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Abstract: Anthocyanins are important antioxidant materials that protects plant from damage by reactive oxygen species (ROS).
Especially under adverse conditions, the regulation of sucrose in plants depends on its ability to induce anthocyanin accumu-
lation. To determine the intrinsic relationship between photosynthetic and anthocyanin regulated pathways for
Cas-phosphoenolpyruvate carboxylate (PEPC, EC 4.1.1.31) gene overexpressed rice (PC) in drought conditions, PC and un-
transformed wild-type (WT) were treated with 50 umol-L~! photosynthetic inhibitor DCMU for 1 h and the performance of the
rice seedlings at 4-5 leaf stage observed under 12% PEG-6000 simulated drought. The results showed that DCMU pretreat-
ment significantly reduced relative water contents of WT and PC under simulated 12% PEG-6000 drought condition, and rela-
tive water content of PC was significantly higher than that of WT. The anthocyanin content was higher in PC than in WT under
12% PEG-6000 simulated drought or drought plus DCMU pretreatment. 12% PEG-6000 simulated drought decreased antho-
cyanin contents of PC and WT, while DCMU pretreatment alleviated this effect. Compared with 12% PEG-6000, DCMU plus
12% PEG-6000 significantly inhibited net photosynthetic rate, stomatal conductance, intercellular CO; and carboxylation effi-
ciency of the two rice lines, but these parameters of PC lines were significantly higher than those of WT lines. Then DCMU
plus 12% PEG-6000 down-regulated endogenous sucrose content of the two materials, but sucrose content of PC lines was
significantly higher than that of WT lines. Further studies showed that higher sucrose level in PC was associated with higher
expression levels of transcriptional factors of bHLH (OsB1, OsB2), R2ZR3-MYB (OsC1), COPI (constitutively photomorpho-
genic 1), HY5 (elongated hypocotyl 5), OsPAL, OsCHI, OsCHS, OsF3H, OsF3’H, OsDFR and OsANS, which resulted in syn-
thesizing more anthocyanin to improve water retention capacity. In addition, PC rice sensed drought signals through NO and
Ca?*, which participated in the regulation of transcription factors, regulation of anthocyanin synthesis gene, synthesis of more
anthocyanin and thereby enhanced PC rice response to drought stress. This enhanced water retention capacity, stabilized pho-
tosynthetic capacity and resisted drought. Therefore, it was beneficial in molecular breeding of “Cs Rice” to study the sym-
phony between high yield and plant resistance.

Keywords: Cs-pepc gene overexpressed rice; Phosphoenolpyruvate carboxlase; Sucrose; Anthocyanin; DCMU; Drought
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Table 1  Genes and primers for QRT-PCR
Gene Primers sequence
Gene description Primers name Forward primer (F) Reverse primer (R)
ACTIN CCCTCTTTCATCGGTATGGA TTGATCTTCATGCTGCTTGG
bHLH BI GGATGGTCTCCTTGGACTGA GGGTGGCAGATTCATCACTT
B2 GTGGCAATAACGACGACGACTCC CGTACGGTGTTGACGAGGTA
MYB cl CGGGTTCTTCTTCCACGAC CCCGCAACTGCACTTAAAAT
Anthocyanin synthase PAL CAAGCTCATGACCTCCACCTA GTTCATGGTGAGCACCTTCTT
gene CHS TCATGTATGGGTGGTTTGGTT GCCAGGCATCTCTTACACAGG
CHI CGAGCAGTACTCGGACAAGG TGAAGGCCTCCTTGAACTTG
F3H GAGCAATGGGAGGTTCAAGA CTTCGATTTTCGACGGAAGA
F3'H CCGCTACAGTACCAGCCTTC TGCCACCATTTCTAGAGTTCC
DFR CGGATGGATGTACTTCGTGTC CATCCCGTTGCTGATGAAG
ANS CTCCTCCAGCTCAAGATCAAC GTTGTGGAGGATGAAGGAGAG
Transcription factor copPI ATAATCCTGGGTCGAGCCAC TATGGTGATCAGCAGAACCCAC
HYS GGCGGGTGCCGGAGATGG CGCCGTCGTGTTCTTCTTGAGTATCTGG
1.12 2 HRESH
SPSS18.0 One-Way 2.1 DCMU Cu-pepe
ANOVA , Microsoft Excel 2013 PEPC
QRT-PCR 2-AACt 1A , ,WT PC
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Fig. 1 Effects of DCMU pretreatment on leaves relative water content (A) and PEPC activity (B) of Cs4-pepc gene overexpressed
rice (PC) and untransformed wild-type rice (WT) under simulated drought stress
CK: ; PEG: PEG ; DCMU+PEG: DCMU
WT PC (P<0.05) CK:normal hydroponic culture; PEG: PEG simulated drought stress; DCMU+PEG: DCMU

pretreatment plus simulated drought stress. Different lowercase letters indicate significant differences among different treatments of WT and
PC at P <0.05.
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Fig. 2 Effects of DCMU pretreatment on photosynthetic parameters (A: net photosynthetic rate; B: stomatal conductance; C: inter-
cellular CO2 concentration; D: carboxylation efficiency) of Cs-pepc gene overexpressed rice (PC) and untransformed wild-type rice
(WT) leaves under simulated drought stress
CK: ; PEG: PEG ; DCMU+PEG: DCMU

WT PC (P<0.05, LSD test) CK: normal hydroponic culture; PEG: PEG simulated drought stress;

DCMU+PEG: DCMU pretreatment plus simulated drought stress. Different lowercase letters indicate significant differences among different
treatments of WT and PC at P < 0.05.

2.5 DCMU Cy-pepc (43]
, (phenylalnine ammonialyase, PAL)
(chalcone isomerase, CHI)
, (chalcone synthase, CHS) -3-
12% PEG-6000 , (flavonoid-3-hydroxylase, OsF3H) -3’-
, PC WT; DCMU (flavonoid-3’-hydroxylase, F3’H)
12% PEG-6000 (dihydroflavonol-4-reductase, DFR)
, PC WT( 95) (anthocyanidin reductase, ANR)
s ) (anthocyanidin synthase, ANS)
? 12% PEG-6000 PEG-6000 DCMU

6 , OsBl OsB2 0OsCl 12% PEG-
2 OsBl  OsB2 6000 PC

, OsCl , OsBI WT; DCMU  12% PEG-6000
OsB2 bHLH , OsCl R2R3-MYB OsBl OsB2  OsCl

, , PC WT( 5B-D)

http://www.ecoagri.ac.cn



3 DCMU Ca-pepc 415
801 A OWT mPC ,PC  OsPAL OsCHS OsCHI OsF3H OsF3’H
— 70 F a OsDFR OsANS ; DCMU
Z60f 12% PEG-6000 (
MH%“ sof b OsPAL),  PC WT ,
“E 0} PC
Z €
2 30t
o]
S 2} 2.6 DCMU Cas-pepc
z
10 }
0 b
80r 5 >
— 70} NO ;
]
£ 60f b
Ten s b MBW(MYB-BHLH-
i“ﬂ g WD40) , COPI1(constitutively
& 40t .
%‘ = photomorphogenic 1) HY5(elongated hypocotyl 5)
= 30¢F [46-47]
8 E
S 20t
:fl b
10 TA s , PC OsCOP1
0 WT; 12% PEG-6000 R
301 . OsCOPI , PC WT;
— 25 DCMU 12% PEG-6000
g b 0sCOPI , PC WT
‘ oo 2.0 . , OsHYS5
i
sl . 12% PEG-6000 ,PC
SE OsHY5 , PC WT, DCMU
g 10T 12% PEG-6000 PC  OsHYS
S s , PC WT(  6B) :
, PC NO Ca**
0
CK DCMU+PEG P 5
hb¥R Treatment
3 DCMU B & T 2B T S REHE 3 W 5ge
Cu-pepc R IKFEPC)FNE & K FBWT)H B NO (A). .
H:0: (B)#0 Ca** (C)S ERF N s
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Fig. 4 Effects of DCMU pretreatment on contents of soluble sugar (A), sucrose (B), glucose (C) and fructose (D) of Cs-pepc gene
overexpressed rice (PC) and untransformed wild-type rice (WT) leaves under simulated drought stresses

; DCMU+PEG: DCMU
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Fig. 5 Effect of DCMU pretreatment on anthocyanin content
of Ca-pepc gene overexpressed rice (PC) and untransformed
wild-type rice (WT) leaves under simulated drought stress
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Fig. 6 Effects of DCMU pretreatment on expression of anthocyanin synthase genes of Cs-pepc gene overexpressed rice (PC) and
untransformed wild-type rice (WT) leaves under simulated drought stress

; DCMU+PEG: DCMU
(P<0.05, LSD test) CK: normal hydroponic culture; PEG: PEG simulated drought stress;

DCMU+PEG: DCMU pretreatment plus simulated drought stress. Different lowercase letters indicate significant differences among different
treatments of WT and PC at P < 0.05.
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Fig. 7 Effect of DCMU pretreatment on regulators of anthocyanin of Cs-pepc gene overexpressed rice (PC) and untransformed
wild-type rice (WT) leaves under simulated drought stress
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WT PC (P<0.05, LSD test) CK: normal hydroponic culture; PEG: PEG simulated drought stress;

DCMU+PEG: DCMU pretreatment plus simulated drought stress. Different lowercase letters indicate significant differences among different
treatments of WT and PC at P < 0.05.
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