WANG Huan, QIAO Juan. Decoupling and predictive analysis of greenhouse gas emission from animal husbandry in China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 793-802. DOI: 10.13930/j.cnki.cjea.180826
Citation: WANG Huan, QIAO Juan. Decoupling and predictive analysis of greenhouse gas emission from animal husbandry in China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 793-802. DOI: 10.13930/j.cnki.cjea.180826

Decoupling and predictive analysis of greenhouse gas emission from animal husbandry in China

  • With increasing greenhouse gas emission, China has committed to cap carbon dioxide emissions by 2030. As animal husbandry has become an important part of the emission reduction effort, it is necessary to analyze the current situation and trend in greenhouse gas emission due to animal husbandry in the country. Based on the 2000-2014 provincial panel data and the Guidelines on Provincial Greenhouse Gas Emission Inventories, we estimated greenhouse gas emission due to animal husbandry and then used the Tapio decoupling model to analyze the relationship between greenhouse gas emission and the economic development due to animal husbandry. Furthermore, LMDI model was used to decompose the driving factors, and the greenhouse gas emissions target of animal husbandry in 2020 under different scenarios were also analyzed. The results suggested that greenhouse gas emission from animal husbandry decreased from 377.852 4 million tons in 2000 to 358.157 6 million tons in 2014, representing a drop of 5.21%. Emission reduction from non-dairy cattle was significant. However, it was still above the 50% threshold — 181.805 4 million tons. Emissions from sheep, pigs and cattle were respectively 70.725 6 million tons, 62.026 9 million tons and 43.599 7 million tons, all of which still increased. The decoupling effect of greenhouse gas emission from animal husbandry was ideal. The whole country was under weak decoupling that underwent three stages of fluctuation — relative stability — increase. The decoupling condition for each province was good, among which 15 provinces had strong decoupling, 15 provinces had weak decoupling and 1 province had receding decoupling. The comprehensive effect tracked an inverted U-curve at the national level, which was quite different for the provinces. The efficiency of production was the main contributor to the national and provincial emission reductions, while the effect of economic development was the most important driving factor of emission. The difference in comprehensive effect mainly came from the difference in industrial structure and labor. In 2020, greenhouse gas emission from animal husbandry far exceeded planned target. The predicted range of greenhouse gas emission from animal husbandry was from 335.630 8 to 400.677 1 million tons. Then the predicted endpoint values were respectively 12.84% and 34.71% more than the target, which great increased the pressure of emission reduction. In this case, only the lowest decoupling elasticity and the fastest economic growth rate had the least greenhouse gas emission gap. Greenhouse gas emission reduction was an inevitable requirement for sustainable development in the world. Although the decoupling effect of greenhouse gas emission from animal husbandry in China was obvious under the effect of several factors, emission reduction was still an arduous task, requiring the formulation of practical measures to promote it. Therefore, this work suggested that China needed to adjust its industrial structure and import livestock products instead of promoting domestic production. There was the need to implement differential governance of decoupling in different regions and improving farming efficiency. Also, clear animal husbandry emission reduction objectives and task assignments to provinces were required.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return