麦抗白粉病基因的分子标记检测及其抗性评价[J]. 分子植物育种, 2009, 7(6): 1093−1099HU N, WANG Y J, HUANG Q R, et al. Molecular marker identification of powdery mildew resistance-related genes of wheat and resistant valuation[J]. Molecular Plant Breeding, 2009, 7(6): 1093−1099
|
[52] |
刘理森, 张倩, 任妍, 等. 241份小麦品种(系)白粉病抗性鉴定与分子标记检测[J]. 分子植物育种, 2016, 14(3): 619−637LIU L S, ZHANG Q, REN Y, et al. Identification and molecular detection of powdery mildew resistance of 241 wheat varieties (lines)[J]. Molecular Plant Breeding, 2016, 14(3): 619−637
|
[53] |
刘易科, 朱展望, 佟汉文, 等. 湖北省主要小麦品种抗病基因分析[J]. 分子植物育种, 2018, 16(4): 1040−1049LIU Y K, ZHU Z W, TONG H W, et al. Analysis of the resistance genes in the main wheat varieties in Hubei Province[J]. Molecular Plant Breeding, 2018, 16(4): 1040−1049
|
[54] |
XU H X, CAO Y W, XU Y F, et al. Marker-assisted development and evaluation of near-isogenic lines for broad-spectrum powdery mildew resistance gene Pm2b introgressed into different genetic backgrounds of wheat[J]. Frontiers in Plant Science, 2017, 8: 1322 doi: 10.3389/fpls.2017.01322
|