微生物调控植物应对盐胁迫的作用机制

Mechanisms of microbial regulation in plant responses to salt stress

  • 摘要: 盐胁迫是全球农业生产中最为严峻的非生物胁迫之一, 其通过破坏土壤水分平衡、诱导离子毒害、氧化损伤及营养元素竞争等多重途径, 严重威胁作物的产量与品质。植物生长促进根际细菌(PGPRs)与植物生长促进内生菌(PGPEs)作为植物微生物组的核心成员, 近年来其在调控植物抗盐胁迫中的分子机制被广泛研究。本文综述了PGPRs和PGPEs通过多维度互作增强植物耐盐性的关键机制: 首先, 微生物可通过合成植物激素调控宿主植物的生长素信号通路、赤霉素介导的细胞伸长以及脱落酸诱导的气孔响应, 从而缓解盐胁迫对植物生理的抑制; 其次, 微生物通过分泌抗氧化酶及非酶抗氧化物质, 有效清除活性氧, 减轻氧化损伤, 维持细胞代谢稳态; 第三, 微生物通过调节离子转运蛋白的表达, 促进Na+外排和K+/Ca2+吸收, 优化K+/Na+平衡, 降低离子毒性。此外, 微生物的胞外多糖(EPS)通过螯合Na+、改善根际微环境, 以及挥发性有机化合物(VOCs)通过调控光合效率、渗透平衡和系统抗性, 为植物提供协同保护。值得注意的是, 内生真菌还可通过激活丝裂原活化蛋白激酶(MAPK)信号通路和高渗透甘油(HOG-MAPK)通路, 诱导转录因子的磷酸化, 上调抗逆基因表达, 实现表观遗传调控与代谢重编程。尽管已有研究表明微生物可通过调节根系结构、氮磷代谢和信号分子等途径增强植物适应性, 但微生物来源的信号肽(SPMs)与VOCs在盐胁迫响应中的分子机制仍不明确, 例如其如何通过长距离信号传递调控植物激素合成或与模式识别受体(PRR)信号通路互作。未来研究需结合多组学技术, 解析微生物-植物互作的复杂网络, 开发基于合成微生物群落的耐盐增强策略, 并探索信号肽与VOCs作为生物传感器或精准农业工具的潜力。本文旨在为盐碱地农业的微生物资源利用、抗盐作物品种改良及智能环境监测技术提供理论依据与实践方向。

     

    Abstract: Salinity stress is one of the most severe abiotic stresses threatening global agricultural production, impairing crop yield and quality through multiple mechanisms including disruption of soil water balance, induction of ion toxicity, oxidative damage, and competition for nutrient elements. As core members of the plant microbiome, plant growth-promoting rhizobacteria (PGPRs) and plant growth-promoting endophytes (PGPEs) have been extensively studied in recent years for their molecular mechanisms in regulating plant salt stress resistance. This article systematically reviews the key mechanisms by which PGPRs and PGPEs enhance plant salt tolerance through multidimensional interactions: Firstly, microbes modulate plant auxin signaling pathways, gibberellin-mediated cell elongation, and abscisic acid-induced stomatal responses by synthesizing plant hormones, thereby alleviating physiological inhibition caused by salinity stress. Secondly, through secretion of antioxidant enzymes and non-enzymatic antioxidants, microbes effectively scavenge reactive oxygen species (ROS), mitigate oxidative damage, and maintain cellular metabolic homeostasis. Thirdly, microbes regulate the expression of ion transport proteins to promote Na+ efflux and K+/Ca2+ uptake, optimize K+/Na+ equilibrium, and reduce ion toxicity. Additionally, microbial exopolysaccharides (EPS) provide synergistic protection by chelating Na+ and improving rhizosphere microenvironment, while volatile organic compounds (VOCs) modulate photosynthetic efficiency, osmotic balance, and systemic resistance. Notably, endophytic fungi can activate mitogen-activated protein kinase (MAPK) signaling pathways and the high osmolarity glycerol (HOG-MAPK) pathway, inducing phosphorylation of transcription factors and upregulating stress-responsive genes to achieve epigenetic regulation and metabolic reprogramming. Although previous studies demonstrate that microbes enhance plant adaptability through regulation of root architecture, nitrogen/phosphorus metabolism, and signaling molecules, the molecular mechanisms of microbe-derived signal peptides (SPMs) and VOCs in salt stress responses remain unclear-particularly how they regulate plant hormone synthesis or interact with pattern recognition receptor (PRR) signaling pathways via long-distance signaling. Future research should integrate multi-omics technologies to decipher the complex network of microbe-plant interactions, develop salt tolerance enhancement strategies using synthetic microbial communities, and explore the potential of SPMs and VOCs as biosensors or precision agriculture tools. This review aims to provide theoretical foundations and practical directions for microbiome resource utilization in saline-alkali agriculture, salt-resistant crop variety improvement, and intelligent environmental monitoring technologies.

     

/

返回文章
返回